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Abstract—This experience report analyses performance of 

the Cassandra NoSQL database and studies the fundamental 

trade-off between data consistency and delays in distributed 

data storages. The primary focus is on investigating the 

interplay between the Cassandra performance (response time) 

and its consistency settings. The paper reports the results of the 

read and write performance benchmarking for a replicated 

Cassandra cluster, deployed in the Amazon EC2 Cloud. We 

present quantitative results showing how different consistency 

settings affect the Cassandra performance under different 

workloads. One of our main findings is that it is possible to 

minimize Cassandra delays and still guarantee the strong data 

consistency by optimal coordination of consistency settings for 

both read and write requests. Our experiments show that 

(i) strong consistency costs up to 25% of performance and 

(ii) the best setting for strong consistency depends on the ratio 

of read and write operations. Finally, we generalize our 

experience by proposing a benchmarking-based methodology 

for run-time optimization of consistency settings to achieve the 

maximum Cassandra performance and still guarantee the 

strong data consistency under mixed workloads. 
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I. INTRODUCTION 

NoSQL (Non SQL or Not Only SQL) databases have 
become the standard data plat-form and a major industrial 
technology for dealing with enormous data growth. They are 
now widely used in different market niches, including social 
networks and other large-scale Internet applications, critical 
infrastructures, business-critical systems, IoT and industrial 
applications. NoSQL databases designed to provide horizontal 
scalability are often offered as a service by Cloud providers. 
The concept of NoSQL databases [1] has been proposed to 
effectively store and provide fast access to the Big Data sets 
whose volume, velocity and variability are difficult to deal 
with by using the traditional Relational Database Management 
Systems. Most NoSQL stores sacrifice the ACID (atomicity, 
consistency, isolation and durability) guarantees in favour of 
the BASE (basically available, soft state, eventually 
consistent) properties [2], which is the price to pay for 
distributed data handling and horizontal scalability. 

The paper discusses the trade-offs between consistency, 
availability and latency, which is in the very nature of NoSQL 
databases. Although these relations have been identified by 
the CAP theorem in qualitative terms [3, 4], it is still necessary 
to quantify how different consistency settings affect system 
latency and throughput. Understanding this trade-off is key for 
the effective usage of NoSQL solutions. While there are many 
NoSQL databases on the market, various industry trends 
suggest that Apache Cassandra is one of the top three in use 
today together with MongoDB and HBase [5]. There have 
been a number of studies, e.g. [6, 7, 8, 9, 10], evaluating and 
comparing the performance of different NoSQL databases. 

Most of them use general competitive benchmarks of usual-
and-customary application workloads (e.g. Yahoo! Cloud 
Serving Benchmark, YCSB). The reported results show that 
depending on the use case scenario, deployment conditions, 
current workload and database settings any NoSQL database 
can outperform the others. Other recent related works, such as 
[11, 12, 13], investigate the measurement-based performance 
prediction of NoSQL data stores. However, the studies 
mentioned above, do not analyse an interdependency between 
consistency and performance, that is in the very nature of such 
distributed database systems and do not study how consistency 
settings affect database latency.  

In this paper we put a special focus on quantitative 
evaluation of the fundamental Big Data trade-offs between 
data consistency and performance using the Cassandra 
database as a typical example of distributed data storages. 
Apache Cassandra offers a set of unique features (e.g. tuneable 
consistency, extremely fast writes, ability to work across 
geographically distributed data centres, etc.) and provides 
high availability with no single point of failure which makes 
it one of the most flexible and popular NoSQL solutions. 
Moreover, we would like to equip the developers of 
distributed systems that use Cassandra as the distributed data 
storage with the practical guidance allowing them to predict 
the Cassandra latency taking into account the required 
consistency level and to coordinate consistency settings of 
read and write requests in an optimal manner. In the paper we 
propose a benchmarking approach to optimising the 
Cassandra performance with guaranteeing the strong data 
consistency under mixed workloads. Because the real 
workload mix can evolve and change over time impacting the 
desirable Cassandra settings, we propose to monitor the 
current workload mix and chose the optimal consistency 
setting at run time to get the highest throughput by making use 
of benchmarking results collected during system load testing. 

The rest of the paper is organized as follows. In the next 
section, we briefly discuss the fundamental CAP trade-off for 
distributed systems and replicated data storages, and analyse the 
Cassandra tuneable consistency feature. In Section III, we 
describe our methodology and the experimental setup, and 
present the results of the Cassandra performance benchmarking 
for different consistency levels. Sections IV and V discuss the 
optimal consistency settings and propose a methodology for 
optimal coordination of consistency settings for read and write 
requests under different workloads. Finally, some practical 
lessons learnt from our work are summarized in Section VI. 

II. BIG DATA TRADE-OFFS BETWEEN CONSISTENCY, 

AVAILABILITY AND LATENCY 

A. CAP Theorem 

The CAP conjecture [3], which first appeared in 1998-
1999, defines a trade-off between system availability, 
consistency and partition tolerance, stating that only two of the 



three properties can be preserved in distributed replicated 
systems at the same time. Gilbert and Lynch [4] view the CAP 
theorem as a particular case of a more general trade-off 
between consistency, availability and latency in unreliable 
distributed systems which, nevertheless, assume that updates 
are eventually propagated.  

System partitioning, availability, consistency and latency 
(response time) are tightly connected. Moreover, we believe 
that these properties need to be viewed as more continuous 
than binary. A replicated fault-tolerant system becomes 
partitioned when one of its parts does not respond due to 
arbitrary message loss, delay or replica failure, resulting in a 
timeout. System availability can be interpreted as the 
probability that each client request eventually receives a 
response. Failure to receive responses from some of the 
replicas within the specified timeout causes partitioning of the 
replicated system. Thus, partitioning can be considered as a 
bound on the replica latency/response time [14, 15]. A slow 
network connection, a slow-responding replica or the wrong 
timeout settings can lead to an erroneous decision that the 
system has become partitioned. When the system detects a 
partition, it has to decide whether to return a possibly 
inconsistent response to a client or to send an exception 
message in reply, which undermines system availability. 
Consistency is also a continuum, ranging from weak 
consistency at one extreme to strong consistency on the other, 
with varying points of eventual consistency in between. 

The designers of distributed fault-tolerant systems cannot 
prevent partitions which happen due to network failures, 
message losses, hacker attacks or components crashes and, 
hence, have to choose between availability and consistency. 
One of these two properties has to be sacrificed. The architects 
of modern distributed database management systems and 
large-scale web applications such as Facebook, Twitter, etc. 
often decide to relax consistency requirements by introducing 
asynchronous data updates in order to achieve higher system 
availability and allow a quick response. Yet the most 
promising approach is to balance these properties [16, 17]. For 
instance, the Cassandra NoSQL database supports a tuneable 
replication factor and an adjustable consistency model so that 
a user can choose a particular level of consistency to fit with 
the desired system latency.  

B. Cassandra’s Tuneable Consistency 

The Cassandra NoSQL database extends the concepts of 
strong [18] and eventual [19] consistency by offering tuneable 
[20] consistency. Consistency in Cassandra can be configured 
to trade-off availability and latency versus data consistency. 

The consistency level among replicated nodes can be 
controlled on a per-operation basis. Thus, for any given read 
or write operation, a client can specify how consistent the 
requested data must be. The read consistency level specifies 
how many replica nodes must respond to a read request before 
returning data to the client application. In turn, the write 
consistency level determines the number of replicas on which 
the write must succeed before returning an acknowledgment 
to the client. 

It is worth noting that Cassandra supports two types of 
write operations with the tiny difference between them: insert 
and update. Cassandra treats both insert or update operations 
as upserts (update-or-insert) [21]. It adds each new row to the 
database without really checking on whether a duplicate 
record exists. This makes it possible that many versions of the 

same row may exist in the database. Periodically, the rows 
stored in memory (in a structure called memtable) are 
streamed to disk into structures called SSTables. At certain 
intervals, Cassandra compacts smaller SSTables into larger 
SSTables. If Cassandra encounters two or more versions of the 
same row during this process, it only writes the most recent 
version to the new SSTable and drops the original SSTables, 
deleting the outdated rows. 

All Cassandra read and write requests support the following 
basic consistency settings [22]: 

 ONE: data must be written to the commit log and 
memtable of at least one replica node before 
acknowledging the write operations to a client; when 
reading data, Cassandra queries and returns a response 
from a single replica (the nearest replica with the least 
network latency); 

 TWO: data must be written to at least two replica nodes 
before being acknowledged; read operations will 
return the most recent record from two of the closest 
replicas (the most recent data is determined by 
comparing timestamps of records returned by those 
two replica); 

 THREE: similar to TWO but for three replicas; 

 QUORUM: a quorum of nodes needs to acknowledge 
the write or to return a response for a read request; a 
quorum is calculated by rounding down to a whole 
number the following estimate: replication_factor/2+1; 

 ALL: data must be written to all replica nodes in a 
cluster before being acknowledged; read requests 
return the most recent record after all replicas have 
responded. The read operation will fail even if a single 
replica does not respond. 

If Cassandra runs across multiple data centres, a few 
additional consistency levels become available: 
EACH_QUORUM, LOCAL_QUORUM, LOCAL_ONE.  

The sum of nodes written and read being greater than the 
replication factor always ensures strong data consistency 
when a read never misses a preceding write [22]. Thus, if data 
consistency is of a top priority, one can ensure that a read 
always reflects the most recent updates by using the following: 

 (nodes_written + nodes_read) > replication_factor 

otherwise, the eventual consistency occurs. For example, if 
Cassandra uses a replication factor of 3, the strong consistency 
is ensured if, either: 

 the QUORUM consistency level is set for both write 
and read requests;  

 the ONE consistency level is set for writes and ALL 
for reads or; 

 the ALL consistency level is set for writes and ONE 
for reads. 

The weaker consistency level, the faster Cassandra should 
perform read and write requests. Balancing between 
nodes_written and nodes_read in (1), Cassandra users can give 
the priority to read or write performance still guaranteeing the 
strong data consistence.  



III. CASSANDRA PERFORMANCE BENCHMARKING 

A. Methodology and Experimental Setup 

In this section we describe our performance benchmarking 
methodology and report the experimental results showing how 
consistency settings affect latency of the read and write 
requests for the Cassandra NoSQL database. 

Cassandra deployment setup. As a testbed we deploy the 3-
replicated Cassandra 2.1 cluster in the Amazon EC2 cloud (Fig. 
2). Replication factor equal to 3 is the most typical setup for many 
modern distributed computing systems and Internet services, 
including Amazon S3, Amazon EMR, Facebook Haystack, 
DynamoDB, etc. The cluster is deployed in the AWS US-West-2 
(Oregon) region on с3.xlarge instances (vCPUs – 4, RAM – 7.5 
GB, SSD – 2x40 GB, OS – Ubuntu Server 16.04 LTS). 

Benchmark. Our work uses the YCSB (Yahoo! Cloud 
Serving Benchmark) framework which is considered to be a 
de-facto standard benchmark to evaluate performance of 
various NoSQL databases like Cassandra, MongoDB, Redis, 
HBase and others [6]. YCSB is an open-source Java project. 

The YCSB framework includes six out-of-the-box 
workloads [6], each testing different common use case 
scenarios with a certain mix of reads and writes (50/50, 95/5, 
read-only, read-latest, read-modify-write, etc.). In our 
experiments we use the read-only Workload C, and the 
Workload A, which is parametrized to execute write-only 
operations. 

Replica 1

Replica 2

Replica 3

YCSB client

Cassandra 2.1 

Cluster

Location: Amazon WS, 

      US-West-2 (Oregon) region

VM instance:  с3.xlarge    

     (vCPUs – 4, RAM – 7.5 GB,

     SSD – 2x40 GB)

OS: Ubuntu Server 16.04 LTS

 

Fig. 1. Experimental setup: Cassandra cluster. 

All the rest Cassandra and YCSB parameters (e.g. request 
distribution, testbed database, etc.) were set to their default 
values. The testbed YCSB database is a table of records. Each 
record is identified by a primary key and includes F string 
fields. The values written to these fields are random ASCII 
strings of length L. By default, F is equal 10 and L is equal 
100, which constructs 1000 bytes records. The final size of the 
testbed database reached 70GB by the end of our experiments. 

The YCSB Client is a Java program that generates data to be 
loaded to the database, and runs the workloads. It is deployed on 
a separate VM in the same Amazon region to reduce the 
influence of the unstable Internet delays. 

 
Fig. 2. A fragment of the READ delay graph, 500 threads. 

 
Fig. 3. A fragment of the WRITE delay graph, 500 threads. 
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Benchmarking scenario. Some examples of general 
methodologies for benchmarking Cassandra and other 
NoSQL databases with YCSB can be found in [5, 23]. 
However, unlike these and other works (e.g. [6, 7, 8, 9, 10]) 
studying and comparing the maximum databases throughput 
we put the focus on analysing the dynamic aspects of the 
Cassandra performance under different consistency settings. 
In particular, we analyse how the database latency and 
throughput depend on a current workload (i.e. number of 
concurrent requests/threads). To achieve this we run a series 
of YSCB read and write performance tests on Apache 
Cassandra with a number of threads varying from 10 to 1000. 
The operation count within each thread is set to 1000. The 
same scenario is run for read and write workloads on the 3-
replicated Cassandra cluster with the three different 
consistency settings: ONE, QUORUM and ALL. 

B. Raw Data Cleansiing 

YCSB supports different measurement types including 
‘histogram’, ‘timeseries’ and ‘raw’. In our experiments we set 
it to ‘raw’ when all measurements are output as raw data 
points in the following csv format: operation 
(READ|WRITE), timestamp of the measurement (ms), 
latency (us). This allows us to plot the response delay graphs, 
see the examples in Figs. 2 and 3 (each graph superimposes 
three curves corresponding to different consistency settings: 
ONE, ALL, QUORUM). 

The ‘Raw’ measurement type, used in our experiments, 
requires further manual analysis of the benchmarked data. 
Though, it also provides a great flexibility for a posterior 
analysis and allows us to get important insights rarely 

discussed by other researchers. In particular, we noticed that the 
cold start phenomenon can have a significant effect on the 
results of the Cassandra performance analysis. This 
phenomenon exhibits itself through the initial period of low 
performance observed at the beginning of each read and write 
tests (see Figs. 2-3). In general, its duration depends on the 
database size, available RAM, intensity of read and write 
requests and their distribution and other factors. In all our 
experiments this period lasts approximately 800-1000 
milliseconds. This phenomenon is explained by the fact that 
Cassandra uses three layers of data store: memtable (stored in 
RAM and periodically flushed to disk), commit log and SSTable 
(both are stored on disk). If the requested row is not in memtable, 
a read needs to look-up in all the SSTable files on disk to load 
data to memtable. In addition, Cassandra also supports integrated 
cacheing and distributes cache data around the cluster. Thus, 
during the cold start period Cassandra reads data from SSTables 
to memtables and warms up cache.  

This period is taken out of consideration in our further 
statistical analysis. Otherwise, the average performance 
estimates would be significantly biased. For instance, in our 
experiments the delays measured during the cold start are on 
average 5-8 times longer than the ones measured during the 
rest of time. 

IV. DATA ANALYSYS. INTERDEPENDENCY BETWEEN 

PERFORMANCE AND CONSISTENCY 

A. Read/Write Latency and Throughput Statistics 

Results of the Cassandra performance benchmarking are 
summarised in Tables I and II and depicted in Figs. 4 and 5. 

TABLE I.     CASSANDRA READ PERFORMANCE STATISTICS 

Threads 
Average latency, us Coefficient of variation, % Average throughput, ops/s 

ONE QUORUM 
(slowdown,  

% of ONE) 
ALL 

(slowdown,  

% of ONE) 
ONE QUORUM ALL ONE QUORUM 

(slowdown,  

% of ONE) 
ALL 

(slowdown,  

% of ONE) 

10 8120 8150 (+1%) 8311 (+2%) 17% 17% 15% 1136 1023 (+11%) 959 (+19%) 

50 12207 13077 (+7%) 14732 (+21%) 29% 27% 21% 3525 3295 (+7%) 3181 (+11%) 

100 15768 18139 (+15%) 21428 (+36%) 32% 30% 24% 6323 5489 (+15%) 5180 (+22%) 

200 21853 26350 (+21%) 29218 (+34%) 56% 43% 38% 7959 7022 (+13%) 6271 (+27%) 

300 31038 35996 (+16%) 41326 (+33%) 63% 48% 45% 9025 7815 (+15%) 7011 (+29%) 

400 38928 48054 (+23%) 52921 (+36%) 58% 49% 44% 9561 7998 (+20%) 7313 (+31%) 

500 49931 59799 (+20%) 65569 (+31%) 54% 46% 40% 9723 8173 (+19%) 7438 (+31%) 

600 56433 72083 (+28%) 77215 (+37%) 50% 42% 39% 10221 8496 (+20%) 7586 (+35%) 

700 69527 79919 (+15%) 84427 (+21%) 49% 39% 37% 9899 8567 (+16%) 7956 (+24%) 

800 74766 87445 (+17%) 93092 (+25%) 47% 39% 35% 10487 9041 (+16%) 8322 (+26%) 

900 89479 98086 (+10%) 107238 (+20%) 48% 39% 36% 10248 8906 (+15%) 8281 (+24%) 

1000 96854 106762 (+10%) 117367 (+21%) 45% 41% 38% 10508 9072 (+16%) 8398 (+25%) 

Average:: (+15%)  (+26%) 46% 38% 34%   (+15%)  (+25%) 

TABLE II.     CASSANDRA WRITE PERFORMANCE STATISTICS 

Threads 
Average latency, us Coefficient of variation, % Average throughput, ops/s 

ONE QUORUM 
(slowdown,  

% of ONE) 
ALL 

(slowdown,  

% of ONE) 
ONE QUORUM ALL ONE QUORUM 

(slowdown,  

% of ONE) 
ALL 

(slowdown,  

% of ONE) 

10 8941 8988 (+1%) 9116 (+2%) 20% 18% 16% 1066 1053 (+1%) 921 (+4%) 

50 11198 11317 (+1%) 12591 (+12%) 28% 28% 26% 4043 3861 (+5%) 3720 (+9%) 

100 14550 14747 (+1%) 16235 (+12%) 37% 32% 28% 6384 6228 (+3%) 5937 (+8%) 

200 19825 20464 (+3%) 22064 (+11%) 51% 42% 32% 8803 8361 (+5%) 8074 (+9%) 

300 24119 26078 (+8%) 27458 (+14%) 68% 58% 40% 10679 10334 (+3%) 9871 (+8%) 

400 29944 33338 (+11%) 35319 (+18%) 61% 55% 49% 12041 11294 (+7%) 10380 (+16%) 

500 36831 38784 (+5%) 41364 (+12%) 60% 53% 46% 12686 12200 (+4%) 11530 (+10%) 

600 41412 44240 (+7%) 46963 (+13%) 58% 47% 45% 13444 12548 (+7%) 12054 (+12%) 

700 48256 53276 (+10%) 55192 (+14%) 56% 51% 46% 13533 12714 (+6%) 12287 (+10%) 

800 55629 61712 (+11%) 64856 (+17%) 54% 51% 47% 13369 12572 (+6%) 11913 (+12%) 

900 61410 67329 (+10%) 69615 (+13%) 53% 49% 44% 13552 13051 (+4%) 12568 (+8%) 

1000 65254 72726 (+11%) 78333 (+20%) 51% 49% 46% 13428 12985 (+3%) 12141 (+11%) 

Average:: (+7%)  (+13%) 50% 44% 39%   (+5%)  (+10%) 

 

 



Fig. 4 shows that the average delay for both read and write 
requests increases almost linearly as the number of threads 
increases. The average values have been computed over a 
thousand of requests sent within each thread.  

A coefficient of variation (CV) is a ratio between the delay 
standard deviation and its average value. It is used as the measure 
of uncertainty. This uncertainty is caused by noise (coming from 
the underlying platforms and technologies) and natural 
uncertainty and variability which is intrinsic to a cloud 
environment and the Internet [24, 25, 26]. The CV value (as it is 
shown in Tables I and II) depends on the workload (the higher 
the workload, the higher the latency variation) and consistency 
settings (the stronger the level of consistency, the lower latency 
variation). It varies between 34 and 50% on average, which does 
not affect the statistical significance of the reported average 
latency. 

 When Cassandra is configured to provide consistency 
level ONE, the latency of both read and write operations is 
lower (by 13% and 26% respectively) than the average 
response time of the ALL consistency setting. The QUORUM 
setting demonstrates a rational balance between delays and 
data consistency. Besides, our results confirm the claim that 
Cassandra has very high write speed especially under the heavy 
workload. Indeed, write operations are almost 25% faster on 
average than read requests independently of consistency 
settings. However, reads are slightly over-performing writes 
when a number of concurrent requests is below 10. 

Cassandra writes executed under the ONE consistency 
level reach the maximum throughput of 13552 requests per 
second. For the QUORUM and ALL consistency settings it 
fluctuates around 13000 and 12500 requests per second. The 
maximum throughput of read operations is lower by 21%, 
33% and 38% correspondingly. 

A combination of average delay and average throughput 
columns of Tables I and II allow us to analyse how the average 
read and write delays depend on the current workload. When 
the workload reaches the maximum Cassandra throughput, 
delays increase in exponential progression (see Fig. 5). Figs. 4 
and 5 clearly show performance benefits offered by weaker 
consistency settings in case of the heavy workload. It is also 
shown that the system is saturated with around 800 threads and 
delays become highly volatile when Cassandra operates close 
to its maximal throughput. 

B. Theoretical Regressions of the Cassandra Latency 

Benchmarking results reported in Tables I and II are a 
discrete set of measured values. They do not allow system 
developers to precisely estimate the database latency 
throughout a range of possible workloads. A regression 
function estimated from the experimental data (see Fig. 4) will 
effectively solve this problem. Table III reports the R-squared 
values (often referred to as the goodness-of-fit [27]) estimating 
extrapolation accuracy of different regression functions. It shows 
that the polynomial regression of the forth order (2-7) fits the 
experimental statistics with the high accuracy. 

  

Fig. 4. Average Cassandra delay depending on the current workload: (a) reads; (b) writes. 

  

Fig. 5. Average Cassandra delay vs average throughput: (a) reads; (b) writes. 
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 y
ALL

Read(x)=9E-08x4 - 0.0002x3 + 0.1005x2 + 94.648x + 8870.3 (2) 

y
QUORUM

Read (x)=-9E-08x4 -0.0002x3 + 0.1605x2 + 64.185x + 8761.6 (3) 

 y
ONE

Read(x)=-2E-08x4 + 2E-05x3 + 0.0159x2 + 70.201x + 8002 (4) 

 y
ALL

Write(x)=-6E-08x4 + 0.0001x3 - 0.0802x2 + 79.259x + 8608.1 (5) 

y
QUORUM

Write (x)=-1E-07x4 + 0.0002x3 - 0.1073x2 + 78.402x + 7897.9 (6) 

 y
ONE

Write(x)=-1E-07x4 + 0.0002x3 - 0.0958x2 + 70.308x + 8141.8 (7) 

where 𝑦ALL
𝑅𝑒𝑎𝑑

, 𝑦QUORUM
𝑅𝑒𝑎𝑑

, 𝑦ONE
𝑅𝑒𝑎𝑑

, 𝑦ALL
𝑊𝑟𝑖𝑡𝑒

, 𝑦QUORUM
𝑊𝑟𝑖𝑡𝑒

, 𝑦ONE
𝑊𝑟𝑖𝑡𝑒

 – 

Cassandra read/update response time for different consistency 
settings [us]; x – the number of threads (e.g. concurrent requests). 

TABLE III.     GOODNESS-OF-FIT FOR READ/WRITE REGRESSIONS 
 

Polynomial regression Linear 
regression order=2 order=3 order=4 

Read  

statistics 

ALL 0.9982 0.9982 0.9984 0.9979 

QUORUM 0.9981 0.9988 0.9990 0.9976 

ONE 0.9978 0.9979 0.9980 0.9952 

Write  

statistics 

ALL 0.9985 0.9985 0.9988 0.9970 

QUORUM 0.9981 0.9983 0.9991 0.9972 

ONE 0.9982 0.9986 0.9994 0.9978 

Obviously, regression functions (2-7) and their coefficients 
are unique for our experimental setup and will not exactly suit 
other installations. System developers performing predictive 
modelling and forecasting system performance will need to 
find equations which theoretically fit their own benchmarking 
results using a variety of tools and APIs. If needed, more 
sophisticated regression techniques, like multivariate adaptive 
regression splines, support vector regression or artificial neural 
networks can be also applied [12]. 

V. FINDING THE OPTIMAL SETTINGS GUARANTYING  

THE STRONG DATA CONSISTENCY 

As it was discussed in Section II.B Cassandra can 
guarantee the strong data consistency model if a sum of 
replicas written and read is higher than the replication factor. 
It means that for a three-replicated system (which is a default 
standard for many large-scale distributed systems including 
Facebook, Twitter, etc.) there are 6 possible read/write 
consistency settings guaranteeing the strong data consistency: 

1) ‘Read ONE – Write ALL’ (1R-3W);  

2) ‘Read QUORUM – Write QUORUM’ (2R-2W);  

3) ‘Read ALL – Write ONE’ (3R-1W);  

4) ‘Read QUORUM – Write ALL’ (2R-3W);  

5) ‘Read ALL– Write QUORUM’ (3R-2W);  

6) ‘Read ALL – Write ALL’ (3R-3W). 
 
Besides, the two settings: ‘Read 

ONE – Write QUORUM’ (1R-2W) and 
‘Read QUORUM – Write ONE’ (2R-
1W) provide 66.6% consistency 
confidence (e.g. a probability that a read 
request returns the most recent data). 
Finally, the ‘Read ONE – Write ONE’ 
(1R-1W) setting can guarantee only the 
33.3% consistency confidence. 

If a system developer would like to 
ensure that a read operation always 
reflects the most recent update he/she 
can opt for one of the first six settings. 
However, our experiments clearly show 
that the fewer replicas are invoked the 

faster Cassandra performs read/write operations. Thus, in 
practice one should choose between the three following 
settings: 1R-3W, 2R-2W and 3R-1W.  

As all three settings guarantee the strong consistency a 
system developer could be interested in choosing one 
providing the minimal response delay on average. In turn, the 
response delay and the Cassandra throughput depend on the 
current workload and the ratio between read/write requests. 

Using regression functions (2-7) we can predict the 
average Cassandra latency under the mixed read-write 
workload: 

 y
1R-3W

(x) = PRead∙y
ONE

Read(x) + PWrite∙yALL

Write(x) (8) 

 y
2R-2W

(x) = PRead∙y
QUORUM

Read (x) + PWrite∙yQUORUM

Write (x) (9) 

 y
3R-1W

(x) = PRead∙y
ALL

Read(x) + PWrite∙yONE

Write(x) (10) 

where 𝑃𝑅𝑒𝑎𝑑 , 𝑃𝑊𝑟𝑖𝑡𝑒  – probabilities of read/write requests, 
PRead + PWrite = 1. 

Table IV provides some estimates of the Cassandra latency 
for different settings guaranteeing the strong consistency 
under a mixed read/write workload using (2-7) and (8-10).  
The Cassandra database is known for extremely fast 
writes/updates. Thus, one might decide to use 1R-3W as the 
best setting, among others (e.g. 2R-2W, 3R-1W), which 
guaranty the strong consistency. However, as it follows from 
Table IV, the 1R-3W setting does not provide the lowest 
response time in all possible scenarios. For instance, if a 
probability of reads is less than 0.5 (50%), the 2R-2W 
consistency setting provides the lowest delay for workloads less 
than 50 threads. However, with the increase of the percentage 
of write requests (higher than 50%) the 1R-3W setting becomes 
optimal independently on the current workload. Increasing the 
number of requests per second and the percentage of read 
requests make the 2R-2W and especially the 3R-1W setups very 
inefficient demonstrating the exponential grow of the 
Cassandra latency. However, the 3R-1W setup still provide the 
lowest delay in heavy ‘write mostly’ workloads when the 
percentage of read requests is less than 25%.  

The 3D surface plot shown in Fig. 6 demonstrates the 
domains in the input workload where the particular consistency 
setting provides the best performance. It is shown that opting for 
2R-2W and 3R-1W in certain scenarios would allow us to 
improve the Cassandra performance (up to 14% on average in 
our case – see Fig. 7). This information can be extremely useful 
for system developers allowing them to dynamically change 
consistency settings of read and write requests in an optimal way 
still guaranteeing the strong data consistency.  

TABLE IV.     ESTIMATED CASSANDRA DELAY UNDER DIFFERENT WORKLOADS DEPENDING  
ON READ/WRITE RATIO 

Threads 
Read/Write = 10/90% Read/Write = 30/70% Read/Write = 50/50% Read/Write = 90/10% 

1R-3W 2R-2W 3R-1W 1R-3W 2R-2W 3R-1W 1R-3W 2R-WU 3R-1W 1R-3W 2R-2W 3R-1W 

10 9324 8746 8935 9187 8896 9133 9049 9045 9331 8774 9345 9728 

50 12304 11651 11679 12137 11806 12157 11970 11960 12636 11637 12269 13593 

100 15794 15027 14863 15661 15372 15820 15529 15717 16777 15264 16407 18691 

200 22281 21286 20741 22397 22433 22917 22512 23580 25093 22743 25874 29446 

300 28532 27402 26428 29051 29622 29938 29570 31842 33447 30609 36283 40466 

400 34928 33804 32322 35926 37104 37075 36924 40405 41828 38921 47006 51335 

500 41709 40714 38628 43204 44930 44425 44700 49146 50222 47690 57578 61815 

600 48976 48149 45371 50952 53035 51989 52928 57921 58607 56879 67694 71843 

700 56686 55914 52385 59115 61239 59672 61544 66564 66959 66403 77214 81534 

800 64655 63610 59319 67523 69247 67285 70392 74885 75250 76128 86160 91182 

900 72561 70628 65636 75888 76650 74541 79216 82672 83447 85872 94716 101258 

1000 79937 76154 70612 83803 82922 81061 87670 89691 91510 95403 103228 112407 

*delays are measured in [us]; **the minimal values are underlined 



 

Fig. 6. Workload domains with the optimal consistency settings. 

 
Fig. 7. Box-and-whisker diagrams showing Cassandra average speedup 

(latency decrease as compared to 1R-3W) due to optimal coordination of 

consistency settings depending on a read/write ratio. 

VI. EXPERIMENTAL-BASED METHODOLOGY FOR 

OPTIMAL COORDINATION OF CONSISTENCY SETTINGS 

One might note that the data reported and the regression 
functions used in the previous sections are unique for our 
experimental setup and might not exactly match other 
installations. This is generally true. It is obvious that the 
Cassandra latency depends on many factors including the size 
and structure of the column family, used hardware, number of 
nodes and their geographical distribution, etc. In this section 
we generalize the experimental data reported by proposing a 
methodology to be used by system engineers for predicting the 
Cassandra latency and coordinating 
consistency settings at run time for 
read and write requests in an 
optimal manner.  

A. Methodology 

The methodology employs a 
benchmarking approach to 
quantify the Cassandra latency and 
throughput. The benchmarking 
here aims at estimating the system 
performance in order to find how 
efficient the system can serve the 
certain mixed workload when 
using different consistency 
settings. The methodology consists 

of the following steps (steps 1-5 can be performed once as a 
part of system load testing; step 6 should be performed at run-
time during system operation): 

1) Deploying and running a Cassandra database in a 

real production environment. 

2) Modifying the YCSB workloads to execute application-

specific read and write queries. This helps evaluate the 

Cassandra performance in the realistic application 

scenarios. 

3) Benchmarking the Cassandra database under 

different workloads (threads per second) with different 

consistency settings following the benchmarking scenario 

described in Sections III.A-B. 

4) Finding regression functions that accurately 

interpolate the average read/write latency measured 

experimentally depending on the workload for different 

consistency settings (see Section IV.B). 

5) Identifying the optimal consistency settings by using 

functions (8)–(10) to provide the minimum Cassandra latency 

depending on the workload and the ratio of read and write 

requests (e.g. workload mix) as described in Section V. As a 

result, system developers are able to identify the workload 

domains with the optimal consistency settings (e.g. see Fig. 6). 

6) Monitoring the current workload and the read/write 

ratio during system operation and setting the optimal 

consistency taking into account the workload domains 

identified at the previous step. 

The proposed methodology enables a run-time optimization 
of consistency settings to achieve the maximal Cassandra 
performance and still guarantee the strong consistency. 

B. Verification 

To verify the proposed methodology we benchmarked the 
Cassandra performance under mixed read/write workloads 
(Read/Write = 10/90%, 30/70%, 50/50% and 90/10%) using the 
same methodology described in Section III.A-B. Obtained 
experimental results were compared with the estimated data 
reported in Table IV. Table V shows a deviation between 
experimentally measured and estimated (see Table IV) delays. 
Cells with consistency settings that provided the minimal latency 
among {1R-3W, 2R-2W and 1R-3W} are underlined in the 
table. It is shown that accuracy between experimental and 
estimated data are considerably high. A deviation never exceeds 
17% (the worst case: Read/Write = 90/10%; threads=10; 3R-
1W) and is reducing with the increase of a number of threads. 
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TABLE V.     A DEVIATION BETWEEN ESTIMATED AND EXPERIMENTALLY MEASURED CASSANDRA DELAYS  
UNDER DIFFERENT WORKLOADS DEPENDING ON READ/WRITE RATIO 

Threads 
Read/Write = 10/90% Read/Write = 30/70% Read/Write = 50/50% Read/Write = 90/10% 

1R-3W 2R-2W 3R-1W 1R-3W 2R-2W 3R-1W 1R-3W 2R-WU 3R-1W 1R-3W 2R-2W 3R-1W 

10 -3.4% 1.8% -0.6% -4.2% -1.8% -4.3% -5.0% -5.6% -8.2% -6.7% -13.5% -16.2% 

50 2.0% -1.4% -1.1% 2.7% 0.3% 0.8% 3.5% 1.9% 2.5% 5.0% 4.9% 5.5% 

100 2.4% 0.4% 2.5% 2.7% 2.5% 4.8% 3.0% 4.4% 6.7% 3.5% 7.8% 9.9% 

200 -1.1% -1.1% 0.1% -1.8% -0.9% -1.2% -2.5% -0.7% -2.3% -4.0% -0.4% -4.1% 

300 -2.6% -1.2% -2.3% -1.8% -2.0% -2.2% -1.1% -2.6% -2.2% 0.2% -3.7% -2.2% 

400 2.1% 2.9% -0.2% 1.3% 1.7% -0.6% 0.5% 0.7% -1.0% -0.9% -0.9% -1.4% 

500 1.2% 0.4% 2.7% 1.7% 0.4% 2.3% 2.1% 0.3% 1.9% 2.8% 0.2% 1.4% 

600 -2.2% -2.4% -0.8% -2.3% -0.8% 0.3% -2.4% 0.4% 1.2% -2.5% 2.3% 2.4% 

700 -0.1% 0.0% -1.0% 0.6% 0.0% -1.0% 1.3% 0.0% -0.9% 2.5% 0.1% -0.9% 

800 1.8% 1.1% 0.1% 0.5% 0.3% -0.6% -0.8% -0.4% -1.2% -3.2% -1.5% -2.1% 

900 -1.3% -0.3% 0.5% -0.4% -0.1% 0.8% 0.4% 0.0% 1.0% 1.9% 0.3% 1.4% 

1000 0.3% 0.0% -0.2% 0.1% 0.0% -0.2% -0.1% 0.1% -0.2% -0.4% 0.1% -0.2% 

*deviations for the measured minimum delays are underlined 



Finally, by matching the cells with the underlined values in 
Tables IV and V one should note that the proposed methodology 
suggests optimal consistency settings in 92%. 

VII. CONCLUSION AND LESSONS LEARNT 

Our work experimentally investigates the interplay 
between different consistency settings and performance of the 
Cassandra NoSQL database. This is an important part of the 
fundamental trade-off between Consistency, Availability and 
Partition tolerance which is in the very nature of globally-
distributed systems and large-scale replicated data storages. 

The reported results show that used consistency settings 
can significantly affect the Cassandra response time and 
throughput that have to be accounted during system design 
and operation. The strong data consistency settings can 
increase database latency by 26% and degrade its throughput 
by 25% on average for read requests and by 13% and 10% for 
write requests correspondingly. 

The Cassandra database offers developers a unique 
opportunity to tune the consistency setting for each read or 
write request. Besides, it is possible to guarantee the strong 
data consistency by coordinating consistency settings for read 
and write requests to ensure that the sum of nodes written and 
read is greater than the replication factor. Developers of real 
Big-Data applications where Cassandra is used as a NoSQL 
storage are advised to benchmark the performance of different 
consistency settings under different workloads and for 
different ratios between read and write requests. This will 
allow them to identify the domains in the space of the input 
workload where the certain consistency setting provides the 
minimum latency. 

One of our major findings is the fact that the optimal 
consistency settings maximizing the Cassandra performance 
significantly depend on the current workload and a ratio of 
read and write requests. They confirm our claim that none of 
consistency settings always guaranties the minimum latency.  

There could be no “cleanly” defined workload mixes which 
approximate the operational system workloads to make the 
best off-line decisions. The real workload mix can evolve and 
change over time impacting the desirable Cassandra settings. 
The proposed methodology aims at choosing the optimal 
consistency setting dynamically at run-time by monitoring the 
current workload mix and making use of the benchmarking 
results collected offline during system load testing.  
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