Skip to main content

MATE-BOOSTER: Design of Tasks for Automatic Formative Assessment to Boost Mathematical Competence

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1220))

Abstract

In the transition from lower to upper secondary education, Italian students are expected to have achieved a level of competence which allows them to use knowledge and abilities to model and to understand scientific and technical disciplines. National standardized tests show that especially students who attend technical high schools often have gaps or misunderstandings in their basic knowledge, which may hinder them in learning scientific technical disciplines, which are at the core of their curriculum. In this paper we start from items designed for summative assessment which highlight the main difficulties that students face with Mathematics at this stage, and discuss how it is possible to adapt them to automatic formative assessment through a process of expansion and digitalization, with the aim of helping students fill the gaps and develop mathematical competences. The activities are part of an online course, called “MATE-BOOSTER”, conceived to strengthen mathematical skills of students attending the first year of a technical upper secondary school. In this paper the process of design of MATE-BOOSTER, rooted on constructivist assumptions, is outlined; the design of tasks for automatic formative assessment is discussed in details, and some examples of online activities are analyzed in light of a theoretical framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. MIUR: Indicazioni Nazionali per il curricolo della scuola dell’infanzia e del primo ciclo d’istruzione (2012)

    Google Scholar 

  2. INVALSI: Rilevazioni nazionali degli apprendimenti 2016–17 - Rapporto dei risultati (2017)

    Google Scholar 

  3. MIUR: Istituti Tecnici: Linee guida per il passaggio al nuovo ordinamento. (2010)

    Google Scholar 

  4. Pellerey, M.: Le competenze individuali e il portfolio. La Nuova Italia Scientifica, Roma (2004)

    Google Scholar 

  5. Debnam, K.J., Lindstrom Johnson, S., Waasdorp, T.E., Bradshaw, C.P.: Equity, connection, and engagement in the school context to promote positive youth development. J. Res. Adolesc. 24, 447–459 (2014)

    Article  Google Scholar 

  6. Mariani, A.M.: La scuola può fare molto ma non può fare tutto. SEI, Torino (2006)

    Google Scholar 

  7. Barana, A., Fioravera, M., Marchisio, M., Rabellino, S.: Adaptive teaching supported by ICTs to reduce the school failure in the project “Scuola Dei Compiti.” In: Proceedings of 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), pp. 432–437. IEEE (2017). https://doi.org/10.1109/COMPSAC.2017.44

  8. Giraudo, M.T., Marchisio, M., Pardini, C.: Tutoring con le nuove tecnologie per ridurre l’insuccesso scolastico e favorire l’apprendimento della matematica nella scuola secondaria. Mondo Digitale. 13, 834–843 (2014)

    Google Scholar 

  9. Barana, A., Marchisio, M., Pardini, C.: COSAM: Corso Online per lo Sviluppo di Abilità Matematiche per facilitare il passaggio tra la scuola secondaria di primo e di secondo grado. In: Design the Future! Extended Abstracts Della Multiconferenza Ememitalia 2016, pp. 436–447. Genova University Press (2017)

    Google Scholar 

  10. Barana, A., Marchisio, M., Miori, R.: MATE-BOOSTER: design of an e-Learning course to boost mathematical competence. In: Proceedings of the 11th International Conference on Computer Supported Education (CSEDU 2019), pp. 280–291 (2019)

    Google Scholar 

  11. Brown, J.S., Collins, A., Duguid, P.: Situated cognition and the culture of learning. Educ. Res. 18, 32–42 (1989)

    Article  Google Scholar 

  12. von Glasersfeld, E.: Constructivism in Education. In: Husen, T., Postlethwaite, T.N. (eds.) The International Encyclopedia of Education, pp. 162–163. Pergamon Press, Oxford/New York (1989)

    Google Scholar 

  13. Cornelius-White, J.: Learner-centered teacher-student relationships are effective: a meta-analysis. Rev. Educ. Res. 77, 113–143 (2007)

    Article  Google Scholar 

  14. Lave, J.: Situating learning in communities of practice. In: Resnick, L.B., Levine, J.M., Teasley, S.D. (eds.) Perspectives on Socially Shared Cognition, pp. 63–82. American Psychological Association, Washington (1991). https://doi.org/10.1037/10096-003

  15. Scriven, M.: The Methodology of Evaluation. Purdue University, Lafayette, Ind (1966)

    Google Scholar 

  16. Hattie, J., Timperley, H.: The power of feedback. Rev. Educ. Res. 77, 81–112 (2007)

    Article  Google Scholar 

  17. Ng, C., Bartlett, B., Elliott, S.N.: Empowering Engagement: Creating Learning Opportunities for Students from Challenging Backgrounds. Springer, New York (2018)

    Book  Google Scholar 

  18. Haberman, M.: The pedagogy of poverty versus good teaching. Phi Delta Kappan 92, 81–87 (2010). https://doi.org/10.1177/003172171009200223

    Article  Google Scholar 

  19. Jonassen, D., Davidson, M., Collins, M., Campbell, J., Haag, B.B.: Constructivism and computer-mediated communication in distance education. Am. J. Distance Educ. 9, 7–26 (1995)

    Article  Google Scholar 

  20. Kearns, L.R.: Student assessment in online learning: challenges and effective practices. MERLOT J. Online Learn. Teach. 8, 198–208 (2012)

    Google Scholar 

  21. Barana, A., Marchisio, M., Rabellino, S.: Automated assessment in mathematics. In: Proceedings of 2015 IEEE 39th Annual Computer Software and Applications Conference, pp. 670–671. IEEE, Taichung (2015). https://doi.org/10.1109/COMPSAC.2015.105

  22. Barana, A., Marchisio, M., Rabellino, S.: Empowering engagement through automatic formative assessment. In: 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), pp. 216–225. IEEE, Milwaukee (2019). https://doi.org/10.1109/COMPSAC.2019.00040

  23. Barana, A., Boffo, S., Gagliardi, F., Garuti, R., Marchisio, M.: Empowering engagement in a technology enhanced learning environment. In: Rehm, M., Saldien, J., Manca, S. (eds.) Project and Design Literacy as Cornerstones of Smart Education. Smart Innovation, Systems and Technologies, vol. 158, pp. 75–77. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-9652-6_7

    Chapter  Google Scholar 

  24. Alonso, F., Lopez, G., Manrique, D., Vines, J.M.: An instructional model for web-based e-learning education with a blended learning process approach. Br. J. Educ. Technol. 36, 217–235 (2005). https://doi.org/10.1111/j.1467-8535.2005.00454.x

    Article  Google Scholar 

  25. Czerkawski, B.C., Lyman, E.W.: An instructional design framework for fostering student engagement in online learning environments. TechTrends 60(6), 532–539 (2016). https://doi.org/10.1007/s11528-016-0110-z

    Article  Google Scholar 

  26. Lefoe, G.: Creating constructivist learning environments on the web: the challenge in higher education, pp. 453–464 (1998)

    Google Scholar 

  27. Sangsawang, T.: Instructional design framework for educational media. Proc. - Soc. Behav. Sci. 176, 65–80 (2015). https://doi.org/10.1016/j.sbspro.2015.01.445

    Article  Google Scholar 

  28. Honebein, P.C.: Seven Goals for the design of constructivist learning environments. In: Constructivist Learning Environments, pp. 11–24. Educational Technology Publications, New York (1996)

    Google Scholar 

  29. Barana, A., Marchisio, M., Sacchet, M.: Advantages of using automatic formative assessment for learning mathematics. In: Draaijer, S., Joosten-ten Brinke, D., Ras, E. (eds.) TEA 2018. CCIS, vol. 1014, pp. 180–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25264-9_12

    Chapter  Google Scholar 

  30. Moebius Assessment. https://www.digitaled.com/products/assessment/

  31. Maple. https://www.maplesoft.com/products/Maple/

  32. Barana, A., Conte, A., Fioravera, M., Marchisio, M., Rabellino, S.: A model of formative automatic assessment and interactive feedback for STEM. In: Proceedings of 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 1016–1025. IEEE, Tokyo (2018). https://doi.org/10.1109/COMPSAC.2018.00178

  33. Sadler, D.R.: Formative assessment and the design of instructional systems. Instr. Sci. 18, 119–144 (1989)

    Article  Google Scholar 

  34. Beevers, C.E., Wild, D.G., McGuine, G.R., Fiddes, D.J., Youngson, M.A.: Issues of partial credit in mathematical assessment by computer. Res. Learn. Technol. 7, 26–32 (1999)

    Article  Google Scholar 

  35. Nicol, D.J., Macfarlane-Dick, D.: Formative assessment and self-regulated learning: a model and seven principles of good feedback practice. Stud. High. Educ. 31, 199–218 (2006)

    Article  Google Scholar 

  36. Osterlind, S.J.: Constructing Test Items. Springer, Dordrecht (1998)

    Google Scholar 

  37. van den Heuvel-Panhuizen, M., Becker, J.: Towards a didactic model for assessment design in mathematics education. In: Bishop, A.J., Clements, M.A., Keitel, C., Kilpatrick, J., Leung, F.K.S. (eds.) Second International Handbook of Mathematics Education. SIHE, vol. 10, pp. 689–716. Springer, Dordrecht (2003). https://doi.org/10.1007/978-94-010-0273-8_23

    Chapter  Google Scholar 

  38. Suurtamm, Christine, et al.: Assessment in mathematics education. Assessment in Mathematics Education. ITS, pp. 1–38. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32394-7_1

    Chapter  Google Scholar 

  39. Heinich, R., Molenda, M., Russel, J.D., Smaldino, S.E.: Instructional Media and Technologies for Learning. Prince Hall, Upper Saddle River (1999)

    Google Scholar 

  40. Ebel, R.L.: Procedures for the Analysis of Classroom Tests. Educ. Psychol. Meas. 14, 352–364 (1954)

    Article  Google Scholar 

  41. Tristan Lopez, A.: The item discrimination index: does it work? Rasch Meas. Trans. 12, 626 (1998)

    Google Scholar 

  42. OECD: PISA 2012 Results. OECD, Paris (2013)

    Google Scholar 

  43. Barana, A., et al.: Self-paced approach in synergistic model for supporting and testing students. In: Proceedings of 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), pp. 407–412. IEEE, Turin (2017)

    Google Scholar 

  44. Barana, A., Marchisio, M.: Dall’esperienza di Digital Mate Training all’attività di Alternanza Scuola Lavoro. Mondo Digitale. 15, 63–82 (2016)

    Google Scholar 

  45. Marchisio, M., Rabellino, S., Spinello, E., Torbidone, G.: Advanced e-learning for IT-army officers through virtual learning environments. J. E-Learn. Knowl. Soc. 13, 59–70 (2017). https://doi.org/10.20368/1971-8829/1382

  46. Barana, A., Marchisio, M.: Ten good reasons to adopt an automated formative assessment model for learning and teaching mathematics and scientific disciplines. Proc. Soc. Behav. Sci. 228, 608–613 (2016). https://doi.org/10.1016/j.sbspro.2016.07.093

    Article  Google Scholar 

  47. Brancaccio, A., Marchisio, M., Meneghini, C., Pardini, C.: More SMART mathematics and science for teaching and learning. Mondo Digitale 14, 8 (2015)

    Google Scholar 

  48. Barana, A., Marchisio, M.: Sviluppare competenze di problem solving e di collaborative working nell’alternanza scuola-lavoro attraverso il Digital Mate Training. Atti di Didamatica 2017, 1–10 (2017)

    Google Scholar 

  49. Gossen, F., Kuhn, D., Margaria, T., Lamprecht, A.-L.: Computational thinking: learning by doing with the Cinco adventure game tool. In: Proceedings of 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 990–999. IEEE (2018). https://doi.org/10.1109/COMPSAC.2018.00175

  50. Rogerson-Revell, P.: Directions in e-learning tools and technologies and their relevance to online distance language education. Open Learn. 22, 57–74 (2007)

    Article  Google Scholar 

  51. Gestinv 2.0. https://www.gestinv.it/

  52. INVALSI. https://www.invalsi.it/invalsi/index.php

  53. Bolondi, G., Branchetti, L., Giberti, C.: A quantitative methodology for analyzing the impact of the formulation of a mathematical item on students learning assessment. Stud. Educ. Eval. 58, 37–50 (2018). https://doi.org/10.1016/j.stueduc.2018.05.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Marchisio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barana, A., Marchisio, M., Miori, R. (2020). MATE-BOOSTER: Design of Tasks for Automatic Formative Assessment to Boost Mathematical Competence. In: Lane, H.C., Zvacek, S., Uhomoibhi, J. (eds) Computer Supported Education. CSEDU 2019. Communications in Computer and Information Science, vol 1220. Springer, Cham. https://doi.org/10.1007/978-3-030-58459-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58459-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58458-0

  • Online ISBN: 978-3-030-58459-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics