Skip to main content

Visualizations to Summarize Search Behavior

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12333))

  • 1370 Accesses

Abstract

In this paper, we argue that metrics that assess the performance of backtrack search for solving a Constraint Satisfaction Problem should not be visualized and examined only at the end of search, but their evolution should be tracked throughout the search process in order to provide a more complete picture of the behavior of search. We describe a process that organizes search history by automatically recognizing qualitatively significant changes in the metrics that assess search performance. To this end, we introduce a criterion for quantifying change between two time instants and a summarization technique for organizing the history of search at controllable levels of abstraction. We validate our approach in the context of two algorithms for enforcing consistency: one that is activated by a surge of backtracking and the second that modifies the structure of the constraint graph. We also introduce a new visualization for exposing the behavior of variable ordering heuristics and validate its usefulness both as a standalone tool and when displayed alongside search history.

This research is supported by NSF Grant No. RI-1619344 and NSF CAREER Award No. III-1652846. The experiments were completed utilizing the Holland Computing Center of the University of Nebraska, which receives support from the Nebraska Research Initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we can interrupt search at any time to conduct the analysis and need not wait until the end of search.

References

  1. Balafrej, A., Bessiere, C., Bouyakhf, E., Trombettoni, G.: Adaptive singleton-based consistencies. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2014), pp. 2601–2607 (2014)

    Google Scholar 

  2. Balafrej, A., Bessiere, C., Coletta, R., Bouyakhf, E.H.: Adaptive parameterized consistency. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 143–158. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_14

    Chapter  Google Scholar 

  3. Balafrej, A., Bessière, C., Paparrizou, A.: Multi-armed bandits for adaptive constraint propagation. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 290–296 (2015)

    Google Scholar 

  4. Bennaceur, H., Affane, M.-S.: Partition-k-AC: an efficient filtering technique combining domain partition and arc consistency. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 560–564. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7_39

    Chapter  MATH  Google Scholar 

  5. Bessière, C., Régin, J.-C.: MAC and combined heuristics: two reasons to forsake FC (and CBJ?) on hard problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 61–75. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2_66

    Chapter  Google Scholar 

  6. Bessière, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary constraints. Artif. Intell. 172, 800–822 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bitner, J.R., Reingold, E.M.: Backtrack programming techniques. Commun. ACM 18(11), 651–656 (1975). http://doi.acm.org/10.1145/361219.361224

  8. Bliek, C., Sam-Haroud, D.: Path consistency for triangulated constraint graphs. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 456–461 (1999)

    Google Scholar 

  9. Borrett, J.E., Tsang, E.P., Walsh, N.R.: Adaptive constraint satisfaction: the quickest first principle. In: Proceedings of the Twelveth European Conference on Artificial Intelligence (ECAI 1996), pp. 160–164 (1996)

    Google Scholar 

  10. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the Seventeenth European Conference on Artificial Intelligence (ECAI 2006), pp. 146–150 (2004)

    Google Scholar 

  11. Carro, M., Hermenegildo, M.: Tools for constraint visualisation: the VIFID/TRIFID tool. In: Deransart, P., Hermenegildo, M.V., Małuszynski, J. (eds.) Analysis and Visualization Tools for Constraint Programming. LNCS, vol. 1870, pp. 253–272. Springer, Heidelberg (2000). https://doi.org/10.1007/10722311_11

    Chapter  Google Scholar 

  12. Choco: An Open-Source Java Library for Constraint Programming. https://choco-solver.org

  13. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint satisfaction problem. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 412–417 (1997)

    Google Scholar 

  14. Defays, D.: An efficient algorithm for a complete link method. Comput. J. 20(4), 364–366 (1977)

    Article  MathSciNet  Google Scholar 

  15. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_5

    Chapter  MATH  Google Scholar 

  16. Epstein, S.L., Freuder, E.C., Wallace, R.M., Li, X.: Learning propagation policies. In: Working Notes of the Second International Workshop on Constraint Propagation and Implementation, Held in Conjunction with CP-05, pp. 1–15 (2005)

    Google Scholar 

  17. Freuder, E.C., Elfe, C.D.: Neighborhood inverse consistency preprocessing. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI 1996), pp. 202–208 (1996)

    Google Scholar 

  18. Freuder, E.C., Wallace, R.J.: Selective relaxation for constraint satisfaction problems. In: Proceedings of the IEEE Third International Conference on Tools with Artificial Intelligence (ICTAI 1991), pp. 332–339 (1991)

    Google Scholar 

  19. Ghoniem, M., Cambazard, H., Fekete, J.D., Jussien, N.: Peeking in solver strategies using explanations visualization of dynamic graphs for constraint programming. In: Proceedings of the 2005 ACM Symposium on Software Visualization (SoftVis 2005), pp. 27–36 (2005)

    Google Scholar 

  20. Hayes, P.J.: The second Naive physics manifesto. In: Readings in Qualitative Reasoning About Physical Systems, pp. 46–63. Morgan Kaufmann (1990)

    Google Scholar 

  21. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_28

    Chapter  Google Scholar 

  22. Karakashian, S., Woodward, R., Reeson, C., Choueiry, B.Y., Bessiere, C.: A first practical algorithm for high levels of relational consistency. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 101–107 (2010)

    Google Scholar 

  23. Kuipers, B.: Qualitative Reasoning - Modeling and Simulation with Incomplete Knowledge. MIT Press, Cambridge (1994)

    Google Scholar 

  24. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  25. Lagerkvist, M.Z., Schulte, C.: Propagator groups. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 524–538. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_42

    Chapter  Google Scholar 

  26. Mackworth, A.K.: On reading sketch maps. In: Proceedings of the Fifth International Joint Conference on Artificial Intelligence (IJCAI 1977), pp. 598–606 (1977)

    Google Scholar 

  27. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  28. Nielsen, F.: Introduction to HPC with MPI for Data Science. UTCS. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21903-5

    Book  Google Scholar 

  29. Paparrizou, A., Stergiou, K.: Evaluating simple fully automated heuristics for adaptive constraint propagation. In: Proceedings of the IEEE Twenty-Fourth International Conference on Tools with Artificial Intelligence (ICTAI 2012), pp. 880–885 (2012)

    Google Scholar 

  30. Paparrizou, A., Stergiou, K.: On neighborhood singleton consistencies. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 736–742 (2017)

    Google Scholar 

  31. Petit, T.: Personal communication (2020)

    Google Scholar 

  32. Phan, K.: Extending the Choco constraint-solver with high-level consistency with evaluation on the nonogram puzzle. Undergraduate thesis. Department of Computer Science and Engineering, University of Nebraska-Lincoln (2020)

    Google Scholar 

  33. Samaras, N., Stergiou, K.: Binary encodings of non-binary constraint satisfaction problems: algorithms and experimental results. JAIR 24, 641–684 (2005)

    Article  MathSciNet  Google Scholar 

  34. Schulte, C.: Oz explorer: a visual constraint programming tool. In: Kuchen, H., Doaitse Swierstra, S. (eds.) PLILP 1996. LNCS, vol. 1140, pp. 477–478. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61756-6_108

    Chapter  Google Scholar 

  35. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and Programming with Gecode (2015). http://www.gecode.org/doc-latest/MPG.pdf

  36. SciPy.org: scipy.cluster.hierarchy.linkage. https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html. Accessed 26 May 2020

  37. Shishmarev, M., Mears, C., Tack, G., de la Banda, M.G.: Visual search tree profiling. Constraints 21(1), 77–94 (2016)

    Article  MathSciNet  Google Scholar 

  38. Simonis, H., Aggoun, A.: Search-tree visualisation. In: Deransart, P., Hermenegildo, M.V., Małuszynski, J. (eds.) Analysis and Visualization Tools for Constraint Programming. LNCS, vol. 1870, pp. 191–208. Springer, Heidelberg (2000). https://doi.org/10.1007/10722311_8

    Chapter  Google Scholar 

  39. Simonis, H., Davern, P., Feldman, J., Mehta, D., Quesada, L., Carlsson, M.: A generic visualization platform for CP. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 460–474. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_37

    Chapter  Google Scholar 

  40. Simonis, H., O’Sullivan, B.: Almost square packing. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 196–209. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-3_19

    Chapter  Google Scholar 

  41. Stergiou, K.: Heuristics for dynamically adapting propagation. In: Proceedings of the Eighteenth European Conference on Artificial Intelligence (ECAI 2008), pp. 485–489 (2008)

    Google Scholar 

  42. Wallace, R.J.: SAC and neighbourhood SAC. AI Commun. 28(2), 345–364 (2015)

    Article  MathSciNet  Google Scholar 

  43. Woodward, R., Karakashian, S., Choueiry, B.Y., Bessiere, C.: Solving difficult CSPs with relational neighborhood inverse consistency. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2011), pp. 112–119 (2011)

    Google Scholar 

  44. Woodward, R.J.: Relational neighborhood inverse consistency for constraint satisfaction: a structure-based approach for adjusting consistency and managing propagation. Master’s thesis, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, December 2011

    Google Scholar 

  45. Woodward, R.J.: Higher-level consistencies: where, when, and how much. Ph.D. thesis, University of Nebraska-Lincoln, December 2018

    Google Scholar 

  46. Woodward, R.J., Choueiry, B.Y., Bessiere, C.: A reactive strategy for high-level consistency during search. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 1390–1397 (2018)

    Google Scholar 

  47. Woodward, R.J., Karakashian, S., Choueiry, B.Y., Bessiere, C.: Revisiting neighborhood inverse consistency on binary CSPs. In: Milano, M. (ed.) CP 2012. LNCS, pp. 688–703. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_50

    Chapter  Google Scholar 

  48. Woodward, R.J., Schneider, A., Choueiry, B.Y., Bessiere, C.: Adaptive parameterized consistency for non-binary CSPs by counting supports. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 755–764. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_54

    Chapter  Google Scholar 

  49. Wotzlaw, A., van der Grinten, A., Speckenmeyer, E.: Effectiveness of pre- and inprocessing for CDCL-based SAT solving. Technical report, Institut für Informatik, Universität zu Köln, Germany (2013). http://arxiv.org/abs/1310.4756

  50. XCSP3: Benchmark Series in XCSP3 Format. http://xcsp.org/series. Accessed 24 May 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian S. Howell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Howell, I.S., Choueiry, B.Y., Yu, H. (2020). Visualizations to Summarize Search Behavior. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58475-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58474-0

  • Online ISBN: 978-3-030-58475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics