
DPMC: Weighted Model Counting by Dynamic
Programming on Project-Join Trees?

Jeffrey M. Dudek, Vu H. N. Phan, and Moshe Y. Vardi

Rice University, Houston TX 77005, USA
{jmd11,vhp1,vardi}@rice.edu

Abstract. We propose a unifying dynamic-programming framework to
compute exact literal-weighted model counts of formulas in conjunctive
normal form. At the center of our framework are project-join trees, which
specify efficient project-join orders to apply additive projections (variable
eliminations) and joins (clause multiplications). In this framework, model
counting is performed in two phases. First, the planning phase constructs
a project-join tree from a formula. Second, the execution phase com-
putes the model count of the formula, employing dynamic programming
as guided by the project-join tree. We empirically evaluate various meth-
ods for the planning phase and compare constraint-satisfaction heuristics
with tree-decomposition tools. We also investigate the performance of
different data structures for the execution phase and compare algebraic
decision diagrams with tensors. We show that our dynamic-programming
model-counting framework DPMC is competitive with the state-of-the-art
exact weighted model counters Cachet, c2d, d4, and miniC2D.

Keywords: treewidth · factored representation · early projection

1 Introduction

Model counting is a fundamental problem in artificial intelligence, with appli-
cations in machine learning, probabilistic reasoning, and verification [24,34,50].
Given an input set of constraints, with the focus in this paper on Boolean con-
straints, the model-counting problem is to count the number of satisfying as-
signments. Although this problem is #P-Complete [69], a variety of tools exist
that can handle industrial sets of constraints, e.g., [19, 46,52,58].

Dynamic programming is a powerful technique that has been applied across
computer science [7], including to model counting [4, 36, 56]. The key idea is to
solve a large problem by solving a sequence of smaller subproblems and then
incrementally combining these solutions into the final result. Dynamic program-
ming provides a natural framework to solve a variety of problems defined on sets
of constraints: subproblems can be formed by partitioning the constraints. This
framework has been instantiated into algorithms for database-query optimiza-
tion [48], satisfiability solving [2, 54,68], and QBF evaluation [11].

? Work supported in part by NSF grants IIS-1527668, CCF-1704883, IIS-1830549, and
DMS-1547433.
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Dynamic programming has also been the basis of several tools for model
counting [25, 26, 27, 31]. Although each tool uses a different data structure–
algebraic decision diagrams (ADDs) [26], tensors [25,27], or database tables [31]–
the overall algorithms have similar structure. The goal of this work is to unify
these approaches into a single conceptual framework: project-join trees. Project-
join trees are not an entirely new idea. Similar concepts have been used in
constraint programming (as join trees [22]), probabilistic inference (as cluster
trees [60]), and database-query optimization (as join-expression trees [48]). Our
original contributions include the unification of these concepts into project-join
trees and the application of this unifying framework to model counting.

We argue that project-join trees provide the natural formalism to describe
execution plans for dynamic-programming algorithms for model counting. In par-
ticular, considering project-join trees as execution plans enables us to decompose
dynamic-programming algorithms such as the one in [26] into two phases, fol-
lowing the breakdown in [27]: a planning phase and an execution phase. This
enables us to study and compare different planning algorithms, different execu-
tion environments, and the interplay between planning and execution. Such a
study is the main focus of this work. While the focus here is on model count-
ing, our framework is of broader interest. For example, in [65], Tabajara and
Vardi described a dynamic-programming, binary-decision-diagram-based frame-
work for functional Boolean synthesis. Refactoring the algorithm into a planning
phase followed by an execution phase is also of interest in that context.

The primary contribution of the work here is a dynamic-programming frame-
work for weighted model counting based on project-join trees. In particular:

1. We show that several recent algorithms for weighted model counting [25,26,
31] can be unified into a single framework using project-join trees.

2. We compare the one-shot1 constraint-satisfaction heuristics used in [26] with
the anytime2 tree-decomposition tools used in [25] and observe that tree-
decomposition tools outperform constraint-satisfaction heuristics.

3. We compare (sparse) ADDs [5] with (dense) tensors [38] and find that ADDs
outperform tensors on single CPU cores.

4. We find that project-join-tree-based algorithms contribute to a portfolio of
model counters containing Cachet [58], c2d [19], d4 [46], and miniC2D [52].

These conclusions have significance beyond model counting. The superiority of
anytime tree-decomposition tools over classical one-shot constraint-satisfaction
heuristics can have broad applicability. Similarly, the advantage of compact data
structures for dynamic programming may apply to other optimization problems.

2 Preliminaries

Pseudo-Boolean Functions and Early Projection A pseudo-Boolean func-
tion over a set X of variables is a function f : 2X → R. Operations on pseudo-
Boolean functions include product and projection. First, we define product.

1 A one-shot algorithm outputs exactly one solution and then terminates immediately.
2 An anytime algorithm outputs better and better solutions the longer it runs.
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Definition 1 (Product). Let X and Y be sets of Boolean variables. The prod-
uct of functions f : 2X → R and g : 2Y → R is the function f · g : 2X∪Y → R
defined for all τ ∈ 2X∪Y by (f · g)(τ) ≡ f(τ ∩X) · g(τ ∩ Y ).

Next, we define (additive) projection, which marginalizes a single variable.

Definition 2 (Projection). Let X be a set of Boolean variables and x ∈ X.
The projection of a function f : 2X → R w.r.t. x is the function

∑
x f :

2X\{x} → R defined for all τ ∈ 2X\{x} by (
∑
x f) (τ) ≡ f(τ) + f(τ ∪ {x}).

Note that projection is commutative, i.e., that
∑
x

∑
y f =

∑
y

∑
x f for all

variables x, y ∈ X and functions f : 2X → R. Given a set X = {x1, x2, . . . , xn},
define

∑
X f ≡

∑
x1

∑
x2
. . .
∑
xn
f . Our convention is that

∑
∅ f ≡ f .

When performing a product followed by a projection, it is sometimes possible
to perform the projection first. This is known as early projection [48].

Theorem 1 (Early Projection). Let X and Y be sets of variables. For all
functions f : 2X → R and g : 2Y → R, if x ∈ X \Y , then

∑
x(f ·g) = (

∑
x f) ·g.

Early projection is a key technique in symbolic computation in a variety of
settings, including database-query optimization [40], symbolic model checking
[9], satisfiability solving [54], and model counting [26].

Weighted Model Counting We compute the total weight, subject to a given
weight function, of all models of an input propositional formula. Formally:

Definition 3 (Weighted Model Count). Let X be a set of Boolean variables,
ϕ : 2X → {0, 1} be a Boolean function, and W : 2X → R be a pseudo-Boolean
function. The weighted model count of ϕ w.r.t. W is W (ϕ) ≡

∑
τ∈2X ϕ(τ) ·

W (τ).

The weighted model count of ϕ w.r.t. W can be naturally expressed in terms
of pseudo-Boolean functions:W (ϕ) = (

∑
X(ϕ ·W )) (∅). The functionW : 2X →

R is called a weight function. In this work, we focus on literal-weight functions,
which can be expressed as products of weights associated with each variable.
Formally, a literal-weight function W can be factored as W =

∏
x∈XWx for

pseudo-Boolean functions Wx : 2{x} → R.

Graphs A graph G has a set V(G) of vertices, a set E(G) of (undirected) edges,
a function δG : V(G)→ 2E(G) that gives the set of edges incident to each vertex,
and a function εG : E(G)→ 2V(G) that gives the set of vertices incident to each
edge. Each edge must be incident to exactly two vertices, but multiple edges can
exist between two vertices. A tree is a simple, connected, and acyclic graph. A
leaf of a tree T is a vertex of degree one, and we use L(T ) to denote the set of
leaves of T . We often refer to a vertex of a tree as a node and an edge as an
arc to avoid confusion. A rooted tree is a tree T together with a distinguished
node r ∈ V(T ) called the root. In a rooted tree (T, r), each node n ∈ V(T ) has
a (possibly empty) set of children, denoted C(n), which contains all nodes n′

adjacent to n s.t. all paths from n′ to r contain n.
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3 Using Project-Join Trees for Weighted Model Counting

In model counting, a Boolean formula is often given in conjunctive normal form
(CNF), i.e., as a set ϕ of clauses. For each clause c ∈ ϕ, define Vars(c) to be the
set of variables appearing in c. Then c represents a Boolean function over Vars(c).
Similarly, ϕ represents a Boolean function over Vars(ϕ) ≡

⋃
c∈ϕ Vars(c).

It is well-known that weighted model counting can be performed through a
sequence of projections and joins on pseudo-Boolean functions [25, 26]. Given a
CNF formula ϕ and a literal-weight function W over a set X of variables, the
corresponding weighted model count can be computed as follows:

W (ϕ) =

(∑
X

(∏
c∈ϕ

c ·
∏
x∈X

Wx

))
(∅) (1)

By taking advantage of the associative and commutative properties of mul-
tiplication as well as the commutative property of projection, we can rearrange
Equation (1) to apply early projection. It was shown in [26] that early projection
can significantly reduce computational cost. There are a variety of possible re-
arrangements of Equation (1) of varying costs. Although [26] considered several
heuristics for performing this rearrangement (using bucket elimination [20] and
Bouquet’s Method [8]), they did not attempt to analyze rearrangements.

In this work, we aim to analyze the quality of the rearrangement, in isolation
from the underlying implementation and data structure used for Equation (1).
This approach has been highly successful for database-query optimization [48],
where the central object of theoretical reasoning is the query plan. The approach
has also seen similar success in Bayesian network inference [18].

We model a rearrangement of Equation (1) as a project-join tree:

Definition 4 (Project-Join Tree). Let X be a set of Boolean variables and ϕ
be a CNF formula over X. A project-join tree of ϕ is a tuple (T, r, γ, π) where:

– T is a tree with root r ∈ V(T ),
– γ : L(T )→ ϕ is a bijection between the leaves of T and the clauses of ϕ, and
– π : V(T ) \ L(T )→ 2X is a labeling function on internal nodes.

Moreover, (T, r, γ, π) must satisfy the following two properties:

1. {π(n) : n ∈ V(T ) \ L(T )} is a partition of X, and
2. for each internal node n ∈ V(T ) \ L(T ), variable x ∈ π(n), and clause c ∈ ϕ

s.t. x appears in c, the leaf node γ−1(c) must be a descendant of n in T .

If n is a leaf node, then n corresponds to a clause c = γ(n) in Equation (1).
If n is an internal node, then n’s children C(n) are to be multiplied before the
projections of variables in π(n) are performed. The two properties ensure that
the resulting expression is equivalent to Equation (1) using early projection. See
Figure 1 for a graphical example of a project-join tree.

Project-join trees have previously been studied in the context of database-
query optimization [48]. Project-join trees are closely related to contraction trees



Weighted Model Counting by Dynamic Programming on Project-Join Trees 5

n8
π7→ ∅

n5
π7→ {x2} n1

γ7→ ¬x2

n7
π7→ {x3, x4}

n2
γ7→ x3 ∨ x4

n6
π7→ {x1}

n3
γ7→ ¬x1 ∨ ¬x3

n4
γ7→ x1 ∨ x3 ∨ ¬x4

Fig. 1. A project-join tree (T, n8, γ, π) of a CNF formula ϕ. Each leaf node is labeled
by γ with a clause of ϕ. Each internal node is labeled by π with a set of variables of ϕ.

in the context of tensor networks [25,28]. Once a rearrangement of Equation (1)
has been represented by a project-join tree, we can model the computation pro-
cess according to the rearrangement. In particular, given a literal-weight function
W =

∏
x∈XWx, we define the W -valuation of each node n ∈ V(T ) as a pseudo-

Boolean function associated with n. The W -valuation of a node n ∈ V(T ) is
denoted fWn and defined as follows:

fWn ≡

{
γ(n) if n ∈ L(T )∑
π(n)

(∏
o∈C(n) f

W
o ·

∏
x∈π(n)Wx

)
if n /∈ L(T )

(2)

Note that the W -valuation of a leaf node n ∈ L(T ) is a clause c = γ(n) ∈ ϕ,
interpreted in this context as an associated function λc : 2Vars(c) → {0, 1} where
λc(τ) = 1 if and only if the truth assignment τ satisfies c. The main idea is that
the W -valuation at each node of T is a pseudo-Boolean function computed as a
subexpression of Equation (1). The W -valuation of the root is exactly the result
of Equation (1), i.e., the weighted model count of ϕ w.r.t. W :

Theorem 2. Let ϕ be a CNF formula over a set X of variables, (T, r, γ, π)
be a project-join tree of ϕ, and W be a literal-weight function over X. Then
fWr (∅) = W (ϕ).

This gives us a two-phase algorithm for computing the weighted model count
of a formula ϕ. First, in the planning phase, we construct a project-join tree
(T, r, γ, π) of ϕ. We discuss algorithms for constructing project-join trees in Sec-
tion 4. Second, in the execution phase, we compute fWr by following Equation
(2). We discuss data structures for computing Equation (2) in Section 5.

When computing a W -valuation, the number of variables that appear in each
intermediate pseudo-Boolean function has a significant impact on the runtime.
The set of variables that appear in the W -valuation of a node is actually inde-
pendent of W . In particular, for each node n ∈ V(T ), define Vars(n) as follows:

Vars(n) ≡

{
Vars(γ(n)) if n ∈ L(T )(⋃

o∈C(n) Vars(o)
)
\ π(n) if n /∈ L(T )

(3)

For every literal-weight functionW , the domain of the function fWn is 2Vars(n).
To characterize the difficulty of W -valuation, we define the size of a node n,
size(n), to be |Vars(n)| for leaf nodes and |Vars(n) ∪ π(n)| for internal nodes.
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The width of a project-join tree (T, r, γ, π) is width(T ) ≡ maxn∈V(T ) size(n).
We see in Section 6 how the width impacts the computation of W -valuations.

4 Planning Phase: Building a Project-Join Tree

In the planning phase, we are given a CNF formula ϕ over Boolean variables X.
The goal is to construct a project-join tree of ϕ. In this section, we present two
classes of techniques that have been applied to model counting: using constraint-
satisfaction heuristics (in [26]) and using tree decompositions (in [25,31]).

4.1 Planning with One-Shot Constraint-Satisfaction Heuristics

A variety of constraint-satisfaction heuristics for model counting were presented
in a single algorithmic framework by [26]. These heuristics have a long history
in constraint programming [21], database-query optimization [48], and proposi-
tional reasoning [54]. In this section, we adapt the framework of [26] to produce
project-join trees. This algorithm is presented as Algorithm 1, which constructs
a project-join tree of a CNF formula using constraint-satisfaction heuristics. The
functions ClusterVarOrder, ClauseRank, and ChosenCluster represent heuris-
tics for fine-tuning the specifics of the algorithm. Before discussing the various
heuristics, we assert the correctness of Algorithm 1 in the following theorem.

Theorem 3. Let X be a set of variables and ϕ be a CNF formula over X. As-
sume that ClusterVarOrder returns an injection X → N. Furthermore, assume
that all ClauseRank and ChosenCluster calls satisfy the following conditions:

1. 1 ≤ ClauseRank(c, ρ) ≤ m,
2. i < ChosenCluster(ni) ≤ m, and
3. Xs ∩ Vars(ni) = ∅ for all integers s where i < s < ChosenCluster(ni).

Then Algorithm 1 returns a project-join tree of ϕ.

By Condition 1, we know that {Γi}mi=1 is a partition of the clauses of ϕ.
Condition 2 ensures that Lines 11-12 place a new internal node ni in a cluster
that has not yet been processed. Also on Lines 11-12, Condition 3 prevents the
node ni from skipping a cluster κs if there exists some x ∈ Xs∩Vars(ni), since x
is projected in iteration s, i.e., x is added to π(ns). These invariants are sufficient
to prove that Algorithm 1 indeed returns a project-join tree of ϕ. All heuristics
we use in this work satisfy the conditions of Theorem 3.

There are a variety of heuristics to fine-tune Algorithm 1. For the func-
tion ClusterVarOrder, we consider the heuristics Random, MCS (maximum-
cardinality search [67]), LexP/LexM (lexicographic search for perfect/mini-
mal orders [42]), and MinFill (minimal fill-in [21]) as well as their inverses
(InvMCS, InvLexP, InvLexM, and InvMinFill). Heuristics for ClauseRank
include BE (bucket elimination [20]) and BM (Bouquet’s Method [8]). For
ChosenCluster, the heuristics we use are List and Tree [26]. We combine
ClauseRank and ChosenCluster as clustering heuristics: BE−List, BE−Tree,
BM− List, and BM−Tree. These heuristics are described in [26].
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Algorithm 1: Using combined constraint-satisfaction heuristics to build a
project-join tree

Input: X: set of m ≥ 1 Boolean variables
Input: ϕ: CNF formula over X
Output: (T, r, γ, π): project-join tree of ϕ

1 (T, null, γ, π)← empty project-join tree
2 ρ← ClusterVarOrder(ϕ) /* injection ρ : X → N */
3 for i = m,m− 1, . . . , 1
4 Γi ← {c ∈ ϕ : ClauseRank(c, ρ) = i} /* 1 ≤ ClauseRank(c, ρ) ≤ m */
5 κi ← {LeafNode(T, c) : c ∈ Γi}

/* for each c, a leaf l with γ(l) = c is constructed and put in cluster κi */
6 Xi ← Vars(Γi) \

⋃m
j=i+1 Vars(Γj) /* {Xi}mi=1 is a partition of X */

7 for i = 1, 2, . . . ,m
8 if κi 6= ∅
9 ni ← InternalNode(T, κi, Xi) /* C(ni) = κi and π(ni) = Xi */

10 if i < m
11 j ← ChosenCluster(ni) /* i < j ≤ m */
12 κj ← κj ∪ {ni}
13 return (T, nm, γ, π)

4.2 Planning with Anytime Tree-Decomposition Tools

In join-query optimization, tree decompositions can be used to compute join
trees [17,48]. Tree decompositions [55] decompose graphs into tree structures.

Definition 5 (Tree Decomposition). A tree decomposition (S, χ) of a graph
G is a tree S with a labeling function χ : V(S)→ 2V(G) where:

1. for all v ∈ V(G), there exists n ∈ V(S) s.t. v ∈ χ(n),
2. for all e ∈ E(G), there exists n ∈ V(S) s.t. εG(e) ⊆ χ(n), and
3. for all n, o, p ∈ V(S), if o is on the path from n to p, then χ(n)∩χ(p) ⊆ χ(o).

The treewidth, or simply width, of (S, χ) is tw(S, χ) ≡ maxn∈V(S) |χ(n)| − 1.

In particular, join-query optimization uses tree decompositions of the join
graph to find optimal join trees [17, 48]. The join graph of a project-join query
consists of all attributes of a database as vertices and all tables as cliques. In
this approach, tree decompositions of the join graph of a query are used to find
optimal project-join trees; see Algorithm 3 of [48]. Similarly, tree decompositions
of the primal graph of a factor graph, which consists of all variables as vertices
and all factors as cliques, can be used to find variable elimination orders [37].
This technique has also been applied in the context of tensor networks [25,49].

Translated to model counting, this technique allows us to use tree decompo-
sitions of the Gaifman graph of a CNF formula to compute project-join trees.
The Gaifman graph of a CNF formula ϕ, denoted Gaifman(ϕ), has a vertex for
each variable of ϕ, and two vertices are adjacent if the corresponding variables
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Algorithm 2: Using a tree decomposition to build a project-join tree

Input: X: set of Boolean variables
Input: ϕ: CNF formula over X
Input: (S, χ): tree decomposition of the Gaifman graph of ϕ
Output: (T, r, γ, π): project-join tree of ϕ

1 (T, null, γ, π)← empty project-join tree
2 found← ∅ /* clauses of ϕ that have been added to T */
3 function Process(n, `):

Input: n ∈ V(S): node of S to process
Input: ` ⊆ X: variables that must not be projected out here
Output: N ⊆ V(T )

4 clauses← {c ∈ ϕ : c /∈ found and Vars(c) ⊆ χ(n)}
5 found← found ∪ clauses
6 children← {LeafNode(T, c) : c ∈ clauses} ∪

⋃
o∈C(n) Process(o, χ(n))

/* new leaf nodes p ∈ V(T ) with γ(p) = c */
7 if children = ∅ or χ(n) ⊆ `
8 return children
9 else

10 return {InternalNode(T, children, χ(n) \ `)}
/* new internal node o ∈ V(T ) with label π(o) = χ(n) \ ` */

11 s← arbitrary node of S /* fixing s as root of S */
12 r ← only element of Process(s,∅)
13 return (T, r, γ, π)

appear together in some clause of ϕ. We present this tree-decomposition-based
technique as Algorithm 2. The key idea is that each clause c of ϕ forms a clique
in Gaifman(ϕ) between the variables of c. Thus all variables of c must appear
together in some label of the tree decomposition. We identify that node with c.

The width of the resulting project-join tree is closely connected to the width
of the original tree decomposition. We formalize this in the following theorem.

Theorem 4. Let ϕ be a CNF formula over a set X of variables and (S, χ) be
a tree decomposition of Gaifman(ϕ) of width w. Then Algorithm 2 returns a
project-join tree of ϕ of width at most w + 1.

The key idea is that, for each node n ∈ V(S), the label χ(n) is a bound on the
variables that appear in all nodes returned by Process(n, ·). Theorem 4 allows
us to leverage state-of-the-art anytime tools for finding tree decompositions [1,
64,66] to construct project-join trees, which we do in Section 6.1.

On the theoretical front, it is well-known that tree decompositions of the
Gaifman graph are actually equivalent to project-join trees [48]. That is, one
can go in the other direction as well: given a project-join tree of ϕ, one can
construct a tree decomposition of Gaifman(ϕ) of equivalent width. Formally:

Theorem 5. Let ϕ be a CNF formula and (T, r, γ, π) be a project-join tree of ϕ
of width w. Then there is a tree decomposition of Gaifman(ϕ) of width w − 1.

Theorem 5 is Lemma 1 of [48] and can be seen as the inverse of Theorem 4.
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5 Execution Phase: Performing the Valuation

The execution phase involves a CNF formula ϕ over variables X, a project-join
tree (T, r, γ, π) of ϕ, and a literal-weight function W over X. The goal is to
compute the valuation fWr using Equation (2). Several data structures can be
used for the pseudo-Boolean functions that occur while using Equation (2). In
this work, we consider two data structures that have been applied to weighted
model counting: ADDs (as in [26]) and tensors (as in [25]).

5.1 Algebraic Decision Diagrams

An algebraic decision diagram (ADD) is a compact representation of a pseudo-
Boolean function as a directed acyclic graph [5]. For functions with logical struc-
ture, an ADD representation can be exponentially smaller than the explicit rep-
resentation. Originally designed for matrix multiplication and shortest path al-
gorithms, ADDs have also been used for Bayesian inference [12, 33], stochastic
planning [35], model checking [44], and model counting [26,29].

Formally, an ADD is a tuple (X,S, σ,G), where X is a set of Boolean vari-
ables, S is an arbitrary set (called the carrier set), σ : X → N is an injection
(called the diagram variable order), and G is a rooted directed acyclic graph sat-
isfying the following three properties. First, every leaf node of G is labeled with
an element of S. Second, every internal node of G is labeled with an element of
X and has two outgoing edges, labeled 0 and 1. Finally, for every path in G, the
labels of internal nodes must occur in increasing order under σ. In this work, we
only need to consider ADDs with the carrier set S = R.

An ADD (X,S, σ,G) is a compact representation of a function f : 2X → S.
Although there are many ADDs representing f , for each injection σ : X → N,
there is a unique minimal ADD that represents f with σ as the diagram variable
order, called the canonical ADD. ADDs can be minimized in polynomial time,
so it is typical to only work with canonical ADDs.

Several packages exist for efficiently manipulating ADDs. For example, CUDD
[63] implements both product and projection on ADDs in polynomial time (in
the size of the ADD representation). CUDD was used as the primary data structure
for weighted model counting in [26]. In this work, we also use ADDs with CUDD

to compute W -valuations.
MCS was the best diagram variable order on a set of standard weighted

model counting benchmarks in [26]. So we use MCS as the diagram variable
order in this work. Note that all other heuristics discussed in Section 4.1 for
cluster variable order could also be used as heuristics for diagram variable order.

5.2 Tensors

A tensor is a multi-dimensional generalization of a matrix. Tensor are widely
used in data analysis [13], signal and image processing [14], quantum physics [3],
quantum chemistry [62], and many other areas of science. Given the diverse
applications of tensors and tensor networks, a variety of tools [6, 38] exist to



10 J. M. Dudek et al.

manipulate them efficiently on a variety of hardware architectures, including
multi-core and GPU-enhanced architectures.

Tensors can be used to represent pseudo-Boolean functions in a dense way.
Tensors are particularly efficient at computing the contraction of two pseudo-
Boolean functions: given two functions f : 2X → R and g : 2Y → R, their
contraction f ⊗ g is the pseudo-Boolean function

∑
X∩Y f · g. The contraction

of two tensors can be implemented as matrix multiplication and so leverage
significant work in high-performance computing on matrix multiplication on
CPUs [47] and GPUs [30]. To efficiently use tensors to compute W -valuations,
we follow [25] in implementing projection and product using tensor contraction.

First, we must compute the weighted projection of a function f : 2X → R,
i.e., we must compute

∑
x f ·Wx for some x ∈ X. This is exactly equivalent to

f ⊗Wx. Second, we must compute the product of two functions f : 2X → R and
g : 2Y → R. The central challenge is that tensor contraction implicitly projects
all variables in X ∩ Y , but we often need to maintain some shared variables in
the result of f · g. In [25], this problem was solved using a reduction to tensor
networks. After the reduction, all variables appear exactly twice, so one never
needs to perform a product without also projecting all shared variables.

In order to incorporate tensors in our project-join-tree-based framework, we
take a different strategy that uses copy tensors. The copy tensor for a set X
represents the pseudo-Boolean function �X : 2X → R s.t. �X(τ) is 1 if τ ∈
{∅, X} and 0 otherwise. We can simulate product using contraction by including
additional copy tensors. In detail, for each z ∈ X∩Y make two fresh variables z′

and z′′. Replace each z in f with z′ to produce f ′, and replace each z in g with
z′′ to produce g′. Then one can check that f · g = f ′ ⊗ g′ ⊗

⊗
z∈X∩Y �{z,z′,z′′}.

When a product is immediately followed by the projection of shared variables
(i.e., we are computing

∑
Z f · g for some Z ⊆ X ∩ Y ), we can optimize this

procedure. In particular, we skip creating copy tensors for the variables in Z
and instead eliminate them directly as we perform f ′ ⊗ g′. In this case, we do
not ever fully compute f · g, so the maximum number of variables needed in
each intermediate tensor may be lower than the width of the project-join tree.
In the context of tensor networks and contraction trees, the maximum number
of variables needed after accounting for this optimization is the max-rank of
the contraction tree [25, 43]. The max-rank is often lower than the width of the
corresponding project-joint tree. On the other hand, the intermediate terms in
the computation of f · g with contractions may have more variables than either
f , g, or f · g. Thus the number of variables in each intermediate tensor may be
higher than the width of the project-join tree (by at most a factor of 1.5).

6 Empirical Evaluation

We are interested in the following experimental research questions, where we
aim to answer each research question with an experiment.

(RQ1) In the planning phase, how do constraint-satisfaction heuristics compare to
tree-decomposition solvers?
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(RQ2) In the execution phase, how do ADDs compare to tensors as the underlying
data structure?

(RQ3) Are project-join-tree-based weighted model counters competitive with state-
of-the-art tools?

To answer RQ1, we build two implementations of the planning phase: HTB
(for Heuristic Tree Builder, based on [26]) and LG (for Line Graph, based on
[25]). HTB implements Algorithm 1 and so is representative of the constraint-
satisfaction approach. HTB contains implementations of four clustering heuristics
(BE-List, BE-Tree, BM-List, and BM-Tree) and nine cluster-variable-order
heuristics (Random, MCS, InvMCS, LexP, InvLexP, LexM, InvLexM,
MinFill, and InvMinFill). LG implements Algorithm 2 and so is representative
of the tree-decomposition approach. In order to find tree decompositions, LG

leverages three state-of-the-art heuristic tree-decomposition solvers: FlowCutter
[64], htd [1], and Tamaki [66]. These solvers are all anytime, meaning that LG

never halts but continues to produce better and better project-join trees when
given additional time. On the other hand, HTB produces a single project-join
tree. We compare these implementations on the planning phase in Section 6.1.

To answer RQ2, we build two implementations of the execution phase: DMC
(for Diagram Model Counter, based on [26]) and tensor (based on [25]). DMC
uses ADDs as the underlying data structure with CUDD [63]. tensor uses tensors
as the underlying data structure with NumPy [51]. We compare these implemen-
tations on the execution phase in Section 6.2. Since LG is an anytime tool, each
execution tool must additionally determine the best time to terminate LG and
begin performing the valuation. We explore options for this in Section 6.2.

To answer RQ3, we combine each implementation of the planning phase and
each implementation of the execution phase to produce model counters that use
project-join trees. We then compare these model counters with the state-of-the-
art tools Cachet [58], c2d [19], d4 [46], and miniC2D [52] in Section 6.3.

We use a set of 1976 literal-weighted model counting benchmarks from [26].
These benchmarks were gathered from two sources. First, the Bayes class3 con-
sists of 1080 CNF benchmarks4 that encode Bayesian inference problems [59].
All literal weights in this class are between 0 and 1. Second, the Non-Bayes
class5 consists of 896 CNF benchmarks6 that are divided into eight families:
Bounded Model Checking (BMC), Circuit, Configuration, Handmade, Planning,
Quantitative Information Flow (QIF), Random, and Scheduling [15, 39, 53, 61].
All Non-Bayes benchmarks are originally unweighted. As we focus in this
work on weighted model counting, we generate weights for these benchmarks.
Each variable x is randomly assigned literal weights: either Wx({x}) = 0.5 and
Wx(∅) = 1.5, or Wx({x}) = 1.5 and Wx(∅) = 0.5. Generating weights in this
particular fashion results in a reasonably low amount of floating-point underflow
and overflow for all model counters.

3 https://www.cs.rochester.edu/u/kautz/Cachet/Model Counting Benchmarks
4 excluding 11 benchmarks double-counted by [26]
5 http://www.cril.univ-artois.fr/KC/benchmarks.html
6 including 73 benchmarks missed by [26]

https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks
http://www.cril.univ-artois.fr/KC/benchmarks.html
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Fig. 2. A cactus plot of the performance of various planners. A planner “solves” a
benchmark when it finds a project-join tree of width 30 or lower.

We ran all experiments on single CPU cores of a Linux cluster with Xeon
E5-2650v2 processors (2.60-GHz) and 30 GB of memory. All code, benchmarks,
and experimental data are available in a public repository (https://github.com/
vardigroup/DPMC).

6.1 Experiment 1: Comparing Project-Join Planners

We first compare constraint-satisfaction heuristics (HTB) and tree-decomposition
tools (LG) at building project-join trees of CNF formulas. To do this, we ran all
36 configurations of HTB (combining four clustering heuristics with nine cluster-
variable-order heuristics) and all three configurations of LG (choosing a tree-
decomposition solver) once on each benchmark with a 100-second timeout. In
Figure 2, we compare how long it takes various methods to find a high-quality
(meaning width at most 30) project-join tree of each benchmark. We chose 30
for Figure 2 since [25] observed that tensor-based approaches were unable to
handle trees whose widths are above 30, but Figure 2 is qualitatively similar for
other choices of widths. We observe that LG is generally able to find project-
join trees of lower widths than those HTB is able to find. We therefore conclude
that tree-decomposition solvers outperform constraint-satisfaction heuristics in
this case. We observe that BE-Tree as the clustering heuristic and InvLexP
as the cluster-variable-order heuristic make up the best-performing heuristic
configuration from HTB. This was previously observed to be the second-best
heuristic configuration for weighted model counting in [26]. We therefore choose
BE-Tree with InvLexP as the representative heuristic configuration for HTB in
the remaining experiments. For LG, we choose FlowCutter as the representative
tree-decomposition tool in the remaining experiments.

6.2 Experiment 2: Comparing Execution Environments

Next, we compare ADDs (DMC) and tensors (tensor) as a data structure for
valuating project-join trees. To do this, we ran both DMC and tensor on all

https://github.com/vardigroup/DPMC
https://github.com/vardigroup/DPMC
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Fig. 3. A cactus plot of the performance of various planners and executors for weighted
model counting. Different strategies for stopping LG are considered. “(first)” indicates
that LG was stopped after it produced the first project-join tree. “(cost)” indicates
that the executor attempted to predict the cost of computing each project-join tree.
“(best)” indicates a simulated case where the executor has perfect information on all
project-join trees generated by LG and valuates the tree with the shortest total time.
VBS* is the virtual best solver of DMC+HTB and DMC+LG (cost). VBS is the virtual best
solver of DMC+HTB, DMC+LG (cost), tensor+HTB, and tensor+LG (cost).

project-join trees generated by HTB and LG (with their representative configura-
tions) in Experiment 1, each with a 100-second timeout. The total times recorded
include both the planning stage and the execution stage.

Since LG is an anytime tool, it may have produced more than one project-join
tree of each benchmark in Experiment 1. We follow [25] by allowing tensor and
DMC to stop LG at a time proportional to the estimated cost to valuate the best-
seen project-join tree. The constant of proportionality is chosen to minimize the
PAR-2 score (i.e., the sum of the running times of all completed benchmarks plus
twice the timeout for every uncompleted benchmark) of each executor. tensor
and DMC use different methods for estimating cost. Tensors are a dense data
structure, so the number of floating-point operations to valuate a project-join
tree can be computed exactly as in [25]. We use this as the cost estimator for
tensor. ADDs are a sparse data structure, and estimating the amount of sparsity
is difficult. It is thus hard to find a good cost estimator for DMC. As a first step,
we use 2w as an estimate of the cost for DMC to valuate a project-join tree of
width w.

We present results from this experiment in Figure 3. We observe that the
benefit of LG over HTB seen in Experiment 1 is maintained once the full weighted
model count is computed. We also observe that DMC is able to solve significantly
more benchmarks than tensor, even when using identical project-join trees. We
attribute this difference to the sparsity of ADDs over tensors. Nevertheless, we
observe that tensor still outperforms DMC on some benchmarks; compare VBS*

(which excludes tensor) with VBS (which includes tensor).
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Fig. 4. A cactus plot of the performance of four project-join-tree-based model counters,
two state-of-the-art model counters, and two virtual best solvers: VBS* (without project-
join-tree-based counters) and VBS (with project-join-tree-based counters).

Moreover, we observe significant differences based on the strategy used to
stop LG. The executor tensor performs significantly better when cost estimation
is used than when only the first project-join tree of LG is used. In fact, the
performance of tensor is almost as good as the hypothetical performance if
tensor is able to predict the planning and valuation times of all trees produced
by LG. On the other hand, DMC is not significantly improved by cost estimation.
It would be interesting in the future to find better cost estimators for DMC.

6.3 Experiment 3: Comparing Exact Weighted Model Counters

Finally, we compare project-join-tree-based model counters with state-of-the-
art tools for weighted model counting. We construct four project-join-tree-based
model counters by combining HTB and LG (using the representative configurations
from Experiment 1) with DMC and tensor (using the cost estimators for LG from
Experiment 2). Note that DMC+HTB is equivalent to ADDMC [26], and tensor+LG is
equivalent to TensorOrder [25]. We compare against the state-of-the-art model
counters Cachet [58], c2d [19], d4 [46], and miniC2D [52]. We ran each benchmark
once with each model counter with a 1000-second timeout and recorded the total
time taken. For the project-join-tree-based model counters, time taken includes
both the planning stage and the execution stage.

We present results from this experiment in Figure 4. For each benchmark,
the solving time of VBS* is the shortest solving time among all pre-existing
model counters (Cachet, c2d, d4, and miniC2D). Similarly, the time of VBS is
the shortest time among all model counters, including those based on project-
join trees. We observe that VBS performs significantly better than VBS*. In fact,
DMC+LG is the fastest model counter on 471 of 1976 benchmarks. Thus project-
join-tree-based tools are valuable for portfolios of weighted model counters.
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7 Discussion

In this work, we introduced the concept of project-join trees for weighted model
counting. These trees are at the center of a dynamic-programming framework
that unifies and generalizes several model counting algorithms, including those
based on ADDs [26], tensors [25], and database management systems [31]. This
framework performs model counting in two phases. First, the planning phase
produces a project-join tree from a CNF formula. Second, the execution phase
uses the project-join tree to guide the dynamic-programming computation of
the model count of the formula w.r.t. a literal-weight function. The current
implementation of our dynamic-programming model-counting framework DPMC

includes two planners (HTB and LG) and two executors (DMC and tensor).
For the planning phase, we implemented HTB based on constraint-satisfaction

heuristics [8,20,21,42,67] and LG based on tree-decomposition tools [1,64,66]. Our
empirical work indicates that tree-decomposition tools tend to produce project-
join trees of lower widths in shorter times. This is a significant finding with
applications beyond model counting, e.g., in Boolean functional synthesis [65].

For the execution phase, we implemented DMC based on ADDs [26, 63] and
tensor based on tensors [25, 51]. Empirically, we observed that (sparse) ADDs
outperform (dense) tensors on single CPU cores. Whether this holds for richer
architectures as well is a subject for future work. We will also consider adding
to our framework an executor based on databases (e.g., [31]).

We showed that our dynamic-programming model-counting framework DPMC

is competitive with state-of-the-art tools (Cachet [58], c2d [19], d4 [46], and
miniC2D [52]). Although no single model counter dominates, DPMC considerably
improves the virtual best solver and thus is valuable as part of the portfolio.

In this work, we did not consider preprocessing of benchmarks. For exam-
ple, [25] found that preprocessing (called FT, based on a technique to reduce
variable occurrences using tree decompositions of the incidence graph [57]) sig-
nificantly improved tensor-network-based approaches for weighted model count-
ing. Moreover, [32] and [27] observed that the pmc preprocessor [45] notably
improved the running time of some dynamic-programming-based model coun-
ters. We expect these techniques to also improve DPMC.

A promising future research direction is multicore programming. Our plan-
ning tool LG can be improved to run back-end tree-decomposition solvers in
parallel, as in [27]. We can also make the execution tool DMC support multicore
ADD packages (e.g., Sylvan [23]). Our other executor, tensor, is built on top of
NumPy [51] and should be readily parallelizable (e.g., using techniques from [27]).
We can then compare DPMC to parallel solvers (e.g., [10, 16]).

Finally, decision diagrams have been widely used in artificial intelligence
in the context of knowledge compilation, where formulas are compiled into a
tractable form in an early phase to support efficient query processing [19, 41,
46, 52]. Our work opens up an investigation into the combination of knowledge
compilation and dynamic programming. The focus here is on processing a single
model-counting query. Exploring how dynamic programming can also be lever-
aged to handle several queries is another promising research direction.
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A Constraint-Satisfaction Heuristics for Project-Join
Tree Planning

A.1 Heuristics for ClusterVarOrder

In Algorithm 1, the function ClusterVarOrder returns a variable order what will
be used to rank the clauses of ϕ. We consider nine heuristics for variable ordering:
Random, MCS, LexP, LexM, MinFill, InvMCS, InvLexP, InvLexM, and
InvMinFill.

One simple heuristic for ClusterVarOrder is to randomly order the vari-
ables, i.e., for a formula over some set X of variables, sample an injection
X → {1, 2, . . . , |X|} uniformly at random. We call this the Random heuris-
tic. Random is a baseline to compare other variable-order heuristics.

For the remaining heuristics, we use Gaifman graphs of CNF formulas. Recall
that the Gaifman graph Gaifman(ϕ) of a CNF formula ϕ has a vertex for each
variable of ϕ. Also, two vertices of Gaifman(ϕ) are connected by an edge if and
only if the corresponding variables appear together in some clause of ϕ. We
say that two variables of ϕ are adjacent if the corresponding two vertices of
Gaifman(ϕ) are neighbors.

A well-known heuristic for ClusterVarOrder is maximum-cardinality search
[67]. At each step of the heuristic, the next variable chosen is the variable adjacent
to the greatest number of previously chosen variables. We call this the MCS
heuristic for variable ordering.

Another heuristic is lexicographic search for perfect orders [42]. Every vertex
v of Gaifman(ϕ) is assigned an initially empty set of vertices, called the label
of v. At each step of the heuristic, the next variable chosen is the variable x
whose label is lexicographically smallest among the unchosen variables. Then x
is added to the labels of its neighbors in Gaifman(ϕ). We call this the LexP
heuristic for variable ordering.

A similar heuristic is lexicographic search for minimal orders [42]. As before,
each vertex of Gaifman(ϕ) is assigned an initially empty label. At each step of
the heuristic, the next variable chosen is again the variable x whose label is
lexicographically smallest. Then x is added to the label of every variable y s.t.
there is a path x, z1, z2, . . . , zk, y in Gaifman(ϕ) where every zi is unchosen and
the label of zi is lexicographically smaller than the label of y. We call this the
LexM heuristic for variable ordering.

A different heuristic is minimal fill-in [21]. Whenever a variable v is chosen,
we add fill-in edges to connect all of v’s neighbors in the Gaifman graph. At each
step of the heuristic, the next variable chosen is the variable that minimizes the
number of fill-in edges. We call this the MinFill heuristic for variable ordering.

Additionally, the variable orders produced by MCS, LexP, LexM, and
MinFill can be inverted. We call these heuristics InvMCS, InvLexP, In-
vLexM, and InvMinFill.
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A.2 Heuristics for ClauseRank

In Algorithm 1, given a cluster variable order ρ, we partition the clauses of
ϕ by calling the function ClauseRank. We consider two possible heuristics for
ClauseRank that satisfy the conditions of Theorem 3: BE and BM.

One heuristic assigns the rank of each clause c ∈ ϕ to be the smallest ρ-rank
of the variables that appear in c, i.e., ClauseRank(c, ρ) = minx∈Vars(c) ρ(x). This
heuristic corresponds to bucket elimination [20], so we call it the BE heuristic.
Using BE for ClauseRank in Algorithm 1, notice that every CNF clause c con-
taining a variable x ∈ X can only appear in a set Γi if i ≤ ρ(x). It follows that
x has always been projected from all clauses by the end of iteration ρ(x) in the
second loop.

A different heuristic assigns the rank of each clause to be the largest ρ-
rank of the variables that appear in the clause. That is, ClauseRank(c, ρ) =
maxx∈Vars(c) ρ(x). This heuristic corresponds to Bouquet’s Method [8], so we call
it the BM heuristic. Unlike the BE case, we can make no guarantee about when
each variable is projected in Algorithm 1 using BM.

A.3 Heuristics for ChosenCluster

In Algorithm 1, the function ChosenCluster determines the parent of the current
internal node. We consider two possible heuristics to use for ChosenCluster that
satisfy the conditions of Theorem 3: List and Tree [26].

One option is for ChosenCluster to place the internal node ni in the nearest
cluster that satisfies the conditions of Theorem 3, namely the next cluster to be
processed. That is, ChosenCluster(ni) = i+ 1. We call this the List heuristic.
Notice that project-join trees are left-deep with List.

Another option is for ChosenCluster to place ni in the furthest cluster that
satisfies the conditions of Theorem 3. That is, ChosenCluster(ni) returns the
smallest j > i s.t. Xj ∩ Vars(ni) 6= ∅ (or returns m, if Vars(ni) = ∅). We
call this the Tree heuristic. Project-join trees with the Tree heuristic are more
balanced than those with the List heuristic.

B Examples

Figure 5 illustrates an algebraic decision diagram (ADD).
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x1

x2

x3

1.41 2.72 3.14

Fig. 5. The directed graph G of an ADD with variable set X = {x1, x2, x3}, carrier
set S = R, and diagram variable order π(xi) = i for i = 1, 2, 3. If an edge from an oval
node is solid (respectively dashed), then the corresponding Boolean variable is assigned
1 (respectively 0).
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C Proofs

C.1 Proof of Theorem 1

Proof. For every τ ∈ 2(X∪Y )\{x}, we have:(∑
x

(A ·B)

)
(τ) = (A ·B)(τ) + (A ·B)(τ ∪ {x}) (Definition 2)

= A(τ ∩X) ·B(τ ∩ Y ) +A((τ ∪ {x}) ∩X) ·B((τ ∪ {x}) ∩ Y )
(Definition 1)

= A(τ ∩X) ·B(τ ∩ Y ) +A((τ ∪ {x}) ∩X) ·B(τ ∩ Y )
(as x /∈ Y )

= A(τ ∩X) ·B(τ ∩ Y ) +A(τ ∩X ∪ {x}) ·B(τ ∩ Y )
(as x ∈ X)

= (A(τ ∩X) +A(τ ∩X ∪ {x})) ·B(τ ∩ Y )

=

(∑
x

A

)
(τ ∩X) ·B(τ ∩ Y ) (Definition 2)

=

(∑
x

A

)
(τ ∩ (X \ {x})) ·B(τ ∩ Y ) (as x /∈ τ)

=

((∑
x

A

)
·B)

)
(τ) (Definition 1)

ut

C.2 Proof of Theorem 2

In this section, for pseudo-Boolean functions f : 2X → R, we define Vars(f) ≡
X. Notice that a clause c in a CNF formula can be interpreted as a Boolean
function c : 2Vars(c) → {0, 1}. Similarly, a set ϕ of clauses can be interpreted as
the Boolean function ϕ =

∏
c∈ϕ c.

Let X be a set of variables and W =
∏
x∈XWx be a literal-weight function.

Given a set Y ⊆ X, we define WY ≡
∏
x∈Y Wx. Notice WY ·WZ = WY ∪Z for

all sets Y,Z ⊆ X.
Let ϕ be a CNF formula over a set X of variables, (T, r, γ, σ) be a project-join

tree of ϕ, and n ∈ V(T ). Denote by S(n) the subtree rooted at n. We define the
set Φ(n) of clauses that correspond to the leaves of S(n):

Φ(n) ≡

{
{γ(n)} if n ∈ L(T )⋃
o∈C(n) Φ(o) otherwise

We also define the set P (n) of all variables to project in the subtree S(n):

P (n) ≡

{
∅ if n ∈ L(T )

π(n) ∪
⋃
o∈C(n) P (o) otherwise
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Lemma 1. In a project-join tree (T, r, γ, π), let n be an internal node with chil-
dren o 6= q. Then P (o) ∩ Vars

(
Φ(q) ·WP (q)

)
= ∅.

Proof. Let variable x ∈ P (o). Notice that x ∈ π(s) for some internal node s that
is a descendant of o. Assume there is an arbitrary clause c ∈ ϕ s.t. x appears
in c. By the last property in Definition 4, the corresponding leaf γ−1(c) is a
descendant of s and thus a descendant of o. So x appears in no descendant leaf
of q (as q is a sibling of o in the tree T ). Thus x /∈ Vars(Φ(q)).

Now, note that P (q) ⊆ Vars(Φ(q)), again by Definition 4. So x /∈ P (q).
Therefore x /∈ Vars(Φ(q) ·WP (q)) = Vars(Φ(q)) ∪ Vars(WP (q)) = Vars(Φ(q)) ∪
P (q). Since x ∈ P (o) is arbitrary, we have P (o) ∩ Vars

(
Φ(q) ·WP (q)

)
= ∅. ut

Lemma 2. In a project-join tree (T, r, γ, π), let n be an internal node with chil-
dren o 6= q. Then:

∑
P (o)

(
Φ(o) ·WP (o)

)
·
∑
P (q)

(
Φ(q) ·WP (q)

)
=

∑
P (o)∪P (q)

(
Φ(o)Φ(q) ·WP (o)∪P (q)

)

Proof. We have:

∑
P (o)

(
Φ(o) ·WP (o)

)
·
∑
P (q)

(
Φ(q) ·WP (q)

)
=
∑
P (o)

Φ(o) ·WP (o) ·
∑
P (q)

(
Φ(q) ·WP (q)

)
(undoing early projection of P (o), observing Lemma 1)

=
∑
P (q)

∑
P (o)

(
Φ(o) ·WP (o) · Φ(q) ·WP (q)

)
(undoing early projection of P (q), observing Lemma 1)

=
∑
P (o)

∑
P (q)

(
Φ(o)Φ(q) ·WP (o)WP (q)

)
=

∑
P (o)∪P (q)

(
Φ(o)Φ(q) ·WP (o)∪P (q)

)

ut
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Lemma 3. Let ϕ be a CNF formula over a set X of variables, W be a literal-
weight function over X, and (T, r, γ, π) be a project-join tree of ϕ. Then for every
node n in T :

fWn =
∑
P (n)

(
Φ(n) ·WP (n)

)

Proof. Notice that both pseudo-Boolean functions have the same variables in
their domains:

Vars
(
fWn
)

= Vars(n)

= Vars(Φ(n)) \ P (n)

= Vars

∑
P (n)

(
Φ(n) ·WP (n)

)

We employ structural induction on n ∈ V(T ). In the base case, n is a leaf.
So P (n) = ∅ and Φ(n) = {γ(n)}. We have:

fWn = γ(n) (Equation (2))

=
∏

c∈Φ(n)

c (singleton set)

= Φ(n)

= Φ(n) ·
∏
x∈∅

Wx (an empty product is equal to the number 1)

= Φ(n) ·W∅

= Φ(n) ·WP (n)

=
∑
∅

(
Φ(n) ·WP (n)

)
(convention on projection)

=
∑
P (n)

(
Φ(n) ·WP (n)

)

In the inductive case, n is an internal node of T . Our induction hypothesis
is that

fWo =
∑
P (o)

(
Φ(o) ·WP (o)

)
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for every child node o of n. Then we have:

fWn =
∑
π(n)

 ∏
o∈C(n)

fWo ·
∏

x∈π(n)

Wx

 (Equation (2))

=
∑
π(n)

 ∏
o∈C(n)

fWo ·Wπ(n)


=
∑
π(n)

 ∏
o∈C(n)

∑
P (o)

(
Φ(o) ·WP (o)

) ·Wπ(n)

 (induction hypothesis)

=
∑
π(n)

 ∑
⋃

s∈C(n) P (s)

 ∏
o∈C(n)

Φ(o) ·W⋃
t∈C(n) P (t)

 ·Wπ(n)


(applying Lemma 2 multiple times)

=
∑
π(n)

 ∑
⋃

s∈C(n) P (s)

 ∏
o∈C(n)

Φ(o) ·W⋃
t∈C(n) P (t) ·Wπ(n)


(undoing early projection, observing π(n) ∩

⋃
s∈C(n) P (s) = ∅)

=
∑

π(n)∪
⋃

s∈C(n) P (s)

 ∏
o∈C(n)

Φ(o) ·W⋃
t∈C(n) P (t)∪π(n)


=
∑
P (n)

 ∏
o∈C(n)

Φ(o) ·WP (n)

 (definition of P (n))

=
∑
P (n)

(
Φ(n) ·WP (n)

)
(as Φ(n) =

⋃
o∈C(n) Φ(o) is a set of clauses)

ut

Now, we can prove Theorem 2.

Proof. As r is the root of the project-join tree, P (r) = X and Φ(r) = ϕ. Then:

fWr (∅) =

∑
P (r)

(
Φ(r) ·WP (r)

) (∅) (Lemma 3)

=

(∑
X

(ϕ ·WX)

)
(∅)

=

(∑
X

(ϕ ·W )

)
(∅)

= W (ϕ)

ut
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C.3 Proof of Theorem 3

In this section, we assume the antecedents of Theorem 3 regarding the functions
ClusterVarOrder, ClauseRank, and ChosenCluster. Notice that for each i =
1, 2, . . . ,m in Algorithm 1, we have the following:

– Γi is a set of clauses
– κi is a set of nodes that includes leaves l s.t. γ(l) ∈ Γi
– ni is an internal node
– ni’s children include the leaves in κi
– π(ni) = Xi

We show that the first property in Definition 4 holds:

Lemma 4 (Property 1). The set {π(n) : n ∈ V(T ) \ L(T )} is a partition of
X.

Proof. For each i = 1, 2, . . . ,m, Algorithm 1 constructs an internal nodes ni
with π(ni) = Xi. Recall that {Xi}mi=1 is a partition of X. Then {π(ni)}mi=1 is
the same partition of X. ut

We show that the second property in Definition 4 holds through the following
lemmas.

Lemma 5. Let 1 ≤ p < q ≤ m. Assume some x ∈ Vars(Γp) ∩ Xq. Then
x ∈ Vars(np).

Proof. Notice x ∈ Xq = π(nq). Then x is projected in nq. Since p < q, we know
x is projected in neither np nor a descendants of np. Since x ∈ Vars(Γp), we
know x remains in np. ut

Lemma 6. Let 1 ≤ p0 < q ≤ m. Assume Vars(Γp0)∩Xq 6= ∅. Then the internal
node np0 is a descendant of the node nq.

Proof. Let np1 , np2 , . . . be the parent, grandparent,. . . of np0 . By way of contra-
diction, assume every pi 6= q. Let x be a variable in Vars(Γp0) ∩ Xq 6= ∅. By
Lemma 5, we know x ∈ Vars(np0). Notice that for all i = 0, 1, 2, . . ., we have:

– x /∈ Xpi , as x ∈ Xq already
– x ∈ Vars(npi), as x remains from np0 without being projected according to
π(npi) = Xpi

– pi < pi+1 = ChosenCluster(npi) ≤ q by Condition 3 of Theorem 3, as
x ∈ π(nq) ∩ Vars(npi+1

) = Xq ∩ Vars(npi+1
) 6= ∅

So the strictly increasing sequence 〈pi〉i must contain q, contradiction. ut

Lemma 7. Let 1 ≤ p, q ≤ m. Assume Vars(Γp) ∩Xq 6= ∅. Then p ≤ q.

Proof. To the contrary, assume p > q. Then by construction, Xq∩Vars(Γp) = ∅,
contradiction. ut
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Lemma 8 (Property 2). Let 1 ≤ q ≤ m and variable x ∈ π(nq). Take an
arbitrary clause c ∈ ϕ s.t. x ∈ Vars(c). Then the leaf γ−1(c) is a descendant of
nq.

Proof. Notice that c ∈ Γp for some 1 ≤ p ≤ m. Then x ∈ Vars(c) ⊆ Vars(Γp).
Note that x ∈ π(nq) = Xq. Thus p ≤ q by Lemma 7.

Let l = γ−1(c). Notice that l ∈ κp (as c ∈ Γp). So l is a child of the node np.

– If p = q, then l is a child of nq, and we are done.
– If p < q, by Lemma 6, we know np is a descendant of nq, as x ∈ Vars(Γp) ∩
π(nq) = Vars(Γp) ∩Xq 6= ∅. Then l is a descendant of nq.

ut

Now we can prove Theorem 3

Proof. Algorithm 1 returns a tree T with root nm, bijection γ : L(T )→ ϕ, and
labeling function π : V(T ) \ L(T ) → 2X . The project-join tree properties are
satisfied, by Lemma 4 and Lemma 8 ut

C.4 Proof of Theorem 4

Let (T, r, γ, π) be the object returned by Algorithm 2. We first observe that T
is indeed a tree with root r. For each node a ∈ V(T ), let O(a) ∈ V(S) denote
the node in V(S) s.t. a was created in the Process(O(a), `) call for some ` ⊆ X.
Throughout, let s denote the value obtained on Line 11 of Algorithm 2.

We begin by stating three basic properties of Algorithm 2.

Lemma 9. For each a ∈ V(T ) \ L(T ), we have π(a) ⊆ χ(O(a)).

Proof. This follows from Line 10 of Algorithm 2. ut

Lemma 10. For each a ∈ V(T ) \ L(T ) where O(a) 6= s, let p be the parent of
O(a) in S. Then π(a) ∩ χ(p) = ∅.

Proof. Observe that ` = χ(p) in the Process(O(a), `) call on Line 6. The result
then follows from Line 10 of Algorithm 2. ut

Lemma 11. Let n ∈ V(S). For every ` ⊆ X and i ∈ Process(n, `), we have
Vars(i) ⊆ `.

Proof. We proceed by induction on the tree structure of S.
Let A denote the set children after Line 6 occurs and let a ∈ A. We first

prove that Vars(a) ⊆ χ(n). First, assume that a is a leaf node corresponding to
some c ∈ clauses. In this case, Vars(a) = Vars(c) ⊆ χ(n) by Line 4. Otherwise
a ∈ Process(o, χ(n)) for some o ∈ C(n). In this case, notice that n is an internal
node, so by the inductive hypothesis, Vars(a) ⊆ χ(n).

Now, if A = ∅, then Process(n, `) returns ∅, so the lemma is vacuously
true. If χ(n) ⊆ `, then A is returned by Process(n, `). So for every i ∈ A, we
have Vars(i) ⊆ χ(n) ⊆ `.

Otherwise, A 6= ∅ and χ(n) 6⊆ `. In this case, Process(n, `) returns a single
node i with Vars(i) = ∪a∈AVars(a) \ (χ(n) \ `) ⊆ χ(n) \ (χ(n) \ `) ⊆ `. ut
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Given these three properties, it is straightforward to prove that (T, r, γ, π)
satisfies all conditions to be a project-join tree of ϕ. We prove each condition in
a separate lemma here.

Lemma 12. γ is a bijection.

Proof. Note that γ is an injection since found on Line 5 of Algorithm 2 ensures
that we generate at most one leaf node for each clause. To show that γ is a
surjection, consider c ∈ ϕ. Then Vars(c) forms a clique in the Gaifman graph
of ϕ. It follows (since the treewidth of a complete graph on k vertices is k − 1)
that Vars(c) ⊆ χ(n) for some n ∈ V(S). Thus γ is a surjection as well. ut

Lemma 13. P = {π(a) : a ∈ V(T ) \ L(T )} is a partition of X.

Proof. First, let x ∈ X. Then x ∈ Vars(c) for some c ∈ ϕ. Since γ is a bijection,
x ∈ Vars(p) for some p = γ−1(c) ∈ L(T ). However, by Lemma 11, we know
x /∈ Vars(r) = ∅. Thus x must have been projected out at some node q ∈ V(T )
between p and r. It follows that x ∈ π(q) ⊆ P .

On the other hand, assume for the sake of a contradiction that there are
distinct a, b ∈ V(T ) s.t. x ∈ π(a) ∩ π(b). By Lemma 9, x ∈ χ(O(a)) ∩ χ(O(b)).
Since S is a tree, there is some node p ∈ V(S) on the path between O(a) and O(b)
s.t. p is the parent of either O(a) or O(b). By Property 3 of tree decompositions,
x ∈ χ(p). However, this contradicts Lemma 10. ut

Lemma 14. For each internal node a ∈ V(T ) \ L(T ), variable x ∈ π(a), and
clause c ∈ ϕ s.t. x appears in c, the leaf node γ−1(c) is a descendant of a in T .

Proof. If O(a) = s, then a is the root of T , so all leaf nodes are descendants.
Otherwise, assume for the sake of contradiction that γ−1(c) is not a descendant
of a in T . Then O(γ−1(c)) is not a descendant of O(a) in S. This means that
the parent p ∈ V(S) of O(a) is on the path between O(a) and O(γ−1(c)). By
Lemma 9, we must have x ∈ χ(O(a)) ∩ χ(O(γ−1(c))). By Property 3 of tree
decompositions, x ∈ χ(p). But this contradicts Lemma 10. ut

It follows that (T, r, γ, π) is a project-join tree of ϕ.

C.5 Proof of Theorem 5

Proof. Let X = Vars(ϕ). Define χ : V(T ) → 2X by, for all n ∈ V(T ), χ(n) ≡
Vars(n) if n ∈ L(T ) and χ(n) ≡ Vars(n) ∪ π(n) otherwise. Then (T, χ) is a
tree decomposition of the Gaifman graph of ϕ. Moreover, the width of (T, χ) is
tw(T, χ) = maxn∈V(T ) |χ(n)| − 1 = maxn∈V(T ) size(n)− 1 = w − 1. ut
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