Skip to main content

Quantum-Accelerated Global Constraint Filtering

  • Conference paper
  • First Online:
Book cover Principles and Practice of Constraint Programming (CP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12333))

Abstract

Motivated by recent advances in quantum algorithms and gate-model quantum computation, we introduce quantum-accelerated filtering algorithms for global constraints in constraint programming. We adapt recent work in quantum algorithms for graph problems and identify quantum subroutines that accelerate the main domain consistency algorithms for the alldifferent constraint and the global cardinality constraint (gcc). The subroutines are based on quantum algorithms for finding maximum matchings and strongly connected components in graphs, and provide speedups over the best classical algorithms. We detail both complete and bounded-probability frameworks for quantum-accelerated global constraint filtering algorithms within backtracking search.

As Eleanor Rieffel is a U.S. Government employee, the U.S. Government asserts no copyright in the U.S. related to her contributions of authorship to a non-segregable joint work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that the instance size at which the asymptotic scaling becomes relevant is so large that, in practice, matrix multiplication takes cubic time.

  2. 2.

    For an algorithm intended to find an item with a certain property, we say that the algorithm has perfect completeness if it always finds such an item, if one exists, and the algorithm has perfect soundness if it never returns an item without the property.

References

  1. Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a maximum cardinality matching in a bipartite graph in time \(O(n^{1.5}m \log n)\). Inf. Process. Lett. 37(4), 237–240 (1991)

    Article  MathSciNet  Google Scholar 

  2. Ambainis, A., Špalek, R.: Quantum algorithms for matching and network flows. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 172–183. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142_13

    Chapter  Google Scholar 

  3. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  Google Scholar 

  4. Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  5. Berzina, A., Dubrovsky, A., Freivalds, R., Lace, L., Scegulnaja, O.: Quantum query complexity for some graph problems. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 140–150. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24618-3_11

    Chapter  Google Scholar 

  6. Booth, K.E.C., Do, M., Beck, J.C., Rieffel, E., Venturelli, D., Frank, J.: Comparing and integrating constraint programming and temporal planning for quantum circuit compilation. In: Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS) (2018)

    Google Scholar 

  7. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik Prog. Phys. 46(4–5), 493–505 (1998)

    Article  Google Scholar 

  8. Brandao, F.G., Svore, K.M.: Quantum speed-ups for solving semidefinite programs. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 415–426. IEEE (2017)

    Google Scholar 

  9. Campbell, E., Khurana, A., Montanaro, A.: Applying quantum algorithms to constraint satisfaction problems. Quantum 3, 167 (2019)

    Article  Google Scholar 

  10. Devitt, S.J.: Performing quantum computing experiments in the cloud. Phys. Rev. A 94(3), 032329 (2016)

    Article  Google Scholar 

  11. Dirac, P.A.M.: A new notation for quantum mechanics. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 35, pp. 416–418. Cambridge University Press (1939)

    Google Scholar 

  12. Dörn, S.: Quantum algorithms for matching problems. Theory Comput. Syst. 45(3), 613–628 (2009)

    Article  MathSciNet  Google Scholar 

  13. Dumitrescu, E.F., et al.: Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120(21), 210501 (2018)

    Article  Google Scholar 

  14. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of some graph problems. SIAM J. Comput. 35(6), 1310–1328 (2006)

    Article  MathSciNet  Google Scholar 

  15. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv preprint arXiv:quant-ph/9607014 (1996)

  16. Gent, I.P., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldifferent constraint: an empirical survey. Artif. Intell. 172(18), 1973–2000 (2008)

    Article  MathSciNet  Google Scholar 

  17. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008)

    Article  MathSciNet  Google Scholar 

  18. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  19. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  Google Scholar 

  20. Ibarra, O.H., Moran, S.: Deterministic and probabilistic algorithms for maximum bipartite matching via fast matrix multiplication. Inf. Process. Lett. 13(1), 12–15 (1981)

    Article  MathSciNet  Google Scholar 

  21. Jiang, N., Pu, Y.F., Chang, W., Li, C., Zhang, S., Duan, L.M.: Experimental realization of 105-qubit random access quantum memory. npj Quantum Inf. 5(1), 1–6 (2019)

    Article  Google Scholar 

  22. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp. 296–303 (2014)

    Google Scholar 

  23. Matteo, O.D., Gheorghiu, V., Mosca, M.: Fault-tolerant resource estimation of quantum random-access memories. IEEE Trans. Quantum Eng. 1, 1–13 (2020)

    Article  Google Scholar 

  24. Micali, S., Vazirani, V.V.: An O(\(\sqrt{|V|}|E|\)) algorithm for finding maximum matching in general graphs. In: 21st Annual Symposium on Foundations of Computer Science (SFCS 1980), pp. 17–27. IEEE (1980)

    Google Scholar 

  25. Montanaro, A.: Quantum walk speedup of backtracking algorithms. arXiv preprint arXiv:1509.02374 (2015)

  26. Montanaro, A.: Quantum speedup of branch-and-bound algorithms. Phys. Rev. Res. 2(1), 013056 (2020)

    Article  Google Scholar 

  27. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 248–255. IEEE (2004)

    Google Scholar 

  28. Nannicini, G.: Fast quantum subroutines for the simplex method. arXiv preprint arXiv:1910.10649 (2019)

  29. Peterson, P.A., Loui, M.C.: The general maximum matching algorithm of Micali and Vazirani. Algorithmica 3(1–4), 511–533 (1988). https://doi.org/10.1007/BF01762129

    Article  MathSciNet  MATH  Google Scholar 

  30. Quimper, C.G., Golynski, A., López-Ortiz, A., Van Beek, P.: An efficient bounds consistency algorithm for the global cardinality constraint. Constraints 10(2), 115–135 (2005). https://doi.org/10.1007/s10601-005-0552-y

    Article  MathSciNet  MATH  Google Scholar 

  31. Quimper, C.-G., López-Ortiz, A., van Beek, P., Golynski, A.: Improved algorithms for the global cardinality constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 542–556. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_40

    Chapter  MATH  Google Scholar 

  32. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI 1994, pp. 362–367 (1994)

    Google Scholar 

  33. Rieffel, E.G., Polak, W.H.: Quantum Computing: A Gentle Introduction. MIT Press, Cambridge (2011)

    MATH  Google Scholar 

  34. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)

    Article  MathSciNet  Google Scholar 

  35. Van Apeldoorn, J., Gilyén, A., Gribling, S., de Wolf, R.: Quantum SDP-solvers: better upper and lower bounds. Quantum 4, 230 (2020)

    Article  Google Scholar 

  36. Van Hoeve, W.J.: The alldifferent constraint: a survey. arXiv preprint arXiv:cs/0105015 (2001)

  37. Vazirani, V.V.: A simplification of the MV matching algorithm and its proof. arXiv preprint arXiv:1210.4594 (2012)

  38. Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  39. Zhang, X., Li, Q., Zhang, W.: A fast algorithm for generalized arc consistency of the alldifferent constraint. In: IJCAI, pp. 1398–1403 (2018)

    Google Scholar 

Download references

Acknowledgements

K.B., J.M., and S.H. were supported by NASA Academic Mission Services (NAMS), contract number NNA16BD14C. K.B. was also supported by the NASA Advanced Exploration Systems (AES) program. B.O. was supported by a NASA Space Technology Research Fellowship. We thank the anonymous reviewers and Prof. J. Christopher Beck whose valuable feedback helped improve the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle E. C. Booth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Booth, K.E.C., O’Gorman, B., Marshall, J., Hadfield, S., Rieffel, E. (2020). Quantum-Accelerated Global Constraint Filtering. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58475-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58474-0

  • Online ISBN: 978-3-030-58475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics