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Abstract. A deep generative model such as a GAN learns to model a
rich set of semantic and physical rules about the target distribution, but
up to now, it has been obscure how such rules are encoded in the network,
or how a rule could be changed. In this paper, we introduce a new problem
setting: manipulation of specific rules encoded by a deep generative model.
To address the problem, we propose a formulation in which the desired
rule is changed by manipulating a layer of a deep network as a linear
associative memory. We derive an algorithm for modifying one entry
of the associative memory, and we demonstrate that several interesting
structural rules can be located and modified within the layers of state-of-
the-art generative models. We present a user interface to enable users to
interactively change the rules of a generative model to achieve desired
effects, and we show several proof-of-concept applications. Finally, results
on multiple datasets demonstrate the advantage of our method against
standard fine-tuning methods and edit transfer algorithms.

Introduction
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-=—We present the task of model rewriting, which aims to add, remove, and alter
the semantic and physical rules of a pretrained deep network. While modern
image editing tools achieve a user-specified goal by manipulating individual input
images, we enable a user to synthesize an unbounded number of new images by
editing a generative model to carry out modified rules.

For example in Figure 1, we apply a succession of rule changes to edit a
StyleGANv2 model [43] pretrained on LSUN church scenes [80]. The first change
removes watermark text patterns (a); the second adds crowds of people in front
of buildings (b); the third replaces the rule for drawing tower tops with a rule
that draws treetops (c), creating a fantastical effect of trees growing from towers.
Because each of these modifications changes the generative model, every single
change affects a whole category of images, removing all watermarks synthesized by
the model, arranging people in front of many kinds of buildings, and creating tree-
towers everywhere. The images shown are samples from an endless distribution.

But why is rewriting a deep generative model useful? A generative model
enforces many rules and relationships within the generated images [7,36]. From a
purely scientific perspective, the ability to edit such a model provides insights
about what the model has captured and how the model can generalize to unseen
scenarios. At a practical level, deep generative models are increasingly useful for
image and video synthesis [57,86,35,12]. In the future, entire image collections,
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Fig. 1: Rewriting the weights of a generator to change generative rules. Rules can
be changed to (a) remove patterns such as watermarks; (b) add objects such as
people; or (¢) replace definitions such as making trees grow out of towers. Instead
of editing individual images, our method edits the generator, so an infinite set of
images can be potentially synthesized and manipulated using the altered rules.

videos, or virtual worlds could potentially be produced by deep networks, and
editing individual images or frames will be needlessly tedious. Instead, we would
like to provide authoring tools for modifying the models themselves. With this
capacity, a set of similar edits could be transferred to many images at once.

A key question is how to edit a deep generative model. The computer vision
community has become accustomed to training models using large data sets
and expensive human annotations, but we wish to enable novice users to easily
modify and customize a deep generative model without the training time, domain
expertise, and computational cost of large-scale machine learning. In this paper, we
present a new method that can locate and change a specific semantic relationship
within a model. In particular, we show how to generalize the idea of a linear
associative memory [48] to a nonlinear convolutional layer of a deep generator.
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Each layer stores latent rules as a set of key-value relationships over hidden
features. Our constrained optimization aims to add or edit one specific rule within
the associative memory while preserving the existing semantic relationships in the
model as much as possible. We achieve it by directly measuring and manipulating
the model’s internal structure, without requiring any new training data.

We use our method to create several visual editing effects, including the
addition of new arrangements of objects in a scene, systematic removal of unde-
sired output patterns, and global changes in the modeling of physical light. Our
method is simple and fast, and it does not require a large set of annotations: a
user can alter a learned rule by providing a single example of the new rule or
a small handful of examples. We demonstrate a user interface for novice users
to modify specific rules encoded in the layers of a GAN interactively. Finally,
our quantitative experiments on several datasets demonstrate that our method
outperforms several fine-tuning baselines as well as image-based edit transfer
methods, regarding both photorealism and desirable effects. Our code, data, and
user interface are available at our website.

2 Related Work

Deep image manipulation. Image manipulation is a classic problem in com-
puter vision, image processing, and computer graphics. Common operations
include color transfer [65,53], image deformation [67,75], object cloning [62,11],
and patch-based image synthesis [20,5,29]. Recently, thanks to rapid advances
of deep generative models [26,45,31], learning-based image synthesis and editing
methods have become widely-used tools in the community, enabling applica-
tions such as manipulating the semantics of an input scene [60,6,72,16], image
colorization [83,34,52,85], photo stylization [25,38,56,54], image-to-image transla-
tion [35,86,9,73,55,32], and face editing and synthesis [24,58,63]. While our user
interface is inspired by previous interactive systems, our goal is not to manipulate
and synthesize a single image using deep models. Instead, our work aims to
manipulate the structural rules of the model itself, creating an altered deep
network that can produce countless new images following the modified rules.

Edit transfer and propagation. Edit transfer methods propagate pixel edits
to corresponding locations in other images of the same object or adjacent frames
in the same video [2,77,28,14,13,81,21]. These methods achieve impressive results
but are limited in two ways. First, they can only transfer edits to images of the
same instance, as image alignment between different instances is challenging.
Second, the edits are often restricted to color transfer or object cloning. In
contrast, our method can change context-sensitive rules that go beyond pixel
correspondences (Section 5.3). In Section 5.1, we compare to an edit propagation
method based on state-of-the-art alignment algorithm, Neural Best-Buddies [1].

Interactive machine learning systems aim to improve training through human
interaction in labeling [15,22,68], or by allowing a user to to aid in the model
optimization process via interactive feature selection [19,27,64,50] or model
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and hyperparameter selection [39,61,37]. Our work differs from these previous
approaches because rather than asking for human help to attain a fixed objective,
we enable a user to solve novel creative modeling tasks, given a pre-trained model.
Model rewriting allows a user to create a network with new rules that go beyond
the patterns present in the training data.

Transfer learning and model fine-tuning. Transfer learning adapts a learned
model to unseen learning tasks, domains, and settings. Examples include domain
adaptation [66], zero-shot or few-shot learning [71,51], model pre-training and
feature learning [17,82,78], and meta-learning [8,4,23]. Our work differs because
instead of extending the training process with more data or annotations, we
enable the user to directly change the behavior of the existing model through a
visual interface. Recently, several methods [74,70,6] propose to train or fine-tune
an image generation model to a particular image for editing and enhancement
applications. Our goal is different, as we aim to identify and change rules that
can generalize to many different images instead of one.

3 Method

To rewrite the rules of a trained generative model, we allow users to specify a
handful of model outputs that they wish to behave differently. Based on this
objective, we optimize an update in model weights that generalizes the requested
change. In Section 3, we derive and discuss this optimization. In Section 4, we
present the user interface that allows the user to interactively define the objective
and edit the model.

Section 3.1 formulates our objective on how to add or modify a specific rule
while preserving existing rules. We then consider this objective for linear systems
and connect it to a classic technique—associative memory [46,3,47] (Section 3.2);
this perspective allows us to derive a simple update rule (Section 3.3). Finally, we
apply the solution to the nonlinear case and derive our full algorithm (Section 3.4).

3.1 Objective: Changing a Rule with Minimal Collateral Damage

Given a pre-trained generator G(z; 6y) with weights 6y, we can synthesize multiple
images z; = G(z;;6p), where each image is produced by a latent code z;. Suppose
we have manually created desired changes x,; for those cases. We would like to
find updated weights #; that change a computational rule to match our target
examples x,; &~ G(z;071), while minimizing interference with other behavior:

0, = arg ngn Esmooth(e) + /\Econstraint(e)y (1)
Esmooth(a) = Ez [E(G(Za 60)3 G(Z, 0))] ) (2)
Econstraint(a) £ Z E(x*iv G(Zi; 0)) (3)

A traditional solution to the above problem is to jointly optimize the weighted
sum of Lgmooth and Leonstraint Over 8, where £(-) is a distance metric that measures
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the perceptual distance between images [38,18,84]. Unfortunately, this standard
approach does not produce a generalized rule within G, because the large number
of parameters 6 allow the generator to quickly overfit the appearance of the new
examples without good generalization; we evaluate this approach in Section 5.

However, the idea becomes effective with two modifications: (1) instead of
modifying all of 6, we reduce the degrees of freedom by modifying weights W at
only one layer, and (2) for the objective function, we directly minimize distance
in the output feature space of that same layer.

Given a layer L, we use k to denote the features computed by the first L — 1
fixed layers of G, and then write v = f(k; W) to denote the computation of layer
L itself, with pretrained weights W;. For each exemplar latent z;, these layers
produce features k.; and v; = f(k.;; Wy). Now suppose, for each target example
Zxj, the user has manually created a feature change v,;. (A user interface to
create target feature goals is discussed in Section 4.) Our objective becomes:

Wl = arg Inui/n Esmooth(W) + Aﬁconstraint(W)a (4)
Esmooth(W) £ Eg [ Hf(k, WO) - f(ka W)H2 ] ) (5)
»Cconstraint(W) £ Z HU*Z - f(k*z, W)||27 (6)

where || - ||> denotes the L2 loss. Even within one layer, the weights W contain
many parameters. But the degrees of freedom can be further reduced to constrain
the change to a specific direction that we will derive; this additional directional
constraint will allow us to create a generalized change from a single (k.,v.) exam-
ple. To understand the constraint, it is helpful to interpret a single convolutional

layer as an associative memory, a classic idea that we briefly review next.

3.2 Viewing a Convolutional Layer as an Associative Memory

Any matrix W can be used as an associative memory [47] that stores a set of
key-value pairs {(k;,v;)} that can be retrieved by matrix multiplication:

The use of a matrix as a linear associative memory is a foundational idea in
neural networks [46,3,47]. For example, if the keys {k;} form a set of mutually
orthogonal unit-norm vectors, then an error-free memory can be created as

Worth £ Z UikiT~ (8)

Since k‘iTkj = 0 whenever ¢ # j, all the irrelevant terms cancel when multiplying
by k;, and we have Woyen kj = v;. A new value can be stored by adding v*k*T
to the matrix as long as k, is chosen to be orthogonal to all the previous keys.
This process can be used to store up to N associations in an M x N matrix.
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Fig.2: (a) A generator consists of a sequence of layers; we focus on one particular
layer L. (b) The convolutional weights W serve an associative memory, mapping
keys k to values v. The keys are single-location input features, and the values are
patterns of output features. (¢) A key will tend to match semantically similar
contexts in different images. Shown are locations of generated images that have
features that match a specific k closely. (d) A value renders shapes in a small
region. Here the effect of a value v is visualized by rendering features at one
location alone, with features at other locations set to zero. Image examples are
taken from a StyleGANv2 model trained on LSUN outdoor church scenes.

Figure 2 views the weights of one convolutional layer in a generator as an
associative memory. Instead of thinking of the layer as a collection of convolutional
filtering operations, we can think of the layer as a memory that associates keys
to values. Here each key k is a single-location feature vector. The key is useful
because, in our trained generator, the same key will match many semantically
similar locations across different images, as shown in Figure 2c. Associated with
each key, the map stores an output value v that will render an arrangement of
output shapes. This output can be visualized directly by rendering the features
in isolation from neighboring locations, as shown in Figure 2d.

For example, consider a layer that transforms a 512-channel featuremap into
a 256-channel featuremap using a 3 x 3 convolutional kernel; the weights form
a 256 x 512 x 3 x 3 tensor. For each key k € R%'2, our layer will recall a value
v € R296%3x3 — R2304 prepresenting a 3 x 3 output pattern of 256-channel features,
flattened to a vector, as v = Wk. Our interpretation of the layer as an associative
memory does not change the computation: the tensor is simply reshaped and
treated as a dense rectangular matrix W e R(256x3x3)x512 "} 56 job is to map
keys k € R5!2 to values v € R?3%, via Eqn. 7.
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Arbitrary Nonorthogonal Keys. In classic work, Kohonen [48] observed
that an associative memory can support more than N nonorthogonal keys {k;}
if instead of requiring exact equality v; = Wk;, we choose W to minimize error:

W, & argmr/ninz |Jv; — Wk |2 (9)

To simplify notation, let us assume a finite set of pairs {(k;,v;)} and collect keys
and values into matrices K and V whose ¢-th column is the i-th key or value:

K = [kilka| - [kil -], (10)
V£ [vifva] - [oi] -] (11)

The minimization (Eqn. 9) is the standard linear least-squares problem. A unique
minimal solution can be found by solving for W} using the normal equation
WoKKT = VKT, or equivalently by using the pseudoinverse Wy = VK ™.

3.3 Updating W to Insert a New Value

Now, departing from Kohonen [48], we ask how to modify Wy. Suppose we wish
to overwrite a single key to assign a new value k, — v, provided by the user.
After this modification, our new matrix W; should satisfy two conditions:

W, = argmin ||V — WK]||?, (12)
w
subject to v, = Wik,. (13)

That is, it should store the new value; and it should continue to minimize error
in all the previously stored values. This forms a constrained linear least-squares
(CLS) problem which can be solved exactly as Wi KKT = VKT + A kT, where
the vector A € R™ is determined by solving the linear system with the constraint
in Eqn. 13 (see Appendix B). Because Wy satisfies the normal equations, we can
expand VKT in the CLS solution and simplify:

WiKKT = WoKKT + AkT (14)
Wy =Wy + A(C k)T (15)

Above, we have written C = KK as the second moment statistics. (C' is sym-
metric; if K has zero mean, C is the covariance.) Now Eqn. 15 has a simple form.
Since A € R™ and (C~'k,)T € R™ are simple vectors, the update A(C~'k,)T is
a rank-one matrix with rows all multiples of the vector (C~1k,)7.

Eqn. 15 is interesting for two reasons. First, it shows that enforcing the user’s
requested mapping k. — v, transforms the soft error minimization objective (12)
into the hard constraint that the weights be updated in a particular straight-line
direction C~1k,. Second, it reveals that the update direction is determined only
by the overall key statistics and the specific targeted key k.. The covariance C' is
a model constant that can be pre-computed and cached, and the update direction
is determined by the key regardless of any stored value. Only A, which specifies
the magnitude of each row change, depends on the target value v,.
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3.4 Generalize to a Nonlinear Neural Layer

In practice, even a single network block contains several non-linear components
such as a biases, ReLLU, normalization, and style modulation. Below, we generalize
our procedure to the nonlinear case where the solution to Wj cannot be calculated
in a closed form. We first define our update direction:

d& C 'k, (16)

Then suppose we have a non-linear neural layer f(k; W) which follows the linear
operation W with additional nonlinear steps. Since the form of Eqn. 15 is sensitive
to the rowspace of W and insensitive to the column space, we can use the same
rank-one update form to constrain the optimization of f(k.; W) & v,.

Therefore, in our experiments, when we update a layer to insert a new key
k.« — v, we begin with the existing W}, and we perform an optimization over
the rank-one subspace defined by the row vector d” from Eqn. 16. That is, in
the nonlinear case, we update Wj by solving the following optimization:

Ay = argmin |[v, — f(ke; Wo + AdT)|]. (17)
AeRM

Once A; is computed, we update the weight as Wi = Wy + A;d”.

Our desired insertion may correspond to a change of more than one key at
once, particularly if our desired target output forms a feature map patch V,
larger than a single convolutional kernel, i.e., if we wish to have V, = f(K,; W)
where K, and V, cover many pixels. To alter S keys at once, we can define the
allowable deltas as lying within the low-rank space spanned by the N x .S matrix
Dg containing multiple update directions d; = C~'K,;, indicating which entries
of the associative map we wish to change.

Ag = argmin ||V, — f(K.; Wy + ADg7)|], (18)
AGRMXS
where Dg £ [dy|da|-- - |d;| - -+ |ds] - (19)

We can then update the layer weights using Wg = Wy + AgDgT. The change
can be made more specific by reducing the rank of Dg; details are discussed
Appendix D. To directly connect this solution to our original objective (Eqn. 6),
we note that the constrained optimization can be solved using projected gra-
dient descent. That is, we relax Eqn. 18 and use optimization to minimize
argminy, ||Vi — f(K.; W)||; then, to impose the constraint, after each optimiza-
tion step, project W into into the subspace Wy + AgDgT.

4 User Interface

To make model rewriting intuitive for a novice user, we build a user interface
that provides a three-step rewriting process: Copy, Paste, and Contezt.
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Fig.3: The Copy-Paste-Context interface for rewriting a model. (a) Copy: the
user uses a brush to select a region containing an interesting object or shape,
defining the target value Vi. (b) Paste: The user positions and pastes the copied
object into a single target image. This specifies the K, — V, pair constraint.
(c) Context: To control generalization, the user selects target regions in several
images. This establishes the updated direction d for the associative memory. (d)
The edit is applied to the model, not a specific image, so newly generated images
will always have hats on top of horse heads. (e) The change has generalized to a
variety of different types of horses and poses (see more in Appendix A).

Copy and Paste allow the user to copy an object from one generated image to
another. The user browses through a collection of generated images and highlights
an area of interest to copy; then selects a generated target image and location
for pasting the object. For example, in Figure 3a, the user selects a helmet worn
by a rider and then pastes it in Figure 3b on a horse’s head.

Our method downsamples the user’s copied region to the resolution of layer L
and gathers the copied features as the target value V. Because we wish to change
not just one image, but the model rules themselves, we treat the pasted image as
a new rule K, — V, associating the layer L — 1 features K, of the target image
with the newly copied layer L values V, that will govern the new appearance.

Context Selection allows a user to specify how this change will be generalized,
by pointing out a handful of similar regions that should be changed. For example,
in Figure 3b, the user has selected heads of different horses.

We collect the layer L — 1 features at the location of the context selections
as a set of relevant K that are used to determine the weight update direction d
via Eqn. 16. Generalization improves when we allow the user to select several
context regions to specify the update direction (see Table 1); in Figure 3, the four
examples are used to create a single d. Appendix D discusses this rank reduction.
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Applying one rule change on a StyleGANv2 model requires about eight seconds
on a single Titan GTX GPU. Please check out the demo video of our interface.

5 Results

We test model rewriting with three editing effects. First, we add new objects
into the model, comparing results to several baseline methods. Then, we use
our technique to erase objects using a low-rank change; we test this method on
the challenging watermark removal task. Finally, we invert a rule for a physical
relationship between bright windows and reflections in a model.

(a) Domes => Spires (c) Faces = Smiles

(b) Domes > Trees
i

Original Model

NBB
Laplace
Blending

NBB
No Blending

Ours

POFDFDED

Fig. 4: Adding and replacing objects in three different settings. (a) Replacing
domes with an angular peaked spire causes peaked spires to be used throughout
the model. (b) Replacing domes with trees can generate images unlike any seen
in a training set. (c) Replacing closed lips with an open-mouth smile produces
realistic open-mouth smiles. For each case, we show the images generated by an
unchanged model, then the edit propagation results, with and without blending.
Our method is shown in the last row.

5.1 Putting objects into a new context

Here we test our method on several specific model modifications. In a church
generator, the model edits change the shape of domes to spires, and change the
domes to trees, and in a face generator, we add open-mouth smiles. Examples of
all the edits are shown in Figure 4.

Quantitative Evaluation. In Tables 1 and 2,we compare the results to several
baselines. We compare our method to the naive approach of fine-tuning all weights
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% more realistic
% smiling images 1 LPIPS (masked) |  than ours 1

Our method (projected gradient descent) 84.37 0.04 -

With direct optimization of A 87.44 0.14 43.0
With single-image direction constraint 82.12 0.05 47.3
With single-layer, no direction constraint 90.94 0.30 6.8
Finetuning all weights 85.78 0.40 8.7
NBB + Direct copying 94.81 0.32 9.8
NBB + Laplace blending 93.51 0.32 8.6
Unmodified model 78.37 - 50.9

Table 1: Editing a StyleGANv2 [43] FFHQ [42] model to produce smiling faces in
n = 10,000 images. To quantify the efficacy of the change, we show the percentage
of smiling faces among the modified images, and we report the LPIPS distance
on masked images to quantify undesired changes. For realism, workers make
n = 1,000 pairwise judgements comparing images from other methods to ours.

Dome — Spire Dome — Tree
7 dome pixels LPIPS % more realistic ~ % dome pixels LPIPS
correctly modified T (masked) | than ours 1 correctly modified T (masked) |

Our method (projected gradient descent) 92.03 0.02 - 48.65 0.03
‘With direct optimization of A 80.03 0.10 53.7 59.43 0.13
‘With single-image direction constraint 90.14 0.04 48.8 39.72 0.03
With single-layer, no direction constraint 80.69 0.29 38.1 41.32 0.45
Finetuning all weights 41.16 0.36 27.1 10.16 0.31
NBB + Direct copying 69.99 0.08 8.9 46.44 0.09
NBB + Laplace blending 69.63 0.08 12.2 31.18 0.09
Unmodified model 63.8

Table 2: We edit a StyleGANv2 [43] LSUN church [80] model to replace domes with
spires/trees in n = 10,000 images. To quantify efficacy, we show the percentage of
dome category pixels changed to the target category, determined by a segmenter
[76]. To quantify undesired changes, we report LPIPS distance between edited
and unchanged images, in non-dome regions. For realism, workers make n = 1,000
pairwise judgements comparing images from other methods to ours.

according to Eqn. 3, as well as the method of optimizing all the weights of a
layer without constraining the direction of the change, as in Eqn. 6, and to
a state-of-the-art image alignment algorithm, Neural Best-Buddies (NBB [1]),
which is used to propagate an edit across a set of similar images by compositing
pixels according to identified sparse correspondences. To transfer an edit from a
target image, we use NBB and Moving Least Squares [67] to compute a dense
correspondence between the source image we would like to edit and the original
target image. We use this dense correspondence field to warp the masked target
into the source image. We test both direct copying and Laplace blending.

For each setting, we measure the efficacy of the edits on a sample of 10, 000
generated images, and we also quantify the undesired changes made by each
method. For the smiling edit, we measure efficacy by counting images classified
as smiling by an attribute classifier [69], and we also quantify changes made in
the images outside the mouth region by masking lips using a face segmentation
model [87] and using LPIPS [84] to quantify changes. For the dome edits, we
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(a) Generated by (b) Dissection: (¢) Dissection: (d) Our method:
unchanged model zeroing 30 units zeroing 60 units rank-1 update

rstock com - 14211590

Fig.5: Removing watermarks from StyleGANv2 [43] LSUN church [80] model.
(a) Many images generated by this model include transparent watermarks in the
center or text on the bottom. (b) Using GAN Dissection [7] to zero 30 text-specific
units removes middle but not bottom text cleanly. (¢) Removing 60 units does
not fully remove text, and distorts other aspects of the image. (b) Applying our
method to create a rank-1 change erases both middle and bottom text cleanly.

Count of visible watermarks middle bottom
Zeroing 30 units (GAN Dissection) 0 6
Zeroing 60 units (GAN Dissection) 0 4
Rank-1 update (our method) 0 0
Unmodified model 64 26

Table 3: Visible watermark text produced by StyleGANv2 church model in
n = 1000 images, without modification, with sets of units zeroed (using the
method of GAN Dissection), and using our method to apply a rank-one update.

measure how many dome pixels are judged to be changed to non-domes by a
segmentation model [76], and we measure undesired changes outside dome areas
using LPIPS. We also conduct a user study where users are asked to compare the
realism of our edited output to the same image edited using baseline methods.
We find that our method produces more realistic outputs that are more narrowly
targeted than the baseline methods. For the smile edit, our method is not as
aggressive as baseline methods at introducing smiles, but for the dome edits, our
method is more effective than baseline methods at executing the change. Our
metrics are further discussed in Appendix C.
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5.2 Removing undesired features

Here we test our method on the removal of undesired features. Figure 5a shows
several examples of images output by a pre-trained StyleGANv2 church model.
This model occasionally synthesizes images with text overlaid in the middle and
the bottom resembling stock-photo watermarks in the training set.

The GAN Dissection study [7] has shown that some objects can be removed
from a generator by zeroing the units that best match those objects. To find
these units, we annotated the middle and bottom text regions in ten generated
images, and we identified a set of 60 units that are most highly correlated with
features in these regions. Zeroing the most correlated 30 units removes some of
the text, but leaves much bottom text unremoved, as shown in Figure 5b. Zeroing
all 60 units reduces more of the bottom text but begins to alter the main content
of the images, as shown in Figure 5c.

For our method, we use the ten user-annotated images as a context to create
a rank-one constraint direction d for updating the model, and as an optimization
target K, — V., we use one successfully removed watermark from the setting
shown in Figure 5b. Since our method applies a narrow rank-1 change constraint,
it would be expected to produce a loose approximation of the rank-30 change in
the training example. Yet we find that it has instead improved specificity and
generalization of watermark removal, removing both middle and bottom text
cleanly while introducing few changes in the main content of the image. We
repeat the process for 1000 images and tabulate the results in Table 3.

5.3 Changing contextual rules

In this experiment, we find and alter a rule that determines the illumination
interactions between two objects at different locations in an image.

State-of-the-art generative models learn to enforce many relationships between
distant objects. For example, it has been observed [6] that a kitchen-scene
Progressive GAN model [41] enforces a relationship between windows on walls
and specular reflections on tables. When windows are added to a wall, reflections
will be added to shiny tabletops, and vice-versa, as illustrated in the first row
of Figure 6. Thus the model contains a rule that approximates the physical
propagation of light in a scene.

In the following experiment, we identified an update direction that allows us
to change this model of light reflections. Instead of specifying an objective that
copies an object from one context to another, we used a similar tool to specify a
K, — V, objective that swaps bright tabletop reflections with dim reflections on
a set of 15 pairs of scenes that are identical other than the presence or absence
of bright windows. To identify a rank-one change direction d, we used projected
gradient descent, as described in Section 3.4, using SVD to limit the change
to rank one during optimization. The results are shown in the second row of
Figure 6. The modified model differs from the original only in a single update
direction of a single layer, but it inverts the relationship between windows and
reflections: when windows are added, reflections are reduced, and vice-versa.
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Without Windows With Windows  Original Generator Without Windows With Windows

e

Reflections Reflections

Without Windows With Windows Without Windows With Windows

Generator with
i % rank-1 change
Reflections inverts reflection rule  Reflections

Fig. 6: Inverting a single semantic rule within a model. At the top row, a Pro-
gressive GAN [41] trained on LSUN kitchens [80] links windows to reflections:
when windows are added by manipulating intermediate features identified by
GAN Dissection [7], reflections appear on the table. In the bottom row, one rule
has been changed within the model to invert the relationship between windows
and reflections. Now adding windows decreases reflections and vice-versa.

6 Discussion

Machine learning requires data, so how can we create effective models for data
that do not yet exist? Thanks to the rich internal structure of recent GANs, in
this paper, we have found it feasible to create such models by rewriting the rules
within existing networks. Although we may never have seen a tree sprouting from
a tower, our network contains rules for both trees and towers, and we can easily
create a model that connects those compositional rules to synthesize an endless
distribution of images containing the new combination.

The development of sophisticated generative models beyond the image domain,
such as the GPT-3 language model [10] and WaveNet for audio synthesis [59],
means that it will be increasingly attractive to rewrite rules within other types
of models as well. After training on vast datasets, large-scale deep networks
have proven to be capable of representing an extensive range of different styles,
sentiments, and topics. Model rewriting provides an avenue for using this structure
as a rich medium for creating novel kinds of content, behavior, and interaction.
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Appendix

A Additional Editing Examples

Figures 7, 8, 9, 10, 11, and 12 show additional results of our editing method to
change a model to achieve a variety of effects across an entire distribution of
generated images. Fach figure illustrates a single low-rank change of a StyleGAN
v2 model derived from the user gestures shown in the top row. The twelve pairs of
images shown below the top row of each figure are the images that score highest
in the context direction d, out of a random sample of 1000: that is, these are
images that are most relevant to the user’s context selection. For each image,
both the output of the unmodified original model and the modified model are
shown. All changes are rank-one changes to the model, except Figure 10, which
is rank ten, and Figure 12, which is rank three.

B Solving for A Algebraically

To strengthen our intuition, here we describe the closed-form solution for A in
the linear case. Recall from Equations 13 and 15:

Wik, = v, (20)
Wy = Wy + Ad¥ (21)

In the above we have written d = C~'k, as in Eqn. 16 for berevity. Then we can
solve for both W and A simultaneously by rewriting the above system as the
following matrix product in block form:

Wy |4

(23)

In practice, we do not solve this linear system because a neural network layer is
nonlinear. In the nonlinear case, instead of using matrix inversion, A is found
using the optimization in Equation 17.

C Implementation details

Datasets To compare identical model edits in different settings, we prepare
a small set of saved editing sessions for executing an change. Each session



20 David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba

Copy Context Paste

Unmodified Unmodified Changed

Fig. 7: Giving horses a hat to wear. After one hat is pasted onto an example
of a horse, and after the user has pointed at four other horse heads, the model is
changed so that horses in a variety of poses, settings, shapes, and sizes all get a
hat on their head. This is not merely a re-balancing of the distribution of the
model. This change introduces a new kind of image that was not generated before.
The original training data does not include hats on horses, and the original
pretrained StyleGANv2 does not synthesize hats on any horses.

corresponds to a set of masks that a user has drawn in order to specify a region
to copy and paste, together with any number of context regions within generated
images for a model. Benchmark editing sessions are included with the source
code.

Large-scale datasets are used only for pretraining the generative models. The
generative models we use are trained on the following datasets. The face model
is trained on Flickr-Faces-HQ (FFHQ) [40], a dataset of 70,000 1024 x1024 face
images. The outdoor church, horse, and kitchen models are trained on LSUN
image datasets [80]. LSUN provides 126,000 church images, 2.2 million kitchen
images, and 2 million horse images at resolutions of 256 x256 and higher.
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Copy Context Paste

Changed

Unmodified Changed

= g ol |

Fig. 8: Giving horses a longer tail. Notice that the color, shape, and occlusions
of the tail vary to fit the specific horse, but in each case the tail is made longer,
as demonstrated in the pasted example.

Generators We rewrite two different generative model architectures: Progres-
sive GAN and StyleGAN v2. The Progressive GAN generator has 18.3 million
parameters and 15 convolutional layers; we edit a model pretrained on LSUN
kitchens. We also edit StyleGAN v2 [43]. StyleGAN v2 has 30 million parameters
and 14 convolutional layers (17 layers for the higher-resolution faces model). We
edit StyleGAN v2 models trained on FFHQ faces, LSUN churches, and LSUN
horses. All the model weights were those published by the original GAN model
authors. For StyleGAN v2, we apply the truncation trick with multiplier 0.5
when running the model.

Metrics To quantify undesired perceptual differences made in edits, we use
the Learned Perceptual Image Patch Similarity (LPIPS) [84] metric to compare
unedited images to edited images. We use the default Alexnet-based LPIPS
network weights as published by the original LPIPS authors. To focus the
measurement on undesired changes, we follow the method of the GAN projection
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Copy Context Paste
Unmodified Changed Unmodified Changed Unmodified Changed

Fig. 9: Removing main windows from churches. The modified model will
replace the central window with a blank wall, or with a wall with some different
details.

work [33] and mask out portions of the image that we intend to change, as
identified by a semantic segmentation network. For faces, we segment the image
using a modified BiSeNet [79] as published by ZLL as faceparsing-Pytorch [87]. For
churches, we segment the image using the Unified Perceptual Parsing network [76].

To quantify the efficacy of the change, we also use pretrained networks. To
detect whether a face image is similing, we use a Slim-CNN [69] facial attribute
classifier. To determine if domes have successfully been edited to other types
of objects, we again use the Unified Perceptual Parsing network, and we count
pixels that have changed from being classified as domes to buildings or trees.

User studies Human realism measurements are done using Amazon Mechanical
Turk (AMT). For each baseline editing method, 500 pairs of images are generated
comparing an edited image using our approach to the same image edited using a
baseline method, and two AMT workers are asked to judge which of the pair is
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Copy Context Paste

Unmodified Unmodified Changed

Fig.10: Reducing the occlusion of buildings by trees. This edit removes
the trees in front of buildings. Note that the model can still synthesize trees next
to buildings.

more realistic, for a total of 1000 comparative judgements. We do not test the
fantastical domes-to-trees edit, which is intended to be unrealistic.

D Rank Reduction for Dg

In this section we discuss the problem of transforming a user’s context selection
K € RV*T (Section 4) into a constraint subspace Dg € RY*S where the desired
dimensionality s < t is smaller than the number of given feature samples T’
provided in K.

We shall think of this as a lossy compression problem. Use P to denote the
probability distribution of the layer L — 1 features (unconditioned on any user
selection), and think of K as a discrete distribution over the user’s ¢ context
examples. We can then use cross-entropy H (K, P) to quantify the information in
K, measured as the message length in a code optimized for the distribution P. To
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Copy Context Paste

Unmodified

Fig.11: Removing earrings. Removing one set of earrings generalizes to many
different types of earrings appearing in different poses.

express this information measure in the setting used in Section 3, we will model P
as a zero-centered Gaussian distribution P(k) = (211)~"/2 exp —kTC~'k/2 with
covariance C'.

If we the normalize the basis using the ZCA whitening transform 7, we can
express P as a spherical unit normal distribution in the variable ¥’ = Zk. This
yields a concise matrix trace expression for cross entropy:

Let C = UXUT be the eigenvector decomposition (24)
74 012 _ -2yt (25)

K & Zk (26)

K' 27K (27)
P(K') = (2m)"/? exp(—k""K'/2) (28)
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Context Paste

Unmodified Changed

Fig.12: Removing glasses. Note that glasses of different shapes are removed,
and most facial structure is recovered. This is a rank-three change. Although
most of the glasses have been removed, this edit did not remove the temples (side
parts) of some glasses, and did not remove refraction effects.

1
H(K' P)= ) ~log P(E") (29)
k'eK’
1
= KTE + % log 27 (30)
k'eK'’
~ln (KK") + — log 2r (31)
2t 2t

In other words, by assuming a Gaussian model, the information in the user’s
context selection can be quantified the trace of a symmetric matrix given by
inner products over the whitened context selection.

To reduce the rank of the user’s context selection, we wish to project the
elements of K’ by discarding information along the R = N —.S most uninformative
directions. Therefore, we seek a matrix Q% € RY*® that has R orthonormal
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columns, chosen so that the projection of the samples @ RQ%K " minimize cross-
entropy with P:

Q5 = argmin H(QrQLK’, P) (32)
= argmin Tr (K7 QrQRLQrQLK’) (33)

Qr
= argmin Tr (QJI;K'K'TQR) (34)

QRr

The trace minimization Eqn. 34 is an instance of the well-studied trace opti-
mization problem [49] that arises in many dimension-reduction settings. It can
be solved by setting the columns of Q% to a basis spanning the space of the
eigenvectors for the smallest R eigenvalues of K/, K'".

Denote by Q% € RV the matrix of orthonormal eigenvectors for the S largest
eigenvalues of K/ K'T. Then we have (I — QLQi )k = Q5Q5'K, i.e., erasing
the uninteresting directions of @}, is the same as preserving the directions Q%.
This is the S-dimensional subspace that we seek: it is the maximally informative
low-dimensional subspace that captures the user’s context selection.

Once we have Q¢ within the whitened basis, the same subspace can be
expressed in unwhitened row space coordinates as:

Ds =2"Qs=2Q% (35)

E Axis-aligned rank reduction for Dg

The identification of axis-aligned units most relevant to a user’s context selection
can also be analyzed using the same rank-reduction objective as Section D,
but with a different family for P. Instead of modeling P as a Gaussian with
generic covariance C', we now model it as an axis-aligned Gaussian with diagonal
covariance X' = diag(o;). Then the optimal basis Q% becomes the unit vectors
for the unit directions e; that maximize the expected ratio

>

kEKctx

(eTk)

2
%

(36)

In Section 5.2 this scoring is used to identify the units most relevant to watermarks
in order to apply GAN dissection unit ablation.

F Experiment Details and Results

Table 2 shows the quantitative results of comparing our method with various
baselines on editing a StyleGANv2 [43] LSUN church [80] model. For both edits,
our method modifies the 7th convolution layer of the generator, with Adam
optimizer [44], 0.05 learning rate, 2001 gradient iterations, and projecting to
a low-rank change every 10 iterations (and also after the optimization loop).
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For domes — trees, a rank 1 edit is performed. (These settings are also the
defaults provided in the user interface, and were used for video demos.) For
domes — spires, a rank 10 edit is performed.

For the StyleGANv2 FFHQ [42] edit shown in main paper 1, our method
modifies the 9th convolution layer of the generator, also with Adam optimizer
[44], 0.05 learning rate, 2001 gradient iterations, and projecting to a low-rank
change every 10 iterations (and also after the optimization loop).

For all experiments, the baseline that finetunes all weights uses the Adam
optimizer [44] with 2001 iterations and a learning rate of 104,

G Reflection Experiment Details

In Section 5.3, we found the rank-one rule reversal change for the abstract window
lighting rule as follows.

1. Generation: we use the GAN to generate 15 images in two ways, one
adding windows, and one removing windows, by activating and deactivating
window-correlated units. The window correlated units are identified using
dissection [7].

2. Annotation: a user masks illuminated regions of the 15 images far from the
windows that show reflected light that differs between the pairs.

3. Optimization: we optimize a change in the weights of the layer to reverse
the behavior of the reflected light in the masked areas, to match dark output
when there is a window and bright output when there is no window. This
optimization is constrained to one direction by using an SVD reduction to
rank one every 10 iterations.

The optimization is computed at each individual layer, and we use the layer
that achieves the lowest loss with a rank-one change: for this experiment, this is
layer 6 of the model.

H Selecting a Layer for Editing

There are two ways to view a convolutional layer: either as a computation in
which information from neighboring locations is combined to detect or produce
edges, textures, or shapes; or as a memory in which many independent feature
mappings are memorized.

In our paper we have adopted the simple view that a layer acts as an associative
memory that maps from one layer’s local feature vectors to local patches of feature
vectors in the next layer. This view is appropriate when layer representations
have features in which neighboring locations are disentangled from one another.
In practice, we find that both ProgressiveGAN and StyleGAN representations
have this property. For example, if a feature patch is rendered in isolation from
neighboring features, the network will usually render the same object as it does
in the context of the full featuremap.
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In Figures 13 and 16, we measure the similarity between patches rendered in
isolation compared to same-sized patches cropped out of the full model, using
Fréchet Inception Distance (FID) [30]. Lower FIDs indicate less dependence be-
tween neighboring patches, and higher FIDs indicate higher dependence between
neighbors. These graphs show that layers 6-11 in StyleGANv2 and layers 4 and
higher in Progressive GAN are most appropriate for editing as an associative
memory. (Note that in StyleGANv2, the nth featuremap layer is the output of
the n — 1th convolutional layer, because the first featuremap layer is fixed. In
Progressive GAN, the nth featuremap layer is the output of the nth convolutional
layer.)

Figures 14 and 15 visualize individual patches rendered in isolation at various
layers of StyleGANv2, and compare those to the entire image rendered together.
Figures 17 and 18 visualize the same for Progressive GAN.

FID with random 32x32 crops FID with random 64x64 crops
50 of StyleGANv2 samples of StyleGANv2 samples
—— church —— church
40 —— kitchen 12 —— kitchen
10
030 =]
w
8
20
6
10
6 8 10 12 6 8 10 12
Layer Number Layer Number

Fig.13: FID of rendered cropped activations with respect to random crops of
StyleGANv2 generated images. In StyleGANv2, the nth convolutional layer
outputs the n + 1th featuremap layer. The layer numbers above correspond to
featuremap layers.
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Fig. 14: Comparison of rendered cropped activations at various layers of Style-
GANvV2 generated LSUN church images.

Rendered
output

Rendered
layer 6
patches

Rendered
layer 8
patches

Fig. 15: Comparison of rendered cropped activations at various layers of Style-
GANv2 generated LSUN kitchen images.
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FID with random 32x32 crops
of Progressive GAN samples

FID with random 64x64 crops
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Fig. 16: FID of rendered cropped activations with respect to random crops of

Progressive GAN generated images.
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Fig. 17: Comparison of rendered cropped activations at various layers of Progres-

sive GAN generated LSUN church images.
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Fig. 18: Comparison of rendered cropped activations at various layers of Progres-
sive GAN generated LSUN kitchen images.



