

Edinburgh Research Explorer

Generating Random Logic Programs Using Constraint
Programming
Citation for published version:
Dilkas, P & Belle, V 2020, Generating Random Logic Programs Using Constraint Programming. in
Principles and Practice of Constraint Programming: 26th International Conference, CP 2020, Louvain-la-
Neuve, Belgium, September 7–11, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12333,
Springer, pp. 828–845, 26th International Conference on Principles and Practice of Constraint
Programming, Louvain-la-Neuve, Belgium, 7/09/20. https://doi.org/10.1007/978-3-030-58475-7_48

Digital Object Identifier (DOI):
10.1007/978-3-030-58475-7_48

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Principles and Practice of Constraint Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Apr. 2024

https://doi.org/10.1007/978-3-030-58475-7_48
https://doi.org/10.1007/978-3-030-58475-7_48
https://www.research.ed.ac.uk/en/publications/7905fa7d-3768-4e7d-8acd-13bb62cd6c49

Generating Random Logic Programs Using
Constraint Programming

Paulius Dilkas1 and Vaishak Belle1,2(�)

1 University of Edinburgh, Edinburgh, UK {p.dilkas@sms.,vaishak@}ed.ac.uk
2 Alan Turing Institute, London, UK

Abstract. Testing algorithms across a wide range of problem instances
is crucial to ensure the validity of any claim about one algorithm’s su-
periority over another. However, when it comes to inference algorithms
for probabilistic logic programs, experimental evaluations are limited to
only a few programs. Existing methods to generate random logic pro-
grams are limited to propositional programs and often impose stringent
syntactic restrictions. We present a novel approach to generating random
logic programs and random probabilistic logic programs using constraint
programming, introducing a new constraint to control the independence
structure of the underlying probability distribution. We also provide a
combinatorial argument for the correctness of the model, show how the
model scales with parameter values, and use the model to compare prob-
abilistic inference algorithms across a range of synthetic problems. Our
model allows inference algorithm developers to evaluate and compare the
algorithms across a wide range of instances, providing a detailed picture
of their (comparative) strengths and weaknesses.

Keywords: Constraint programming · Probabilistic logic programming
· Statistical relational learning

1 Introduction

Unifying logic and probability is a long-standing challenge in artificial intelli-
gence [24], and, in that regard, statistical relational learning (SRL) has devel-
oped into an exciting area that mixes machine learning and symbolic (logical
and relational) structures. In particular, probabilistic logic programs—including
languages such as PRISM [25], ICL [22], and ProbLog [11]—are promising
frameworks for codifying complex SRL models. With the enhanced structure,
however, inference becomes more challenging. At the moment, we have no pre-
cise way of evaluating and comparing inference algorithms. Incidentally, if one
were to survey the literature, one often finds that an inference algorithm is only
tested on a small number (1–4) of data sets [5, 16, 28], originating from areas such
as social networks, citation patterns, and biological data. But how confident can
we be that an algorithm works well if it is only tested on a few problems?

About thirty years ago, SAT solving technology was dealing with a similar
lack of clarity [26]. This changed with the study of generating random SAT

2 P. Dilkas and V. Belle

instances against different input parameters (e.g., clause length and the total
number of variables) to better understand the behaviour of algorithms and their
ability to solve random synthetic problems. Unfortunately, when it comes to
generating random logic programs, all approaches so far focused exclusively on
propositional programs [1, 2, 30, 32], often with severely limiting conditions such
as two-literal clauses [20, 21] or clauses of the form a← ¬b [31].

In this work (Sects. 3 to 5), we introduce a constraint-based representation
for logic programs based on simple parameters that describe the program’s size,
what predicates and constants it uses, etc. This representation takes the form of a
constraint satisfaction problem (CSP), i.e., a set of discrete variables and restric-
tions on what values they can take. Every solution to this problem (as output
by a constraint solver) directly translates into a logic program. One can either
output all (sufficiently small) programs that satisfy the given conditions or use
random value-ordering heuristics and restarts to generate random programs. For
sampling from a uniform distribution, the CSP can be transformed into a belief
network [12]. In fact, the same model can generate both probabilistic programs
in the syntax of ProbLog [11] and non-probabilistic Prolog programs. To the
best of our knowledge, this is the first work that (a) addresses the problem of
generating random logic programs in its full generality (i.e., including first-order
clauses with variables), and (b) compares and evaluates inference algorithms for
probabilistic logic programs on more than a handful of instances.

A major advantage of a constraint-based approach is the ability to add ad-
ditional constraints as needed, and to do that efficiently (compared to generate-
and-test approaches). As an example of this, in Sect. 7 we develop a custom
constraint that, given two predicates P and Q, ensures that any ground atom
with predicate P is independent of any ground atom with predicate Q. In this
way, we can easily regulate the independence structure of the underlying prob-
ability distribution. In Sect. 6 we also present a combinatorial argument for
correctness that counts the number of programs that the model produces for
various parameter values. We end the paper with two experimental results in
Sect. 8: one investigating how the constraint model scales when tasked with pro-
ducing more complex programs, and one showing how the model can be used to
evaluate and compare probabilistic inference algorithms.

Overall, our main contributions are concerned with logic programming-based
languages and frameworks, which capture a major fragment of SRL [9]. However,
since probabilistic logic programming languages are closely related to other areas
of machine learning, including (imperative) probabilistic programming [10], our
results can lay the foundations for exploring broader questions on generating
models and testing algorithms in machine learning.

2 Preliminaries

The basic primitives of logic programs are constants, (logic) variables, and pred-
icates with their arities. A term is either a variable or a constant, and an atom
is a predicate of arity n applied to n terms. A formula is any well-formed ex-

Generating Random Logic Programs Using Constraint Programming 3

pression that connects atoms using conjunction ∧, disjunction ∨, and negation
¬. A clause is a pair of a head (which is an atom) and a body (which is a for-
mula3). A (logic) program is a set of clauses, and a ProbLog program is a set
of clause-probability pairs [14].

In the world of CSPs, we also have (constraint) variables, each with a do-
main, whose values are restricted using constraints. All constraint variables in
the model are integer or set variables, however, if an integer refers to a logical
construct (e.g., a logical variable or a constant), we will make no distinction
between the two. We say that a constraint variable is (fully) determined if its
domain (at the time) has exactly one value. We let � denote the absent/disabled
value of an optional variable [19]. We write a[b] ∈ c to mean that a is an array
of variables of length b such that each element of a has domain c. Similarly, we
write c : a[b] to denote an array a of length b such that each element of a has
type c. Finally, we assume that all arrays start with index zero.

Parameters of the model. We begin by defining sets and lists of the primitives
used in constructing logic programs: a list of predicates P, a list of their corre-
sponding arities A (so |A| = |P|), a set of variables V, and a set of constants
C. Either V or C can be empty, but we assume that |C| + |V| > 0. Similarly,
the model supports zero-arity predicates but requires at least one predicate to
have non-zero arity. For notational convenience, we also setMA = maxA. Next,
we need a measure of how complex a body of a clause can be. As we represent
each body by a tree (see Sect. 4), we set MN ≥ 1 to be the maximum number
of nodes in the tree representation of any clause. We also set MC to be the
maximum number of clauses in a program. We must have that MC ≥ |P| be-
cause we require each predicate to have at least one clause that defines it. The
model supports enforcing predicate independence (see Sect. 7), so a set of inde-
pendent pairs of predicates is another parameter. Since this model can generate
probabilistic as well as non-probabilistic programs, each clause is paired with
a probability which is randomly selected from a given list—our last parameter.
For generating non-probabilistic programs, one can set this list to [1]. Finally,
we define T = {¬,∧,∨,>} as the set of tokens that (together with atoms) form
a clause. All decision variables of the model can now be divided into 2 ×MC
separate groups, treating the body and the head of each clause separately. We
say that the variables are contained in two arrays: Body : bodies[MC] and
Head : heads[MC].

3 Heads of Clauses

We define the head of a clause as a predicate ∈ P∪{�} and arguments[MA] ∈
C ∪ V ∪ {�}. Here, we use � to denote either a disabled clause that we choose

3 Our model supports arbitrarily complex bodies of clauses (e.g., ¬P(X) ∨ (Q(X) ∧
P(X))) because ProbLog does too. However, one can easily restrict our represen-
tation of a body to a single conjunction of literals (e.g., Q(X) ∧ ¬P(X))) by adding
a couple of additional constraints.

4 P. Dilkas and V. Belle

not to use or disabled arguments if the arity of the predicate is less than
MA. The reason why we need a separate value for the latter (i.e., why it is
not enough to fix disabled arguments to a single already-existing value) will
become clear in Sect. 5. This predicate variable has a corresponding arity that
depends on the predicate. We can define arity ∈ [0,MA] as the arity of the
predicate if predicate ∈ P and zero otherwise using the table constraint [17].
This constraint uses a set of pairs of the form (p, a), where p ranges over all
possible values of the predicate, and a is either the arity of predicate p or zero.
Having defined arity, we can now fix the superfluous arguments.

Constraint 1. For i = 0, . . . ,MA − 1, arguments[i] = � ⇐⇒ i ≥ arity.

We also add a constraint that each predicate should get at least one clause.

Constraint 2. Let P = {h.predicate | h ∈ heads} be a multiset. Then

nValues(P) =

{
|P| if count(�, P) = 0

|P|+ 1 otherwise,

where nValues(P) counts the number of unique values in P , and count(�, P)
counts how many times � appears in P .

Finally, we want to disable duplicate clauses but with one exception: there may
be more than one disabled clause, i.e., a clause with head predicate = �.
Assuming a lexicographic order over entire clauses such that � > P for all
P ∈ P and the head predicate is the ‘first digit’ of this representation, the
following constraint disables duplicates as well as orders the clauses.

Constraint 3. For i = 1, . . . ,MC − 1, if heads[i].predicate 6= �, then

(heads[i− 1], bodies[i− 1]) < (heads[i], bodies[i]).

4 Bodies of Clauses

As was briefly mentioned before, the body of a clause is represented by a tree.
It has two parts. First, there is the structure[MN] ∈ [0,MN − 1] array that
encodes the structure of the tree using the following two rules: structure[i] = i
means that the ith node is a root, and structure[i] = j (for j 6= i) means that
the ith node’s parent is node j. The second part is the array Node : values[MN]
such that values[i] holds the value of the ith node, i.e., a representation of the
atom or logical operator.

We can use the tree constraint [13] to forbid cycles in the structure array
and simultaneously define numTrees ∈ {1, . . . ,MN } to count the number of
trees. We will view the tree rooted at the zeroth node as the main tree and
restrict all other trees to single nodes. For this to work, we need to make sure
that the zeroth node is indeed a root, i.e., fix structure[0] = 0. For convenience,
we also define numNodes ∈ {1, . . . ,MN } to count the number of nodes in the
main tree. We define it as numNodes =MN − numTrees + 1.

Generating Random Logic Programs Using Constraint Programming 5

Example 1. Let MN = 8. Then ¬P(X) ∨ (Q(X) ∧ P(X)) can be encoded as:

structure = [0, 0, 0, 1, 2, 2, 6, 7], numNodes = 6,

values = [∨,¬,∧,P(X),Q(X),P(X),>,>], numTrees = 3.

Here, > is the value we use for the remaining one-node trees. The elements of
the values array are nodes. A node has a name ∈ T ∪P and arguments[MA] ∈
V ∪ C ∪ {�}. The node’s arity can then be defined in the same way as in Sect. 3.
Furthermore, we can use Constraint 1 to again disable the extra arguments.

Example 2. LetMA = 2, X ∈ V, and let P be a predicate with arity 1. Then the
node representing atom P(X) has: name = P, arguments = [X,�], arity = 1.

We need to constrain the forest represented by the structure array together
with its values to eliminate symmetries and adhere to our desired format. First,
we can recognise that the order of the elements in the structure array does not
matter, i.e., the structure is only defined by how the elements link to each other,
so we can add a constraint for sorting the structure array. Next, since we
already have a variable that counts the number of nodes in the main tree, we
can fix the structure and the values of the remaining trees to some constant
values.

Constraint 4. For i = 1, . . . ,MN − 1, if i < numNodes, then

structure[i] = i, and values[i].name = >,

else structure[i] < i.

The second part of this constraint states that every node in the main tree except
the zeroth node cannot be a root and must have its parent located to the left
of itself. Next, we classify all nodes into three classes: predicate (or empty)
nodes, negation nodes, and conjunction/disjunction nodes based on the number
of children (zero, one, and two, respectively).

Constraint 5. For i = 0, . . . ,MN − 1, let Ci be the number of times i appears
in the structure array with index greater than i. Then

Ci = 0 ⇐⇒ values[i].name ∈ P ∪ {>},
Ci = 1 ⇐⇒ values[i].name = ¬,
Ci > 1 ⇐⇒ values[i].name ∈ {∧,∨}.

The value > serves a twofold purpose: it is used as the fixed value for nodes
outside the main tree, and, when located at the zeroth node, it can represent a
clause with an empty body. Thus, we can say that only root nodes can have >
as the value.

Constraint 6. For i = 0, . . . ,MN − 1,

structure[i] 6= i =⇒ values[i].name 6= >.

Finally, we add a way to disable a clause by setting its head predicate to �.

Constraint 7. For i = 0, . . . ,MC − 1, if heads[i].predicate = �, then

bodies[i].numNodes = 1, and bodies[i].values[0].name = >.

6 P. Dilkas and V. Belle

5 Variable Symmetry Breaking

Ideally, we want to avoid generating programs that are equivalent in the sense
that they produce the same answers to all queries. Even more importantly, we
want to avoid generating multiple internal representations that ultimately result
in the same program. This is the purpose of symmetry-breaking constraints,
another important benefit of which is that the constraint solving task becomes
easier [29]. Given any clause, we can permute the variables in that clause without
changing the meaning of the clause or the entire program. Thus, we want to
fix the order of variables. Informally, we can say that variable X goes before
variable Y if the first occurrence of X in either the head or the body of the
clause is before the first occurrence of Y . Note that the constraints described in
this section only make sense if |V| > 1 and that all definitions and constraints
here are on a per-clause basis.

Definition 1. Let N = MA × (MN + 1), and let terms[N] ∈ C ∪ V ∪ {�}
be a flattened array of all arguments in a particular clause. Then we can use
a channeling constraint to define occ[|C| + |V| + 1] as an array of subsets of
{0, . . . , N − 1} such that for all i = 0, . . . , N − 1, and t ∈ C ∪ V ∪ {�},

i ∈ occ[t] ⇐⇒ terms[i] = t.

Next, we introduce an array that holds the first occurrence of each variable.

Definition 2. Let intros[|V|] ∈ {0, . . . , N} be such that for v ∈ V,

intros[v] =

{
1 + min occ[v] if occ[v] 6= ∅
0 otherwise.

Here, a value of zero means that the variable does not occur in the clause (this
choice is motivated by subsequent constraints). As a consequence, all other in-
dices are shifted by one. Having set this up, we can now eliminate variable
symmetries simply by sorting intros. In other words, we constrain the model
so that the variable listed first (in whatever order V is presented in) has to occur
first in our representation of a clause.

Example 3. Let C = ∅, V = {X,Y, Z}, MA = 2, MN = 3, and consider the
clause sibling(X,Y)← parent(X,Z) ∧ parent(Y, Z). Then

terms = [X,Y,�,�, X, Z, Y, Z],

occ = [{0, 4}, {1, 6}, {5, 7}, {2, 3}],
intros = [0, 1, 5],

where the �’s correspond to the conjunction node.

We end the section with several redundant constraints that make the CSP
easier to solve. First, we can state that the positions occupied by different terms
must be different.

Generating Random Logic Programs Using Constraint Programming 7

Constraint 8. For u 6= v ∈ C ∪ V ∪ {�}, occ[u] ∩ occ[v] = ∅.

The reason why we use zero to represent an unused variable is so that we could
now use the ‘all different except zero’ constraint for the intros array. We can
also add another link between intros and occ that essentially says that the
smallest element of a set is an element of the set.

Constraint 9. For v ∈ V, intros[v] 6= 0 ⇐⇒ intros[v]− 1 ∈ occ[v].

Finally, we define an auxiliary set variable to act as a set of possible values
that intros can take. Let potentials ⊆ {0, . . . , N} be such that for v ∈ V,
intros[v] ∈ potentials. Using this new variable, we can add a constraint say-
ing that non-predicate nodes in the tree representation of a clause cannot have
variables as arguments.

Constraint 10. For i = 0, . . . ,MN − 1, let

S = {MA × (i + 1) + j + 1 | j = 0, . . . ,MA − 1}.

If values[i].name 6∈ P, then potentials ∩ S = ∅.

6 Counting Programs

To demonstrate the correctness of the model, this section derives combinatorial
expressions for counting the number of programs with up toMC clauses and up
to MN nodes per clause, and arbitrary P, A, V, and C. Being able to establish
two ways to generate the same sequence of numbers (i.e., numbers of programs
with certain properties and parameters) allows us to gain confidence that the
constraint model accurately matches our intentions. For this section, we intro-
duce the term total arity of a body of a clause to refer to the sum total of arities
of all predicates in the body.

We will first consider clauses with gaps, i.e., without taking variables and
constants into account. Let T (n, a) denote the number of possible clause bodies
with n nodes and total arity a. Then T (1, a) is the number of predicates in P
with arity a, and the following recursive definition can be applied for n > 1:

T (n, a) = T (n− 1, a) + 2
∑

c1+···+ck=n−1,
2≤k≤ a

minA ,
ci≥1 for all i

∑
d1+···+dk=a,

di≥minA for all i

k∏
i=1

T (ci, di).

The first term here represents negation, i.e., negating a formula consumes one
node but otherwise leaves the task unchanged. If the first operation is not a
negation, then it must be either conjunction or disjunction (hence the coefficient
‘2’). In the first sum, k represents the number of children of the root node, and
each ci is the number of nodes dedicated to child i. Thus, the first sum iterates
over all possible ways to partition the remaining n − 1 nodes. Similarly, the
second sum considers every possible way to partition the total arity a across the

8 P. Dilkas and V. Belle

k children nodes. We can then count the number of possible clause bodies with
total arity a (and any number of nodes) as

C(a) =

{
1 if a = 0∑MN

n=1 T (n, a) otherwise.

The number of ways to select n terms is

P (n) = |C|n +
∑

1≤k≤|V|,
0=s0<s1<···<sk<sk+1=n+1

k∏
i=0

(|C|+ i)si+1−si−1.

The first term is the number of ways to select n constants. The parameter k is the
number of variables used in the clause, and s1, . . . , sk mark the first occurrence
of each variable. For each gap between any two introductions (or before the first
introduction, or after the last introduction), we have si+1 − si − 1 spaces to be
filled with any of the |C| constants or any of the i already-introduced variables.

Let us order the elements of P, and let ai be the arity of the ith predicate.
The number of programs is then:

∑
∑|P|

i=1 hi=n,
|P|≤n≤MC,
hi≥1 for all i

|P|∏
i=1

(∑MA×MN
a=0 C(a)P (a + ai)

hi

)
, (1)

Here, we sum over all ways to distribute |P| ≤ n ≤ MC clauses among |P|
predicates so that each predicate gets at least one clause. For each predicate,
we can then count the number of ways to select its clauses out of all possible
clauses. The number of possible clauses can be computed by considering each
possible arity a, and multiplying the number of ‘unfinished’ clauses C(a) by the
number of ways to select the required a + ai terms in the body and the head of
the clause. Finally, we compare the numbers produced by (1) with the numbers
of programs generated by our model in 1032 different scenarios, thus showing
that the combinatorial description developed in this section matches the model’s
behaviour.

7 Stratification and Independence

Stratification is a condition necessary for probabilistic logic programs [18] and
often enforced on logic programs [4] that helps to ensure a unique answer to every
query. This is achieved by restricting the use of negation so that any program
P can be partitioned into a sequence of programs P =

⊔n
i=1 Pi such that, for

all i, the negative literals in Pi can only refer to predicates defined in Pj for
j ≤ i [4].

Independence, on the other hand, is defined on a pair of predicates (say,
P,Q ∈ P) and can be interpreted in two ways. First, if P and Q are independent,

Generating Random Logic Programs Using Constraint Programming 9

then any ground atom of P is independent of any ground atom of Q in the
underlying probability distribution of the probabilistic program. Second, the
part of the program needed to fully define P is disjoint from the part of the
program needed to define Q.

These two seemingly disparate concepts can be defined using the same build-
ing block, i.e., a predicate dependency graph. Let P be a probabilistic logic
program with its set of predicates P. Its (predicate) dependency graph is a di-
rected graph GP with elements of P as nodes and an edge between P,Q ∈ P if
there is a clause in P with Q as the head and P mentioned in the body. We say
that the edge is negative if there exists a clause with Q as the head and at least
one instance of P at the body such that the path from the root to the P node in
the tree representation of the clause passes through at least one negation node;
otherwise, it is positive. We say that P (or GP) has a negative cycle if GP has
a cycle with at least one negative edge. A program P is stratified if GP has
no negative cycles.4 Thus a simple entailment algorithm for stratification can be
constructed by selecting all clauses, all predicates of which are fully determined,
and looking for negative cycles in the dependency graph constructed based on
those clauses using an algorithm such as Bellman-Ford.

For any predicate P ∈ P, the set of dependencies of P is the smallest set DP

such that P ∈ DP, and, for every Q ∈ DP, all direct predecessors of Q in GP are
in DP. Two predicates P and Q are independent if DP ∩DQ = ∅.

Example 4. Consider the following (fragment of a) program:

sibling(X,Y)← parent(X,Z) ∧ parent(Y, Z),

father(X,Y)← parent(X,Y) ∧ ¬mother(X,Y). (2)

Its predicate dependency graph is in Fig. 1. Because of the negation in (2), the
edge from mother to father is negative, while the other two edges are positive.
The dependencies of each predicate are:

Dparent = {parent}, Dsibling = {sibling, parent},
Dmother = {mother}, Dfather = {father,mother, parent}.

Hence, we have two pairs of independent predicates, i.e., mother is independent
of parent and sibling.

Since the definition of independence relies on the dependency graph, we can
represent this graph as an adjacency matrix constructed as part of the model. Let
A be a |P| × |P| binary matrix defined element-wise by stating that A[i][j] = 0
if and only if, for all k = 0, . . . ,MC − 1, either heads[k].predicate 6= j or
i 6∈ {a.name | a ∈ bodies[k].values}.

Given a partially-solved model with its predicate dependency graph, let us
pick an arbitrary path from Q to P (for some P,Q ∈ P) that consists of deter-
mined edges that are denoted by 1 in A and potential/undetermined edges that

4 This definition is an extension of a well-known result for logic programs [3] to prob-
abilistic logic programs with arbitrary complex clause bodies.

10 P. Dilkas and V. Belle

parent

mother

sibling

father

+

+

−

Fig. 1. The predicate dependency graph
of the program from Example 4. Positive
edges are labelled with ‘+’, and negative
edges with ‘−’.

Table 1. Types of (potential) dependen-
cies of a predicate P based on the number
of undetermined edges on the path from
the dependency to P

Edges Name Notation

0 determined ∆(p)
1 almost determined Γ(p, s, t)

> 1 undetermined Υ(p)

Algorithm 1: Entailment for independence

Data: predicates p1, p2
D ← {(d1, d2) ∈ deps(p1, 1)× deps(p2, 1) | d1.predicate = d2.predicate};
if D = ∅ then return true;
if ∃(∆ ,∆) ∈ D then return false else return undefined;

are denoted by {0, 1}. Each such path characterises a (potential) dependency Q
for P. We classify all such dependencies into three classes depending on the num-
ber of undetermined edges on the path. These classes are outlined in Table 1,
where p represents the dependency predicate Q, and, in the case of Γ , (s, t) ∈ P2

is the one undetermined edge on the path. For a dependency d—regardless of
its exact type—we will refer to its predicate p as d.predicate. In describing the
algorithms, we will use ‘ ’ to replace any of p, s, t in situations where the name
is unimportant.

Each entailment algorithm returns one out of three values: true if the con-
straint is guaranteed to hold, false if the constraint is violated, and undefined
if whether the constraint will be satisfied or not depends on the future decisions
made by the solver. Algorithm 1 outlines a simple entailment algorithm for the
independence of two predicates p1 and p2. First, we separately calculate all de-
pendencies of p1 and p2 and look at the set D of dependencies that p1 and p2
have in common. If there are none, then the predicates are clearly independent. If
they have a dependency in common that is already fully determined (∆) for both
predicates, then they cannot be independent. Otherwise, we return undefined.

Propagation algorithms have two goals: causing a contradiction (failing) in
situations where the corresponding entailment algorithm would return false,
and eliminating values from domains of variables that are guaranteed to cause
a contradiction. Algorithm 2 does the former on Line 2. Furthermore, for any
dependency shared between predicates p1 and p2, if it is determined (∆) for one
predicate and almost determined (Γ) for another, then the edge that prevents
the Γ from becoming a ∆ cannot exist—Line 3 handles this possibility.

The function deps in Algorithm 3 calculates Dp for any predicate p. It has
two versions: deps(p, 1) returns all dependencies, while deps(p, 0) returns only
determined and almost-determined dependencies. It starts by establishing the
predicate p itself as a dependency and continues to add dependencies of depen-

Generating Random Logic Programs Using Constraint Programming 11

Algorithm 2: Propagation for independence

Data: predicates p1, p2; adjacency matrix A
1 for (d1, d2) ∈ deps(p1, 0)× deps(p2, 0) s.t. d1.predicate = d2.predicate do
2 if d1 is ∆() and d2 is ∆() then fail();
3 if {d1, d2} = {∆(),Γ(, s, t)} then A[s][t].removeValue(1);

Algorithm 3: Dependencies of a predicate

Data: adjacency matrix A
Function deps(p, allDeps):

D ← {∆(p)};
while true do

D′ ← ∅;
for d ∈ D and q ∈ P do

edge← A[q][d.predicate] = {1};
if edge and d is ∆() then D′ ← D′ ∪ {∆(q)};
else if edge and d is Γ(, s, t) then D′ ← D′ ∪ {Γ(q, s, t)};
else if |A[q][d.predicate]| > 1 and d is ∆(r) then

D′ ← D′ ∪ {Γ(q, q, r)};
else if |A[q][d.predicate]| > 1 and allDeps then D′ ← D′ ∪ {Υ(q)};

if D′ = D then return D else D ← D′;

dencies until the set D stabilises. For each dependency d ∈ D, we look at the
in-links of d in the predicate dependency graph. If the edge from some predicate
q to d.predicate is fully determined and d is determined, then q is another deter-
mined dependency of p. If the edge is determined but d is almost determined,
then q is an almost-determined dependency. The same outcome applies if d is
fully determined but the edge is undetermined. Finally, if we are interested in
collecting all dependencies regardless of their status, then q is a dependency of
p as long as the edge from q to d.predicate is possible. Note that if there are
multiple paths in the dependency graph from q to p, Algorithm 3 could include
q once for each possible type (∆, Υ, and Γ), but Algorithms 1 and 2 would still
work as intended.

Example 5. Consider this partially determined (fragment of a) program:

�(X,Y)← parent(X,Z) ∧ parent(Y, Z),

father(X,Y)← parent(X,Y) ∧ ¬mother(X,Y),

where � indicates an unknown predicate with domain

D� = {father,mother, parent, sibling}.

The predicate dependency graph is pictured in Fig. 2. Suppose we have a con-
straint that mother and parent must be independent. The lists of potential de-

12 P. Dilkas and V. Belle




father 0 0 0 0
mother 1 0 0 0

parent 1 { 0, 1 } {0, 1} {0, 1}
sibling 0 0 0 0

(a) The adjacency matrix of the graph.
The boxed value is the decision variable
that will be propagated by Algorithm 2.

parent

mother

sibling

father

(b) A drawing of the graph. Dashed edges
are undetermined—they may or may not
exist.

Fig. 2. The predicate dependency graph of Example 5

pendencies for both predicates are:

Dmother = {∆(mother),Γ(parent, parent,mother)},
Dparent = {∆(parent)}.

An entailment check at this stage would produce undefined, but propagation
replaces the boxed value in Fig. 2a with zero, eliminating the potential edge
from parent to mother. This also eliminates mother from D�, and this is enough
to make Algorithm 1 return true.

8 Experimental Results

We now present the results of two experiments: in Sect. 8.1 we examine the scal-
ability of our constraint model with respect to its parameters and in Sect. 8.2
we demonstrate how the model can be used to compare inference algorithms
and describe their behaviour across a wide range of programs. The experiments
were run on a system with Intel Core i5-8250U processor and 8 GB of RAM.
The constraint model was implemented in Java 8 with Choco 4.10.2 [23]. All
inference algorithms are implemented in ProbLog 2.1.0.39 and were run using
Python 3.8.2 with PySDD 0.2.10 and PyEDA 0.28.0. For both sets of experi-
ments, we generate programs without negative cycles and use a 60 s timeout.

8.1 Empirical Performance of the Model

Along with constraints, variables, and their domains, two more design decisions
are needed to complete the model: heuristics and restarts. By trial and error,
the variable ordering heuristic was devised to eliminate sources of thrashing, i.e.,
situations where a contradiction is being ‘fixed’ by making changes that have
no hope of fixing the contradiction. Thus, we partition all decision variables
into an ordered list of groups and require the values of all variables from one
group to be determined before moving to the next group. Within each group,
we use the ‘fail first’ variable ordering heuristic. The first group consists of all
head predicates. Afterwards, we handle all remaining decision variables from the

Generating Random Logic Programs Using Constraint Programming 13

first clause before proceeding to the next. The decision variables within each
clause are divided into (a) the structure array, (b) body predicates, (c) head
arguments, (d) (if |V| > 1) the intros array, (e) body arguments. For instance,
in the clause from Example 3, all visible parts of the clause would be decided in
this order:

1

sibling(
3

X,
3

Y)←
2

parent(
4

X,
4

Z)
2
∧

2
parent(

4

Y ,
4

Z).

We also employ a geometric restart policy, restarting after 10, 10 × 1.1, 10 ×
1.12, . . . contradictions.5 We ran 399 360 experiments, investigating the model’s
efficiency and gaining insight into what parameter values make the CSP harder.
For |P|, |V|, |C|, MN , and MC − |P| (i.e., the number of clauses in addition
to the mandatory |P| clauses), we assign all combinations of 1, 2, 4, 8. MA is
assigned to values 1–4. For each |P|, we also iterate over all possible numbers of

independent pairs of predicates, ranging from 0 up to
(|P|

2

)
. For each combination

of the above-mentioned parameters, we pick ten random ways to assign arities
to predicates (such thatMA occurs at least once) and ten random combinations
of independent pairs.

The majority (97.7 %) of runs finished in under 1 s, while four instances timed
out: all with |P| = MC − |P| = MN = 8 and the remaining parameters all
different. This suggests that—regardless of parameter values—most of the time
a solution can be identified instantaneously while occasionally a series of wrong
decisions can lead the solver into a part of the search space with no solutions.

In Fig. 3, we plot how the mean number of nodes in the binary search tree
grows as a function of each parameter (the plot for the median is very similar).
The growth of each curve suggests how the model scales with higher values of
the parameter. From this plot, it is clear that MN is the limiting factor. This
is because some tree structures can be impossible to fill with predicates without
creating either a negative cycle or a forbidden dependency, and such trees become
more common as the number of nodes increases. Likewise, a higher number of
predicates complicates the situation as well.

8.2 Experimental Comparison of Inference Algorithms

For this experiment, we consider clauses of two types: rules are clauses such that
the head atom has at least one variable, and facts are clauses with empty bodies
and no variables. We use our constraint model to generate the rules according to
the following parameter values: |P|, |V|,MN ∈ {2, 4, 8}, MA ∈ {1, 2, 3}, MC =
|P|, C = ∅. These values are (approximately) representative of many standard
benchmarking instances which often have 2–8 predicates of arity one or two, 0–8
rules, and a larger database of facts [14]. Just like before, we explore all possible
numbers of independent predicate pairs. We also add a constraint that forbids
empty bodies. For both rules and facts, probabilities are uniformly sampled

5 Restarts help overcome early mistakes in the search process but can be disabled if
one wants to find all solutions, in which case search is complete regardless of the
variable ordering heuristic.

14 P. Dilkas and V. Belle

|P|

|V|

|C|

MC − |P|

MN

MA

0

2000

4000

1 2 4 8

The value of each parameter

M
ea

n
n
u
m

b
er

o
f

n
o
d
es

Fig. 3. The mean number of nodes in the
binary search tree for each value of each ex-
perimental parameter. Note that the hori-
zontal axis is on a log2 scale.

Maximum arity Probabilistic

2 3 0.25 0.5 0.75

20

40

60

In
fe

re
n
ce

ti
m

e
(s

)

Fig. 4. Inference time for different values
of MA and proportions of probabilistic
facts that are probabilistic. The total num-
ber of facts is fixed at 105.

from {0.1, 0.2, . . . , 0.9}. Furthermore, all rules are probabilistic, while we vary
the proportion of probabilistic facts among 25 %, 50 %, and 75 %. For generating
facts, we consider |C| ∈ {100, 200, 400} and vary the number of facts among
103, 104, and 105 but with one exception: the number of facts is not allowed to
exceed 75 % of all possible facts with the given values of P, A, and C. Facts are
generated using a simple procedure that randomly selects a predicate, combines
it with the right number of constants, and checks whether the generated atom is
already included or not. We randomly select configurations from the description
above and generate ten programs with a complete restart of the constraint solver
before the generation of each program, including choosing different arities and
independent pairs. Finally, we set the query of each program to a random fact not
explicitly included in the program and consider six natively supported algorithms
and knowledge compilation techniques: binary decision diagrams (BDDs) [6],
negation normal form (NNF), deterministic decomposable NNF (d-DNNF) [8],
K-Best [11], and two encodings based on sentential decision diagrams [7], one
of which encodes the entire program (SDDX), while the other one encodes only
the part of the program relevant to the query (SDD).6

Out of 11 310 generated problem instances, about 35 % were discarded be-
cause one or more algorithms were not able to ground the instance unambigu-
ously. The first observation (pictured in Fig. 5) is that the algorithms are re-
markably similar, i.e., the differences in performance are small and consistent
across all parameter values (including parameters not shown in the figure). Un-
surprisingly, the most important predictor of inference time is the number of
facts. However, after fixing the number of facts to a constant value, we can still
observe that inference becomes harder with higher arity predicates as well as

6 Forward SDDs (FSDDs) and forward BDDs (FBDDs) [27, 28] are omitted because
the former uses too much memory and the implementation of the latter seems to be
broken at the time of writing.

Generating Random Logic Programs Using Constraint Programming 15

The number of facts (×103) Proportion of independent pairs

0 25 50 75 100 0 0.25 0.5 0.75 1

0

10

20

30
M

ea
n

in
fe

re
n
ce

ti
m

e
(s

)

Algorithm

BDD

d-DNNF

K-Best

NNF

SDD

SDDX

Fig. 5. Mean inference time for a range of ProbLog inference algorithms as a function
of the total number of facts in the program and the proportion of independent pairs of
predicates. For the second plot, the number of facts is fixed at 105.

when facts are mostly probabilistic (see Fig. 4). Finally, according to Fig. 5, the
independence structure of a program does not affect inference time, i.e., state-of-
the-art inference algorithms—although they are supposed to [15]—do not exploit
situations where separate parts of a program can be handled independently.

9 Conclusion

We described a constraint model for generating both logic programs and proba-
bilistic logic programs. The model avoids unnecessary symmetries, is reasonably
efficient and supports additional constraints such as predicate independence.
Our experimental results provide the first comparison of inference algorithms
for probabilistic logic programming languages that generalises over programs,
i.e., is not restricted to just a few programs and data sets. While the results did
not reveal any significant differences among the algorithms, they did reveal a
shared weakness, i.e., the inability to ignore the part of a program that is easily
seen to be irrelevant to the given query.

Nonetheless, we would like to outline two directions for future work. First,
the experimental evaluation in Sect. 8.1 revealed scalability issues, particularly
concerning the length/complexity of clauses. However, this particular issue is
likely to resolve itself if the format of a clause is restricted to a conjunction of
literals. Second, random instance generation typically focuses on either realistic
instances or sampling from a simple and well-defined probability distribution.
Our approach can be used to achieve the former, but it is an open question how
it could accommodate the latter.

Acknowledgments. Paulius was supported by the EPSRC Centre for Doctoral
Training in Robotics and Autonomous Systems, funded by the UK Engineering
and Physical Sciences Research Council (grant EP/S023208/1). Vaishak was
supported by a Royal Society University Research Fellowship.

16 P. Dilkas and V. Belle

References

1. Amendola, G., Ricca, F., Truszczynski, M.: Generating hard random Boolean
formulas and disjunctive logic programs. In: Sierra, C. (ed.) Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017. pp. 532–538. ijcai.org (2017).
https://doi.org/10.24963/ijcai.2017/75, http://www.ijcai.org/Proceedings/2017/

2. Amendola, G., Ricca, F., Truszczynski, M.: New models for generating hard ran-
dom Boolean formulas and disjunctive logic programs. Artif. Intell. 279 (2020).
https://doi.org/10.1016/j.artint.2019.103185

3. Balbin, I., Port, G.S., Ramamohanarao, K., Meenakshi, K.: Efficient bottom-up
computation of queries on stratified databases. J. Log. Program. 11(3&4), 295–
344 (1991). https://doi.org/10.1016/0743-1066(91)90030-S

4. Bidoit, N.: Negation in rule-based database languages: A survey. Theor. Comput.
Sci. 78(1), 3–83 (1991). https://doi.org/10.1016/0304-3975(51)90003-5

5. Bruynooghe, M., Mantadelis, T., Kimmig, A., Gutmann, B., Vennekens, J.,
Janssens, G., De Raedt, L.: ProbLog technology for inference in a probabilistic
first order logic. In: Coelho, H., Studer, R., Wooldridge, M.J. (eds.) ECAI 2010 -
19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-
20, 2010, Proceedings. Frontiers in Artificial Intelligence and Applications, vol. 215,
pp. 719–724. IOS Press (2010). https://doi.org/10.3233/978-1-60750-606-5-719

6. Bryant, R.E.: Graph-based algorithms for Boolean function ma-
nipulation. IEEE Trans. Computers 35(8), 677–691 (1986).
https://doi.org/10.1109/TC.1986.1676819

7. Darwiche, A.: SDD: A new canonical representation of propositional knowledge
bases. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011. pp. 819–826. IJCAI/AAAI (2011). https://doi.org/10.5591/978-1-57735-516-
8/IJCAI11-143, http://ijcai.org/proceedings/2011

8. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002). https://doi.org/10.1613/jair.989

9. De Raedt, L., Kersting, K., Natarajan, S., Poole, D.: Statistical Relational Artifi-
cial Intelligence: Logic, Probability, and Computation. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning, Morgan & Claypool Publishers (2016).
https://doi.org/10.2200/S00692ED1V01Y201601AIM032

10. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Machine
Learning 100(1), 5–47 (2015). https://doi.org/10.1007/s10994-015-5494-z

11. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and
its application in link discovery. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings
of the 20th International Joint Conference on Artificial Intelligence, Hyderabad,
India, January 6-12, 2007. pp. 2462–2467 (2007)

12. Dechter, R., Kask, K., Bin, E., Emek, R.: Generating random solutions for con-
straint satisfaction problems. In: Dechter, R., Kearns, M.J., Sutton, R.S. (eds.)
Proceedings of the Eighteenth National Conference on Artificial Intelligence and
Fourteenth Conference on Innovative Applications of Artificial Intelligence, July
28 - August 1, 2002, Edmonton, Alberta, Canada. pp. 15–21. AAAI Press / The
MIT Press (2002), http://www.aaai.org/Library/AAAI/2002/aaai02-003.php

13. Fages, J., Lorca, X.: Revisiting the tree constraint. In: Lee, J.H. (ed.) Prin-
ciples and Practice of Constraint Programming - CP 2011 - 17th Interna-
tional Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings.

Generating Random Logic Programs Using Constraint Programming 17

Lecture Notes in Computer Science, vol. 6876, pp. 271–285. Springer (2011).
https://doi.org/10.1007/978-3-642-23786-7 22

14. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon,
I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs
using weighted Boolean formulas. Theory Pract. Log. Program. 15(3), 358–401
(2015). https://doi.org/10.1017/S1471068414000076

15. Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., De Raedt,
L.: Inference in probabilistic logic programs using weighted CNF’s.
In: Cozman, F.G., Pfeffer, A. (eds.) UAI 2011, Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
Barcelona, Spain, July 14-17, 2011. pp. 211–220. AUAI Press (2011),
https://dslpitt.org/uai/displayArticles.jsp?mmnu=1&smnu=1&proceeding id=27

16. Kimmig, A., Demoen, B., De Raedt, L., Santos Costa, V., Rocha, R.: On the
implementation of the probabilistic logic programming language ProbLog. TPLP
11(2-3), 235–262 (2011). https://doi.org/10.1017/S1471068410000566

17. Mairy, J., Deville, Y., Lecoutre, C.: The smart table constraint. In: Michel, L.
(ed.) Integration of AI and OR Techniques in Constraint Programming - 12th
International Conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Pro-
ceedings. Lecture Notes in Computer Science, vol. 9075, pp. 271–287. Springer
(2015). https://doi.org/10.1007/978-3-319-18008-3 19

18. Mantadelis, T., Rocha, R.: Using iterative deepening for probabilistic logic infer-
ence. In: Lierler, Y., Taha, W. (eds.) Practical Aspects of Declarative Languages
- 19th International Symposium, PADL 2017, Paris, France, January 16-17, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10137, pp. 198–213. Springer
(2017). https://doi.org/10.1007/978-3-319-51676-9 14

19. Mears, C., Schutt, A., Stuckey, P.J., Tack, G., Marriott, K., Wallace, M.: Modelling
with option types in MiniZinc. In: Simonis, H. (ed.) Integration of AI and OR
Techniques in Constraint Programming - 11th International Conference, CPAIOR
2014, Cork, Ireland, May 19-23, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8451, pp. 88–103. Springer (2014). https://doi.org/10.1007/978-3-319-
07046-9 7

20. Namasivayam, G.: Study of random logic programs. In: Hill, P.M., Warren, D.S.
(eds.) Logic Programming, 25th International Conference, ICLP 2009, Pasadena,
CA, USA, July 14-17, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5649, pp. 555–556. Springer (2009). https://doi.org/10.1007/978-3-642-02846-
5 61

21. Namasivayam, G., Truszczynski, M.: Simple random logic programs. In: Erdem,
E., Lin, F., Schaub, T. (eds.) Logic Programming and Nonmonotonic Reasoning,
10th International Conference, LPNMR 2009, Potsdam, Germany, September 14-
18, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5753, pp. 223–235.
Springer (2009). https://doi.org/10.1007/978-3-642-04238-6 20

22. Poole, D.: The independent choice logic for modelling multiple agents under
uncertainty. Artif. Intell. 94(1-2), 7–56 (1997). https://doi.org/10.1016/S0004-
3702(97)00027-1

23. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC - LS2N
CNRS UMR 6241, COSLING S.A.S. (2017), http://www.choco-solver.org

24. Russell, S.J.: Unifying logic and probability. Commun. ACM 58(7), 88–97 (2015).
https://doi.org/10.1145/2699411

25. Sato, T., Kameya, Y.: PRISM: A language for symbolic-statistical modeling. In:
Proceedings of the Fifteenth International Joint Conference on Artificial Intelli-

18 P. Dilkas and V. Belle

gence, IJCAI 97, Nagoya, Japan, August 23-29, 1997, 2 Volumes. pp. 1330–1339.
Morgan Kaufmann (1997)

26. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems.
Artif. Intell. 81(1-2), 17–29 (1996). https://doi.org/10.1016/0004-3702(95)00045-3

27. Tsamoura, E., Gutiérrez-Basulto, V., Kimmig, A.: Beyond the grounding bottle-
neck: Datalog techniques for inference in probabilistic logic programs. In: The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. pp. 10284–10291. AAAI
Press (2020), https://aaai.org/ojs/index.php/AAAI/article/view/6591

28. Vlasselaer, J., Van den Broeck, G., Kimmig, A., Meert, W., De Raedt, L.: Any-
time inference in probabilistic logic programs with Tp-compilation. In: Yang, Q.,
Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015. pp. 1852–1858. AAAI Press (2015)

29. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.)
Principles and Practice of Constraint Programming - CP 2006, 12th Interna-
tional Conference, CP 2006, Nantes, France, September 25-29, 2006, Proceed-
ings. Lecture Notes in Computer Science, vol. 4204, pp. 650–664. Springer (2006).
https://doi.org/10.1007/11889205 46

30. Wang, K., Wen, L., Mu, K.: Random logic programs: Linear model. TPLP 15(6),
818–853 (2015). https://doi.org/10.1017/S1471068414000611

31. Wen, L., Wang, K., Shen, Y., Lin, F.: A model for phase transition of ran-
dom answer-set programs. ACM Trans. Comput. Log. 17(3), 22:1–22:34 (2016).
https://doi.org/10.1145/2926791

32. Zhao, Y., Lin, F.: Answer set programming phase transition: A study on ran-
domly generated programs. In: Palamidessi, C. (ed.) Logic Programming, 19th
International Conference, ICLP 2003, Mumbai, India, December 9-13, 2003, Pro-
ceedings. Lecture Notes in Computer Science, vol. 2916, pp. 239–253. Springer
(2003). https://doi.org/10.1007/978-3-540-24599-5 17

