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Abstract. Despite the success of Lipschitz regularization in stabilizing
GAN training, the exact reason of its effectiveness remains poorly un-
derstood. The direct effect of K-Lipschitz regularization is to restrict the
L2-norm of the neural network gradient to be smaller than a threshold
K (e.g., K = 1) such that ‖∇f‖ ≤ K. In this work, we uncover an even
more important effect of Lipschitz regularization by examining its im-
pact on the loss function: It degenerates GAN loss functions to almost
linear ones by restricting their domain and interval of attainable gradi-
ent values. Our analysis shows that loss functions are only successful if
they are degenerated to almost linear ones. We also show that loss func-
tions perform poorly if they are not degenerated and that a wide range
of functions can be used as loss function as long as they are sufficiently
degenerated by regularization. Basically, Lipschitz regularization ensures
that all loss functions effectively work in the same way. Empirically, we
verify our proposition on the MNIST, CIFAR10 and CelebA datasets.

Keywords: Generative adversarial network (GAN) · Lipschitz regular-
ization · loss functions

1 Introduction

Generative Adversarial Networks (GANs) are a class of generative models suc-
cessfully applied to various applications, e.g., pose-guided image generation [17],
image-to-image translation [29, 23], texture synthesis [5], high resolution image
synthesis [27], 3D model generation [28], urban modeling [13]. Goodfellow et
al. [7] proved the convergence of GAN training by assuming that the generator
is always updated according to the temporarily optimal discriminator at each
training step. In practice, this assumption is too difficult to satisfy and GANs re-
main difficult to train. To stabilize the training of the GANs, various techniques
have been proposed regarding the choices of architectures [24, 10], loss functions
[2, 19], regularization and normalization [2, 8, 20, 21]. We refer interested readers
to [16, 14] for extensive empirical studies.

Among them, the Lipschitz regularization [8, 21] has shown great success in
stabilizing the training of various GANs. For example, [18] and [4] observed
that the gradient penalty Lipschitz regularizer helps to improve the training of
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Fig. 1: An illustrative 2D example. First row: model distribution (orange point)
vs. data distribution (black points). Second row: domains of the loss function (red
curve). It can be observed that the performance of spectral normalized GANs
[21] worsen when their domains are enlarged (α = 1e10, yellow boxes). However,
good performance can always be achieved when their domains are restricted to
near-linear ones (α = 1e−10 and α = 1). Please see Sections 3.2 and 4.1 for the
definitions of α and kSN , respectively.

the LS-GAN [19] and the NS-GAN [7], respectively; [21] observed that the NS-
GAN, with their spectral normalization Lipschitz regularizer, works better than
the WGAN [2] regularized by gradient penalty (WGAN-GP) [8].

In this paper, we provide an analysis to better understand the coupling of
Lipschitz regularization and the choice of loss function. Our main insight is that
the rule of thumb of using small Lipschitz constants (e.g., K = 1) is degenerates
the loss functions to almost linear ones by restricting their domain and interval
of attainable gradient values (see Figure 1). These degenerate losses improve
GAN training. Because of this, the exact shapes of the loss functions before
degeneration do not seem to matter that much. We demonstrate this by two
experiments. First, we show that when K is sufficiently small, even GANs trained
with non-standard loss functions (e.g., cosine) give comparable results to all other
loss functions. Second, we can directly degenerate loss functions by introducing
domain scaling. This enables successful GAN training for a wide range of K
for all loss functions, which only worked for the Wasserstein loss before. Our
contributions include:

– We discovered an important effect of Lipschitz regularization. It restricts the
domain of the loss function (Figure 2).

– Our analysis suggests that although the choice of loss functions matters, the
successful ones currently being used are all near-linear within the chosen
small domains and actually work in the same way.
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(a) f(x) = x3 − x (b) [a, b] = [0.1, 0.8] (c) [a, b] = [0.2, 0.25]

Fig. 2: First row: Applying Lipschitz regularization restricts the domain of the
loss function to an interval Ω = [a, b]. Second row: Illustration of the domain
restriction. We take a third-order polynomial loss function f(x) = x3 − x as an
example. Its restricted domain [a, b] is shown in red. (a) without restriction f(x)
is non-convex. (b) Restricting the domain of f(x) makes it convex. (c) f(x) is
almost linear when its domain is restricted to a very small interval.

2 Related Work

2.1 GAN Loss Functions

A variety of GAN loss functions have been proposed from the idea of understand-
ing the GAN training as the minimization of statistical divergences. Goodfellow
et al. [7] first proposed to minimize the Jensen-Shannon (JS) divergence between
the model distribution and the target distribution. In their method, the neural
network output of the discriminator is first passed through a sigmoid function
to be scaled into a probability in [0, 1]. Then, the cross-entropy loss of the prob-
ability is measured. Following [4], we refer to such loss as the minimax (MM)
loss since the GAN training is essentially a minimax game. However, because of
the saturation at both ends of the sigmoid function, the MM loss can lead to
vanishing gradients and thus fails to update the generator. To compensate for it,
Goodfellow et al. [7] proposed a variant of MM loss named the non-saturating
(NS) loss, which heuristically amplifies the gradients when updating the gener-
ator.

Observing that the JS divergence is a special case of the f -divergence, Nowozin
et al. [22] extended the idea of Goodfellow et al. [7] and showed that any f -
divergence can be used to train GANs. Their work suggested a new direction
of improving the performance of the GANs by employing “better” divergence
measures.

Following this direction, Arjovsky et al. first pointed out the flaws of the JS
divergence used in GANs [1] and then proposed to use the Wasserstein distance
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instead (WGAN) [2]. In their implementation, the raw neural network output
of the discriminator is directly used (i.e. the WGAN loss function is an identity
function) instead of being passed through the sigmoid cross-entropy loss function.
However, to guarantee that their loss is a valid Wasserstein distance metric, the
discriminator is required to be Lipschitz continuous. Such requirement is usually
fulfilled by applying an extra Lipschitz regularizer to the discriminator. Mean-
while, Mao et al. [19] proposed the Least-Square GAN (LS-GAN) to minimize
the Pearson χ2 divergence between two distributions. In their implementation,
the sigmoid cross-entropy loss is replaced by a quadratic loss.

2.2 Lipschitz Regularization

The first practice of applying the Lipschitz regularization to the discriminator
came together with the WGAN [2]. While at that time, it was not employed to
improve the GAN training but just a requirement of the Kantorovich-Rubinstein
duality applied. In [2], the Lipschitz continuity of the discriminator is enforced
by weight clipping. Its main idea is to clamp the weights of each neural network
layer to a small fixed range [−c, c], where c is a small positive constant. Although
weight clipping guarantees the Lipschitz continuity of the discriminator, the
choice of parameter c is difficult and prone to invalid gradients.

To this end, Gulrajani et al. [8] proposed the gradient penalty (GP) Lipschitz
regularizer to stabilize the WGAN training, i.e. WGAN-GP. In their method,
an extra regularization term of discriminator’s gradient magnitude is weighted
by parameter λ and added into the loss function. In [8], the gradient penalty
regularizer is one-centered, aiming at enforcing 1-Lipschitz continuity. While
Mescheder et al. [20] argued that the zero-centered one should be more reason-
able because it makes the GAN training converge. However, one major problem
of gradient penalty is that it is computed with finite samples, which makes it
intractable to be applied to the entire output space. To sidestep this problem,
the authors proposed to heuristically sample from the straight lines connecting
model distribution and target distribution. However, this makes their approach
heavily dependent on the support of the model distribution [21].

Addressing this issue, Miyato et al. [21] proposed the spectral normalization
(SN) Lipschitz regularizer which enforces the Lipschitz continuity of a neural
network in the operator space. Observing that the Lipschitz constant of the
entire neural network is bounded by the product of those of its layers, they
break down the problem to enforcing Lipschitz regularization on each neural
network layer. These simplified sub-problems can then be solved by normalizing
the weight matrix of each layer according to its largest singular value.

3 Restrictions of GAN Loss Functions

In this section, first we derive why a K-Lipschitz regularized discriminator re-
stricts the domain and interval of attainable gradient values of the loss function
to intervals bounded by K (Section 3.1). Second, we propose a scaling method
to restrict the domain of the loss function without changing K (Section 3.2).
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3.1 How does the Restriction Happen?

Let us consider a simple discriminator D(x) = L(f(x)), where x is the input, f is
a neural network with scalar output, L is the loss function. During training, the
loss function L works by backpropagating the gradient ∇L = ∂L(f(x))/∂f(x)
to update the neural network weights:

∂D(x)

∂Wn
=

∂L(f(x))

∂f(x)

∂f(x)

∂Wn
(1)

where Wn is the weight matrix of the n-th layer. Let X and Ω be the domain
and the range of f respectively (i.e., f : X → Ω), it can be easily derived that
the attainable values of ∇L is determined by Ω (i.e., ∇L : Ω → Ψ). Without
loss of generality, we assume that x ∈ X = [−1, 1]m×n×3 are normalized images
and derive the bound of the size of Ω as follows:

Theorem 1. If the discriminator neural network f satisfies the k-Lipschitz con-
tinuity condition, we have f : X → Ω ⊂ R satisfying |min(Ω) − max(Ω)| ≤
k
√

12mn.

Proof. Given a k-Lipschitz continuous neural newtork f , for all x1, x2 ∈ X, we
have:

|f(x1)− f(x2)| ≤ k‖x1 − x2‖. (2)

Let xb, xw ∈ X be the pure black and pure white images that maximize the
Euclidean distance:

‖xb − xw‖ =
√

(−1− 1)2 ·m · n · 3 =
√

12mn. (3)

Thus, we have:

|f(x1)− f(x2)| ≤ k‖x1 − x2‖
≤ k‖xb − xw‖ = k

√
12mn.

(4)

Thus, the range of f is restricted to Ω, which satisfies:

|min(Ω)−max(Ω)| ≤ k
√

12mn (5)

Theorem 1 shows that the size of Ω is bounded by k. However, k can be un-
bounded when Lipschitz regularization is not enforced during training, which
results in an unbounded Ω and a large interval of attainable gradient values. On
the contrary, when K-Lipschitz regularization is applied (i.e., k ≤ K), the loss
function L is restricted as follows:

Corollary 1 (Restriction of Loss Function). Assume that f is a Lipschitz
regularized neural network whose Lipschitz constant k ≤ K, the loss function L is
C2-continuous with M as the maximum absolute value of its second derivatives in
its domain. Let Ψ be the interval of attainable gradient values that ∇L : Ω → Ψ ,
we have ∣∣min(Ω)−max(Ω)

∣∣ ≤ K√12mn (6)∣∣min(Ψ)−max(Ψ)
∣∣ ≤M ·K√12mn (7)
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Corollary 1 shows that under a mild condition (C2-continuous), applying
K-Lipschitz regularization restricts the domain Ω and thereby the interval of
attainable gradient values Ψ of the loss function L to intervals bounded by K.
When K is small, e.g., K = 1 [8, 4, 18, 21], the interval of attainable gradient
values of the loss function is considerably reduced, which prevents the backprop-
agation of vanishing or exploding gradients and thereby stabilizes the training.
Empirically, we will show that these restrictions are indeed significant in practice
and strongly influence the training.

−5 0 5
0

2

4
a = −4.0

b = −3.0

c = −0.4

d = 0.2

Fig. 3: Domain [a, b] shifts to [c, d].

Change in Ωi During Training. So
far we analyzed the restriction of the loss
function by a static discriminator. How-
ever, the discriminator neural network f
is dynamically updated during training
and thus its range Ω∪ = ∪iΩi, where Ωi
is the discriminator range at each train-
ing step i. Therefore, we need to analyze
two questions:

(i) How does the size of Ωi change
during training?

(ii) Does Ωi shift during training
(Figure 3)?

For question (i), the size of Ωi is always bounded by the Lipschitz constant
K throughout the training (Corollary 1). For question (ii), the answer depends
on the discriminator loss function:

– The shifting of Ωi is prevented if the loss function is strictly convex. For
example, the discriminator loss function of NS-GAN [7] (Table 1) is strictly
convex and has a unique minimum when f(x) = f(g(z)) = 0 at convergence.
Thus, minimizing it forces Ωi to be positioned around 0 and prevents it
from shifting. The discriminator loss function of LS-GAN [19] (Table 1) has
a similar behavior. Its Ωi is positioned around 0.5, since its minimum is
achieved when f(x) = f(g(z)) = 0.5 at convergence. In this scenario, the Ωi
is relatively fixed throughout the training. Thus, Ω∪ is still roughly bounded
by the Lipschitz constant K.

– When the discriminator loss functions is not strictly convex, Ωi may be
allowed to shift. For example, the WGAN [2] discriminator loss function
(Table 1) is linear and achieves its minimum when f(x) = f(g(z)) at con-
vergence. Thus, it does not enforce the domain Ωi to be fixed. However,
the linear WGAN loss function has a constant gradient that is independent
of Ωi. Thus, regarding to the interval of attainable gradient values (Eq.7),
we can view it as a degenerate loss function that still fits in our discussion.
Interestingly, we empirically observed that the domain Ωi of WGANs also
get relatively fixed at late stages of the training (Figure 4).
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Table 1: The GAN loss functions used in our experiments. f(·) is the output
of the discriminator neural network; g(·) is the output of the generator; x is a
sample from the training dataset; z is a sample from the noise distribution. LS-
GAN# is the zero-centered version of LS-GAN [18], and for the NS-GAN, f∗(·) =
sigmoid[f(·)]. The figure on the right shows the shape of the loss functions at
different scales. The dashed lines show non-standard loss functions: cos and exp.

GAN types Discriminator Loss Generator Loss

NS-GAN LD = −E[log(f∗(x))]− E[log(1− f∗(g(z)))] LG = −E[log(f∗(g(z)))]

LS-GAN LD = E[(f(x)− 1)2] + E[f(g(z))2] LG = E[(f(g(z))− 1)2]

LS-GAN# LD = E[(f(x)− 1)2] + E[(f(g(z)) + 1)2] LG = E[(f(g(z))− 1)2]

WGAN LD = E[f(x)]− E[f(g(z))] LG = E[f(g(z))]

COS-GAN LD = −E[cos(f(x)− 1)]− E[cos(f(g(z)) + 1)] LG = −E[cos(f(g(z))− 1)]

EXP-GAN LD = E[exp(f(x))] + E[exp(−f(g(z)))] LG = E[exp(f(g(z)))]
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3.2 Restricting Loss Functions by Domain Scaling

As discussed above, applying K-Lipschitz regularization not only restricts the
gradients of the discriminator, but as a side effect also restricts the domain of
the loss function to an interval Ω. However, we would like to investigate these
two effects separately. To this end, we propose to decouple the restriction of Ω
from the Lipschitz regularization by scaling the domain of loss function L by a
positive constant α as follows,

Lα(Ω) = L(α ·Ω)/α. (8)

Note that the α in the denominator helps to preserve the gradient scale of the loss
function. With this scaling method, we can effectively restrict L to an interval
α ·Ω without adjusting K.
Degenerate Loss Functions. To explain why this works, we observe that any
loss function degenerates as its domain Ω shrinks to a single value. According
to Taylor’s expansion, let ω, ω +∆ω ∈ Ω, we have:

L(ω +∆ω) = L(ω) +
L′(ω)

1!
∆ω +

L′′(ω)

2!
(∆ω)2 + · · · . (9)

As |max(Ω)−min(Ω)| shrinks to zero, we have L(ω +∆ω) ≈ L(ω) + L′(ω)∆ω
showing that we can approximate any loss function by a linear function with
constant gradient as its domain Ω shrinks to a single value. Let ω ∈ Ω, we
implement the degeneration of a loss function by scaling its domain Ω with an
extremely small constant α:

lim
α→0

∂Lα(ω)

∂ω
=

1

α
· ∂L(α · ω)

∂ω
=
∂L(α · ω)

∂(α · ω)
= ∇L(0). (10)

In our work, we use α = 1e−25, smaller values are not used due to numerical
errors (NaN).
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4 Experiments

To support our proposition, first we empirically verify that applying K-Lipschitz
regularization to the discriminator has the side-effect of restricting the domain
and interval of attainable gradient values of the loss function. Second, with the
proposed scaling method (Section 3.2), we investigate how the varying restric-
tions of loss functions influence the performance of GANs when the discriminator
is regularized with a fixed Lipschitz constant. Third, we show that restricting
the domain of any loss function (using decreasing α) converges to the same (or
very similar) performance as WGAN-SN.

4.1 Experiment Setup

General Setup. In the following experiments, we use two variants of the stan-
dard CNN architecture [24, 2, 21] for the GANs to learn the distributions of the
MNIST, CIFAR10 datasets at 32 × 32 resolution and the CelebA dataset [15]
at 64 × 64 resolution. Details of the architectures are shown in the supplemen-
tary material. We use a batch size of 64 to train the GANs. Similar to [2], we
observed that the training could be unstable with a momentum-based optimizer
such as Adam, when the discriminator is regularized with a very small Lipschitz
constant K. Thus, we choose to use an RMSProp optimizer with learning rate
0.00005. To make a fair comparison, we fix the number of discriminator updates
in each iteration ndis = 1 for all the GANs tested (i.e., we do not use multiple
discriminator updates like [1, 2]). Unless specified, we stop the training after 105

iterations.
Lipschitz Regularizers. In general, there are two state-of-the-art Lipschitz
regularizers: the gradient penalty (GP) [8] and the spectral normalization (SN)
[21]. In their original settings, both techniques applied only 1-Lipschitz regu-
larization to the discriminator. However, our experiments require altering the
Lipschitz constant K of the discriminator. To this end, we propose to control K
for both techniques by adding parameters kGP and kSN , respectively.

– For the gradient penalty, we control its strength by adjusting the target
gradient norm kGP ,

L = LGAN + λ E
x̂∈Px̂

[(‖ 5x̂ D(x̂)‖ − kGP )2], (11)

where LGAN is the GAN loss function without gradient penalty, λ is the
weight of the gradient penalty term, Px̂ is the distribution of linearly inter-
polated samples between the target distribution and the model distribution
[8]. Similar to [8, 4], we use λ = 10.

– For the spectral normalization, we control its strength by adding a weight
parameter kSN to the normalization of each neural network layer,

W̄SN (W,kSN ) := kSN ·W/σ(W ), (12)

where W is the weight matrix of each layer, σ(W ) is its largest singular
value.
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Fig. 4: Relationship between domain Ω and kGP , kSN for different loss functions
on CelebA dataset, where kGP , kSN are the parameters controlling the strength
of the Lipschitz regularizers. The domain Ω shrinks with decreasing kGP or
kSN . Each column shares the same loss function while each row shares the same
Lipschitz regularizer. NS-GAN: Non-Saturating GAN [7]; LS-GAN: Least-Square
GAN [19]; WGAN: Wasserstein GAN [2]; GP: gradient penalty [8]; SN: spectral
normalization [21]. Note that the y-axis is in log scale.

The relationship between kSN andK can be quantitatively approximated asK ≈
knSN [21], where n is the number of neural network layers in the discriminator.
While for kGP , we can only describe its relationship against K qualitatively
as: the smaller kGP , the smaller K. The challenge on finding a quantitative
approximation resides in that the gradient penalty term λEx̂∈Px̂

[(‖5x̂D(x̂)‖−
kGP )2] has no upper bound during training (Eq.11). We also verified our claims
using Stable Rank Normalization (SRN)+SN [25] as the Lipschitz regularizer,
whose results are shown in the supplementary material.

Loss Functions. In Table 1 we compare the three most widely-used GAN loss
functions: the Non-Saturating (NS) loss function [7], the Least-Squares (LS) loss
function [19] and the Wasserstein loss function [2]. In addition, we also test the
performance of the GANs using some non-standard loss functions, cos(·) and
exp(·), to support the observation that the restriction of the loss function is
the dominating factor of Lipschitz regularization. Note that both the cos(·) and
exp(·) loss functions are (locally) convex at convergence, which helps to prevent
shifting Ωi (Section 3.1).

Quantitative Metrics. To quantitatively measure the performance of the GANs,
we follow the best practice and employ the Fréchet Inception Distance (FID)



10 Y. Qin et al.

Table 2: Domain Ω and the interval of attained gradient values ∇L(Ω) against
kSN on the CelebA dataset.

kSN Ω ∇L(Ω)

5.0 [−8.130, 126.501] [−1.000, −0.000]
1.0 [−0.683, 2.091] [−0.664, −0.110]
0.5 [−0.178, 0.128] [−0.545, −0.468]
0.25 [−0.006, 0.006] [−0.502, −0.498]

(a) NS-GAN-SN, L(·) = − log(sigmoid(·))

kSN Ω ∇L(Ω)

5.0 [−2.460, 12.020] [−4.921, 24.041]
1.0 [−0.414, 1.881] [−0.828, 3.762]
0.5 [0.312, 0.621] [0.623, 1.242]
0.25 [0.478, 0.522] [0.956, 1.045]

(b) LS-GAN-SN, L(·) = (·)2

metric [11] in our experiments. The smaller the FID score, the better the per-
formance of the GAN. The results on other metrics, i.e. Inception scores [3] and
Neural Divergence [9], are shown in the supplementary material.

4.2 Empirical Analysis of Lipschitz Regularization

In this section, we empirically analyze how varying the strength of the Lips-
chitz regularization impacts the domain, interval of attained gradient values,
and performance (FID scores) of different loss functions (Section 3.1).

Domain vs. Lipschitz Regularization. In this experiment, we show how the
Lipschitz regularization influences the domain of the loss function. As Figure 4
shows, we plot the domain Ω as intervals for different iterations under different
kGP and kSN for the gradient penalty and the spectral normalization regularizers
respectively. It can be observed that: (i) For both regularizers, the interval Ω
shrinks as kGP and kSN decreases. However, kSN is much more impactful than
kGP in restricting Ω. Thus, we use spectral normalization to alter the strength
of the Lipschitz regularization in the following experiments. (ii) For NS-GANs
and LS-GANs, the domains Ωi are rather fixed during training. For WGANs,
the domains Ωi typically shift at the beginning of the training, but then get
relatively fixed in later stages.

Interval of Attained Gradient Values vs. Lipschitz Regularization. Sim-
ilar to the domain, the interval of attained gradient values of the loss function
also shrinks with the increasing strength of Lipschitz regularization. Table 2
shows the corresponding interval of attained gradient values of the NS-GAN-SN
and LS-GAN-SN experiments in Figure 4. The interval of attained gradient val-
ues of WGAN-SN are not included as they are always zero. It can be observed
that the shrinking interval of attained gradient values avoids the saturating and
exploding parts of the loss function. For example when kSN = 5.0, the gradi-
ent of the NS-GAN loss function saturates to a value around 0 while that of
the LS-GAN loss function explodes to 24.041. However, such problems do not
happen when kSN ≤ 1.0. Note that we only compute the interval of attained
gradient values on one of the two symmetric loss terms used in the discriminator
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Table 3: FID scores vs. kSN (typically fixed as 1 [21]) on different datasets. When
kSN ≤ 1.0, all GANs have similar performance except the WGANs (slightly
worse). For the line plots, x-axis shows kSN (in log scale) and y-axis shows the
FID scores. From left to right, the seven points on each line have kSN = 0.2,
0.25, 0.5, 1.0, 5.0, 10.0, 50.0 respectively. Lower FID scores are better.

Dataset GANs
FID Scores

kSN = 0.2 0.25 0.5 1.0 5.0 10.0 50.0

MNIST

NS-GAN-SN 5.41 3.99 4.20 3.90 144.28 156.60 155.41
LS-GAN-SN 5.14 3.96 3.90 4.42 36.26 59.04 309.35
WGAN-SN 6.35 6.06 4.44 4.70 3.58 3.50 3.71
COS-GAN-SN 5.41 4.83 4.05 3.86 291.44 426.62 287.23
EXP-GAN-SN 4.38 4.93 4.25 3.69 286.96 286.96 286.96

CIFAR10

NS-GAN-SN 29.23 24.37 23.29 15.81 41.04 49.67 48.03
LS-GAN-SN 28.04 26.85 23.14 17.30 33.53 39.90 349.35
WGAN-SN 29.20 25.07 26.61 21.75 21.63 21.45 23.36
COS-GAN-SN 29.45 25.31 20.73 15.88 309.96 327.20 370.13
EXP-GAN-SN 30.89 24.74 20.90 16.66 401.24 401.24 401.24

CelebA

NS-GAN-SN 18.59 12.71 8.04 6.11 18.95 17.04 184.06
LS-GAN-SN 20.34 12.14 8.85 5.69 12.40 13.14 399.39
WGAN-SN 23.26 17.93 8.48 9.41 9.03 7.37 7.82
COS-GAN-SN 20.59 13.93 8.88 5.20 356.70 265.53 256.44
EXP-GAN-SN 18.23 13.65 9.18 5.88 328.94 328.94 328.94
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(c) CelebA

loss function (Table 1). The interval of attained gradient values of the other loss
term follows similar patterns.

FID scores vs. Lipschitz Regularization. Table 3 shows the FID scores of
different GAN loss functions with different kSN . It can be observed that:

– When kSN ≤ 1.0, all the loss functions (including the non-standard ones)
can be used to train GANs stably. However, the FID scores of all loss func-
tions slightly worsen as kSN decreases. We believe that the reason for such
performance degradation comes from the trick used by modern optimizers to
avoid divisions by zero. For example in RMSProp [26], the moving average of
the squared gradients are kept for each weight. In order to stabilize training,
gradients are divided by the square roots of their moving averages in each
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Table 4: FID scores vs. α. For the line plots, the x-axis shows α (in log scale)
and the y-axis shows the FID scores. Results on other datasets are shown in the
supplementary material. Lower FID scores are better.

Dataset GANs
FID Scores

Line Plot
α = 1e−11 1e−9 1e−7 1e−5 1e−3 1e−1

CelebA

NS-GAN-SN 9.08 7.05 7.84 18.51 18.41 242.64

10−110−310−510−710−910−11
0

100

200

300

400
NS-GAN-SN

LS-GAN-SN

LS-GAN#-SN

EXP-GAN-SN

COS-GAN-SN

LS-GAN-SN 135.17 6.57 10.67 13.39 17.42 311.93

LS-GAN#-SN 6.66 5.68 8.72 11.13 14.90 383.61
COS-GAN-SN 8.00 6.31 300.55 280.84 373.31 318.53
EXP-GAN-SN 8.85 6.09 264.49 375.32 375.32 375.32

(a) kSN = 50.0

Dataset GANs
FID Scores

Line Plot
α = 1e1 1e3 1e5 1e7 1e9 1e11

MNIST

NS-GAN-SN 6.55 148.97 134.44 133.82 130.21 131.87

101 103 105 107 109 1011
0

100

200

300

400

NS-GAN-SN

LS-GAN-SN

LS-GAN#-SN

EXP-GAN-SN

COS-GAN-SN

LS-GAN-SN 23.37 26.96 260.05 255.73 256.96 265.76

LS-GAN#-SN 13.43 26.51 271.85 212.74 274.63 269.96
COS-GAN-SN 11.79 377.62 375.72 363.45 401.12 376.39
EXP-GAN-SN 11.02 286.96 286.96 286.96 286.96 286.96

(b) kSN = 1.0

update of the weights, where a small positive constant ε is included in the
denominator to avoid dividing by zero. When kSN is large, the gradients are
also large and the effect of ε is negligible. While when kSN is very small, the
gradients are also small so that ε can significantly slow down the training
and worsen the results.

– When kSN ≤ 1.0, the performance of WGAN is slightly worse than almost all
the other GANs. Similar to the observation of [12], we ascribe this problem to
the shifting domain of WGANs (Figure 4 (c)(f)). The reason for the domain
shift is that the Wasserstein distance only depends on the difference between
E[f(x)] and E[f(g(z)] (Table 1). For example, the Wasserstein distances
E[f(x)]− E[f(g(z)] are the same for i) E[f(x)] = 0.5,E[f(g(z)) = −0.5 and
ii) E[f(x)] = 100.5,E[f(g(z)) = 99.5.

– When kSN ≥ 5.0, the WGAN works normally while the performance of all
the other GANs worsen and even break (very high FID scores, e.g. ≥ 100).
The reasons for the stable performance of WGAN are two-fold: i) due to the
KR duality, the Wasserstein distance is insensitive to the Lipschitz constant
K. Let W (Pr,Pg) be the Wasserstein distance between the data distribu-
tion Pr and the generator distribution Pg. As discussed in [2], applying K-
Lipschitz regularization to WGAN is equivalent to estimating K ·W (Pr,Pg),
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which shares the same solution as 1-Lipschitz regularized WGAN. ii) To fight
the exploding and vanishing gradient problems, modern neural networks are
intentionally designed to be scale-insensitive to the backpropagated gradi-
ents (e.g. ReLU [6], RMSProp [26]). This largely eliminates the scaling effect
caused by kSN . This observation also supports our claim that the restriction
of the loss function is the dominating factor of the Lipschitz regularization.

– The best performance is obtained by GANs with strictly convex (e.g. NS-
GAN) and properly restricted (e.g. kSN = 1) loss functions that address
the shifting domain and exploding/vanishing gradient problems at the same
time. However, there is no clear preference and even the non-standard ones
(e.g., COS-GAN) can be the best. We believe that this is due to the subtle
differences of the convexity among loss functions and propose to leave it to
the fine-tuning of loss functions using the proposed domain scaling.

Qualitative results are in the supplementary material.

4.3 Empirical Results on Domain Scaling

In this section, we empirically verify our claim that the restriction of the loss
function is the dominating factor of the Lipschitz regularization. To illustrate it,
we decouple the restriction of the domain of the loss function from the Lipschitz
regularization by the proposed domain scaling method (Section 3.2).

Table 5: FID scores of WGAN-SN and
some extremely degenerate loss func-
tions (α = 1e−25) on different datasets.
We use kSN = 50 for all our experi-
ments.

GANs
FID Scores

MNIST CIFAR10 CELEBA
WGAN-SN 3.71 23.36 7.82
NS-GAN-SN 3.74 21.92 8.10
LS-GAN#-SN 3.81 21.47 8.51
COS-GAN-SN 3.96 23.65 8.30
EXP-GAN-SN 3.86 21.91 8.22

Table 4 (a) shows that (i) the FID
scores of different loss functions gener-
ally improve with decreasing α. When
α ≤ 10−9, we can successfully train
GANs with extremely large Lipschtiz
constant (K ≈ knSN = 504 = 6.25 ×
106), whose FID scores are compara-
ble to the best ones in Table 3. (ii) The
FID scores when α ≤ 10−11 are slightly
worse than those when α ≤ 10−9.
The reason for this phenomenon is
that restricting the domain of the loss
function converges towards the per-
formance of WGAN, which is slightly
worse than the others due to its shift-
ing domain. To further illustrate this
point, we scale the domain by α = 1e−25 and show the FID scores of WGAN-SN
and those of different loss functions in Table 5. It can be observed that all loss
functions have similar performance. Since domain scaling does not restrict the
neural network gradients, it does not suffer from the above-mentioned numerical
problem of division by zero (kSN ≤ 1.0, Table 3). Thus, it is a better alternative
to tuning kSN .

Table 4 (b) shows that the FID scores of different loss functions generally
worsen with less restricted domains. Note that when α ≥ 105, the common
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practice of 1-Lipschitz regularization fails to stabilize the GAN training. Note
that the LS-GAN-SN has some abnormal behavior (e.g. α = 1e−11 in Table 4 (a)
and α = 1e1 in Table 4 (b)) due to the conflict between its 0.5-centered domain
and our zero-centered domain scaling method (Eq.8). This can be easily fixed
by using the zero-centered LS-GAN#-SN (see Table 1).

(a) NS-GAN-SN (b) LS-GAN-SN

Fig. 5: (a) Mode collapse and (b) crashed train-
ing on MNIST, kSN = 50.0, α = 1e−1.

Bias over Input Samples.
When weak Lipschitz regular-
ization (large Lipschitz con-
stant K) is applied, we ob-
served mode collapse for NS-
GAN and crashed training
for LS-GAN, EXP-GAN and
COS-GAN (Figure 5, more re-
sults in supplementary ma-
terial). We conjecture that
this phenomenon is rooted in
the inherent bias of neural
networks over input samples:
neural networks may “prefer”
some input (class of) samples over the others by outputting higher/lower val-
ues, even though all of them are real samples from the training dataset. When
the above-mentioned loss functions are used, such different outputs result in
different backpropagated gradients ∇L = ∂D(f(x))/∂f(x). The use of weak
Lipschitz regularization further enhances the degree of unbalance among back-
propagated gradients and causes mode collapse or crashed training. Note that
mode collapse happens when ∇L is bounded (e.g. NS-GAN) and crashed train-
ing happens when ∇L is unbounded (e.g. LS-GAN, EXP-GAN) or “random”
(e.g. COS-GAN). However, when strong Lipschitz regularization is applied, all
loss functions degenerate to almost linear ones and balance the backpropagated
gradients, thereby improve the training.

5 Conclusion

In this paper, we studied the coupling of Lipschitz regularization and the loss
function. Our key insight is that instead of keeping the neural network gradients
small, the dominating factor of Lipschitz regularization is its restriction on the
domain and interval of attainable gradient values of the loss function. Such
restrictions stabilize GAN training by avoiding the bias of the loss function
over input samples, which is a new step in understanding the exact reason for
Lipschitz regularization’s effectiveness. Furthermore, our finding suggests that
although different loss functions can be used to train GANs successfully, they
actually work in the same way because all of them degenerate to near-linear ones
within the chosen small domains.
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