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Abstract. Transferring existing image-based detectors to the video is
non-trivial since the quality of frames is always deteriorated by part
occlusion, rare pose, and motion blur. Previous approaches exploit to
propagate and aggregate features across video frames by using optical
flow-warping. However, directly applying image-level optical flow onto
the high-level features might not establish accurate spatial correspon-
dences. Therefore, a novel module called Learnable Spatio-Temporal
Sampling (LSTS) has been proposed to learn semantic-level correspon-
dences among adjacent frame features accurately. The sampled locations
are first randomly initialized, then updated iteratively to find better spa-
tial correspondences guided by detection supervision progressively. Be-
sides, Sparsely Recursive Feature Updating (SRFU) module and Dense
Feature Aggregation (DFA) module are also introduced to model tempo-
ral relations and enhance per-frame features, respectively. Without bells
and whistles, the proposed method achieves state-of-the-art performance
on the ImageNet VID dataset with less computational complexity and
real-time speed. Code will be made available at LSTS.

Keywords: flow-warping, learnable spatio-temporal sampling, spatial
correspondences, temporal relations

1 Introduction

Object detection is a fundamental problem in computer vision and enables vari-
ous applications, e.g., robot vision and autonomous driving. Recently, deep con-
volution neural networks have achieved significant process on object detection
[12, 14, 22, 24, 27]. However, directly applying image object detectors frame-by-
frame cannot obtain satisfactory results since frames in a video are always de-
teriorated by part occlusion, rare pose, and motion blur. The inherent temporal
information in the video, as the rich cues of motion, can boost the performance
of video object detection.
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Fig. 1. Comparison between flow-warping with LSTS for feature propaga-
tion. Ft and Ft+k denote features extracted from two adjacent frames It and It+k,
respectively. Previous work directly applies optical flow to represent the feature-level
shift while our LSTS could learn more accurate correspondences from data

Previous efforts on leveraging the temporal information can mainly be di-
vided into two categories. The first one relies on temporal information for post-
processing to ensure the object detection results more coherent [13,20,21]. These
methods usually apply image-detector to obtain detection results, then associate
the results via the box-level matching, e.g., tracker or off-the-shelf optical flow.
Such post-processing tends to slow down the processing of detection. Another
category [17–19, 31, 35, 37, 40–42] exploits the temporal information on feature
representation. Specifically, they mainly improve features by aggregating that
of adjacent frames to boost the detection accuracy, or propagating features to
avoid dense feature extraction to improve the speed.

Nevertheless, when propagating the features across frames, optical flow based
warping operation is always required. Such operation would introduce the fol-
lowing disadvantages: (1) Optical flow tends to increase the number of model pa-
rameters by a large margin, which makes the applications on embedded devices
unfriendly. Take the image detector ResNet101+RFCN [2, 16] as an example,
the parameter size would increase from 60.0M to 96.7M even with the pruned
FlowNet [42]. (2) Optical flow cannot represent the correspondences among high-
level features accurately. Due to the increase of the receptive field of networks,
the small motion drift in the high-level feature always corresponds to large mo-
tion movements in the image-level. (3) Optical flow extraction is time-consuming.
For example, FlowNet [7] runs at only 10 frames per second (FPS) on KITTI
dataset [11], which will hinder the practical application of video detectors.
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To address the above issues, Learnable Spatio-Temporal Sampling (LSTS)
module has been proposed to propagate the high-level feature across frames.
Such module could learn spatial correspondences across frames itself among the
whole datasets. Besides, without the extra optical flow, it allows to speed up the
propagation process significantly. Given two frames It and It+k and the extracted
features Ft and Ft+k, our proposed LSTS module will firstly samples specific lo-
cations. Then, the similarity between the sampled locations on feature Ft and
feature Ft+k would be calculated. Next, the calculated weights together with fea-
ture Ft are aggregated to produce propagated feature F

′

t+k. At last, the sampling
locations would be iteratively updated guided by the final detection supervision,
which allows to propagate and align the high-level features across frames more
accurately. Based on LSTS, an efficient video object detection framework is also
introduced. The features of keyframes and non-keyframes would be extracted by
expensive and light-weight network, respectively. To further leverage the tempo-
ral relation across whole videos, Sparsely Recursive Feature Updating (SRFU)
and Dense Feature Aggregation (DFA) are then proposed to boost the dense
low-level features, and enhance the feature representation separately.

Experiments are conducted on the public video object detection benchmark
i.e., ImageNet VID datasets. Without bells and whistles, the proposed framework
achieves state-of-the-art performance at the real-time speed and brings much
fewer model parameters simultaneously. In addition, elaborate ablative studies
show the advance of learnable sampling locations over the hand-crafted design.

We summarize the major contributions as follows: 1) LSTS module is pro-
posed to propagate the high-level feature across frames, which could calculate
the spatial-temporal correspondences accurately. Different from previous ap-
proaches, LSTS treat the offsets of sampling locations as parameters and the
optimal offsets would be learned through back-propagation guided by bound-
ing box and category supervision. 2) SRFU and DFA module are proposed to
model temporal relation and enhance feature representation, respectively. 3) Ex-
periments on VID dataset demonstrate that the proposed framework achieves
state-of-the-art trade-off performance between speed and model parameters.

2 Related Work

Image Object Detection. Recently, state-of-the-art methods for image-based
detectors are mainly based on the deep convolutional neural networks [22,24,27].
Generally, the image object detectors can be divided into two paradigms, i.e.,
the single-stage and the two-stage detectors. Two-stage detectors usually first
generate region proposals, which are then refined by classification and regression
process through the RCNN stage. ROI pooling [15] was proposed to speed up
R-CNN [12]. Faster RCNN [27] utilized anchor mechanism to replace Selective
Search [33] proposal generation process, achieving great performance promotion
as well as faster speed. FPN [22] introduced an inherent multi-scale, pyramidal
hierarchy of deep convolution networks to build feature pyramids with marginal
extra cost and significant improvements. The single-stage detector pipeline is
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more efficient but achieves less accurate performance. SSD [24] directly generates
results from anchor boxes on a pyramid of feature maps. RetinaNet [23] handled
extreme foreground and background imbalance issue by a novel loss named focal
loss. Usually, the image object detector provides the baseline results for video
object detection through frame-by-frame detection.

Video Object Detection. Compared with image object detection, temporal
information provides the cue for video object detection, which can be utilized to
boost accuracy or efficiency. To improve detection efficiency, a few works [17,42]
exploited to propagate features across frames to avoid dense expensive feature
extraction, which mainly relied on the flow-warping [42] operation. DFF [42] was
proposed with an efficient framework which only runs expensive CNN feature
extraction on sparse and regularly selected keyframes, achieving more than 10x
speedup than using an image detector for per-frame detection. Towards High
Performance [40] proposed spare recursive feature aggregation and spatially-
adaptive feature updating strategies, which helps run real-time speed with sig-
nificant performance. On the one hand, the slow flow extraction process is still
the bottleneck for higher speed. On the other hand, the image-level flow which
is used to propagate high-level feature may hinder the propagation accuracy,
resulting in inferior accuracy.

To improve detection accuracy, different methods [4, 31, 37, 41] have been
proposed to aggregate features across frames. They either rely on optical flow to
propagate the neighbouring frames’ features, or establish spatial-temporal rela-
tion to propagate the adjacent frames’ features. Then the propagated features
from the adjacent frames and current frame feature are aggregated to improve the
feature. FGFA [41] was proposed to aggregate nearby features for each frame. It
achieves better accuracy at the cost of slow speed, which only runs on 3 FPS due
to dense prediction and heavy flow extraction process. EDN [6] was proposed to
aggregate and propagate object relation to augment object features. SELSA [37]
and LRTR [31] were proposed to aggregate feature by modeling temporal pro-
posals. Besides, OGEM [4] utilized object guided external memory network to
model the relationship among temporal proposals. However, these methods can-
not run real-time due to the multi-frames feature aggregation. Compared with
the above works, our proposed method can be much efficient and run at real-time
speed.

Flow-Warping for Feature Propagation. Optical flow [7] has been widely
used to model motion relation across frames in many video-based applications,
such as video action recognition [32] and video object detection [28]. DFF [42]
is the first work to propagate deep keyframe feature to non-keyframe using flow-
warping operation based on tailored optical-flow extraction network, resulting
in 10x speedup but inferior performance. However, optical flow extraction is
time-consuming, which means that we are also expected to manually design
lightweight optical flow extraction network for higher speed, which can be in the
price of losing precision. Whats more, it is less robust for feature-level warp-
ing using image-level optical flow. Compared with flow-warping based feature
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Fig. 2. Framework for inference. For simplicity, frames at t0, t1 (keyframes) and
t1+k (non-keyframe) would be fed into a high-level and a low-level feature extractor re-
spectively. Based on the high-level features, the memory feature Fmemory is maintained
by SRFU to capture the temporal relation, and updated iteratively at keyframes time
step. Meanwhile, DFA propagates the memory feature Fmemory of keyframes to en-
hance and enrich the low-level features of non-keyframes. LSTS is embedded in SRFU
and DFA to propagate and align features across frames accurately. Both the output of
SFRU and DFA is produced by the task network to make the final prediction

propagate, our proposed method is much lightweight and can model the corre-
spondences across frames in the feature-level accurately.

Self-Attention for Feature Propagation. Attention mechanism [9, 10, 26,
29, 34, 36, 39] is widely studied in computer vision and natural language pro-
cessing. Self-attention [34] and non-local [36] are proposed to model the relation
of language sequences and to capture long-range dependencies, respectively. An
attention function can be described as mapping a query and a set of key-value
pairs to an output, where the query, keys, values, and output are all feature
maps. Due to the formulation of such attention operation, it can naively be
used to model the relation of the features across frames. However, motion across
frames is usually limited in a near window, not the whole feature size. Thus
MatchTrans [38] was proposed to propagate the features across frames as a local
Non-Local [36] manner. Even so, the neighbourhood size is still needed to be
carefully designed to match the motion distribution of whole datasets. Compared
with MatchTrans [38] module, our proposed LSTS module can adaptively learn
the sampling locations, which allows to estimate spatial correspondences across
frames more accurately. At the same time, Liu [25] proposed to learn sampling
locations for convolution kernel, which shares core idea with us.
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3 Methodology

3.1 Framework Overview

In terms of the frame-by-frame detector, frames are divided into two categories
i.e., keyframe and non-keyframe. In order to decrease the computational com-
plexity, the feature extractors vary from different types of frames. Specifically, the
features of the keyframe and the non-keyframe would derive from the heavy (H)
and light (L) feature extraction networks, respectively. In Sec. 3.2, LSTS is pro-
posed to align and propagate the featues across frames. In order to leverage the
relation among frames, a memory feature Fmemory is maintained on keyframes,
which is gradually updated by the proposed SRFU module (in Sec. 3.3). Be-
sides, with the lightweight feature extractor network, the low-level features on
the non-keyframes are usually not capable to obtain good detection results. Thus,
DFA module (in Sec. 3.4) is proposed to improve the low-level features on the
non-keyframes by utilizing the memory feature Fmemory on the keyframes. The
pipeline of our framework is illustrated in Fig. 2.

3.2 Learnable Spatio-Temporal Sampling

After collecting the features Ft, Ft+k of corresponding frames It, It+k, LSTS
module allows to calculate the similarity weights of correspondences. As Fig. 3
shows, the procedure of our LSTS module consists of four steps: 1) It first sam-
ples some locations on the feature Ft. 2) The correspondence similarity weights
are then calculated on the embedded features f(Ft) and g(Ft+k) by using the
sampled locations, where f(·) and g(·) are embedding functions, which aims to
reduce the channel of features Ft and Ft+k to save computational cost. 3) Next,
the calculated weights together with feature Ft are aggregated to obtain propa-
gated feature F

′

t+k. 4) At last, the sampled locations can be iteratively updated
according to final detection loss during training process.
Sampling. To propagate features from Ft to Ft+k accurately, we need accurate
spatial correspondences across two frames. Motivated by Fig. 5, the correspon-
dences can be limited to the neighbourhood. Thus we first initialize some sampled
locations on the neighborhood, which provides coarse correspondences. Besides,
with the ability of learning, LSTS can shift and scale the distribution of sam-
pled locations progressively to establish spatial correspondences more accurately.
Uniform and Gaussian distribution are applied as two kinds of initialization
methods, which will be discussed in detail in the experimental section.
Comparison. With the correspondence locations, the similarity of them would
be calculated. To save the computational cost, features Ft and Ft+k are em-
bedded to f(Ft) and g(Ft+k), respectively, where f and g are the embedding
function. Then the correspondence similarity weights are calculated based on
the embedded features f(Ft) and g(Ft+k). As Fig. 3 shows, p0 denotes the
specific grid location (yellow square) on the feature map g(Ft+k). The sam-
pled correspondence locations (blue square) on f(Ft) are denoted as pn, where
n = 1, ..., N , and N is the number of the sampled locations. Let f(Ft)pn

and
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Fig. 3. Illustration of LSTS module. LSTS basically consists of 4 steps: 1) some
locations on the feature are randomly sampled. 2) The affinity weight is calculated
by similarity comparison. 3) Next, the features Ft together with weights will be ag-

gregated to obtain features F
′
t+k. 4) the locations would be updated iteratively by

back-propagation during training. After training, the final learned sampling locations
would be used for inference

g(Ft+k)p0 denote the features at the location pn from f(Ft) and at location p0

from g(Ft+k), respectively. We aims to calculate the similarity weight between
each f(Ft)pn

and g(Ft+k)p0
.

Considering pn may be in the arbitrary location on the feature map, f(Ft)pn

firstly requires the bilinear interpolation operation following

f(Ft)pn
=

∑
q

G(pn,q) · f(Ft)q. (1)

Here, q enumerates all integral spatial locations on the feature map f(Ft), and
G(·, ·) is the bilinear interpolation kernel function as in [3]. After obtaining the
value of f(Ft)pn

, we use similarity function Sim to measure the distance between
the vector f(Ft)pn

and the vector g(Ft+k)p0
. Suppose that both f(Ft)pn

and
f(gt+k)p0

are c dimensional vectors, then we have the similarity value s(pn):

s(pn) = Sim(f(Ft)pn
, g(Ft+k)p0

). (2)

A very common function Sim can be dot-product. After getting all similarity
value s(pn) on the location pn, then the normalized similarity weights can be
calculated by:

S(pn) =
s(pn)∑N
n=1 s(pn)

. (3)
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Fig. 4. Architecture of SRFU and DFA.
⊕

is the Aggregation Unit. Transform
unit only consists of several convolutions, which is used to improve low-level features
on the non-keyframes. For SRFU, LSTS module is utilized to aggregate last keyframe
Fmemory

t0
to current keyframe t1. While for DFA, LSTS module aims to propagate the

keyframe memory feature Fmemory

t1
to non-keyframe t1 +k to boost the feature quality

to obtain better detection results

Aggregation. After obtaining each of the calculated correspondence similarity
weights S(pn) on location pn, then the estimated value on location p0 for F ′

t+k

can be calculated as:

F ′
t+k(p0) =

N∑
n=1

S(pn) · Ft(pn). (4)

Updating. In order to learn the ground truth distribution of correspondences,
the sampled locations are also updated by the back-propagation during training.
We use the dot-product for function Sim for simplicity. Then we have:

s(pn) =
∑
q

G(pn,q) · f(Ft)q · g(Ft+k)p0
. (5)

Thus, the gradients for location pn can be calculated by:

∂s(pn)

∂pn
=

∑
q

∂G(pn,q)

∂pn
· f(Ft)q · g(Ft+k)p0 . (6)

∂G(pn,q)
∂pl

can be easily calculated due to the function G(., .) is bilinear interpo-
lation kernel. According to the above gradient calculation in Eq. 6, the sampled
location pn will be iteratively updated according to final detection loss, which
allows the learned sampling locations progressively match the ground truth dis-
tribution of correspondences. After training, the final learned sampling locations
could be applied to propagate and align features across frames during the in-
ference process. And LSTA is the core of SRFU and DFA, which would be
introduced next in detail.
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3.3 Sparsely Recursive Feature Updating

SRFU module allows to leverage the inherent temporal cues insides videos to
propagate and aggregate high-level features of sparse keyframes over the whole
video. Specifically, SRFU module maintains and recursively updates a tempo-
ral feature Fmemory over the whole video. As shown in Fig. 4(a), during this
procedure, directly updating the memory feature by the new keyframes feature
Ft1 is sub-optimal due to the motion misalignment during keyframes t0 and t1.
Thus, our LSTS module could estimate the motion and generate the aligned fea-
ture F align

t1 . After that, an aggregation unit is proposed to generate the updated

memory feature Fmemory
t1 . Specially, the concatenation of Ft1 and F align

t1 would
be fed into a several layers of convolutions with a softmax operation to produce
the corresponding aggregation weights Wt1 and W align

t1 , where Wt1 +W align
t1 = 1.

Fmemory
t1 = Wt1 � Ft1 + W align

t1 � F align
t1 . (7)

Then the memory feature on the keyframes t1 can be updated by Eq. 7, where
� is the Hadamard product (i.e. element-wise multiplication) after broadcasting
the weight maps. And the memory feature Fmemory

t1 together with Ft1 would
be aggregated to generate the task feature for the keyframes. To validate the
effectiveness of proposed SRFU, we divide SRFU into Sparse Deep Feature Ex-
traction, Keyframe Memory Update and Quality-Aware Memory Update. Each
component of SRFU module will be explained and discussed in detail in the
experimental section.

3.4 Dense Feature Aggregation

Considering the computational complexity, lightweight feature extractor net-
works are utilized for the non-keyframes, which would extract the low-level
features. Thus, DFA module allows to reuse the sparse high-level features of
keyframe to improve the quality of that of the non-keyframes. Specifically, as
shown in Fig. 4(b), the non-keyframes feature F low

t1+k would be fed into a Trans-
form unit which only brings few computation cost to predict the semantic-level
feature Fhigh

t1+k . Due to the motion misalignment between the time step of t1 and

t1 + k, the proposed LSTS module is applied on the keyframe memory feature
Fmemory
t1 to generate the aligned feature F align

t1+k . After obtaining F align
t1+k , an ag-

gregation unit is utilized to predict the aggregation weights W align
t1+k and Whigh

t1+k ,

where W align
t1+k + Whigh

t1+k = 1.

F task
t1+k = W align

t1+k � F align
t1+k + Whigh

t1+k � Fhigh
t1+k . (8)

Finally, the task feature F task
t1+k on the non-keyframe t1 + k can be calculated

in Eq. 8, where � is the Hadamard product (i.e. element-wise multiplication)
after broadcasting the weight maps. Comparing with low-level feature F low

t1+k,

F task
t1+k contains more semantic-level information and allows to obtain good de-

tection results. To validate the effectiveness of proposed DFA, we divide DFA
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into Non-Keyframe Transform, Non-Keyframe Aggregation and Quality-Aware
Non-Keyframe Aggregation. Each component of DFA module will be explained
and discussed in detail in the experimental section.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our method on the ImageNet VID dataset, which is the benchmark
for video object detection [28]. And the ImageNet VID dataset is composed of
3862 training videos and 555 validation videos containing 30 object categories.
All videos are fully annotated with bounding boxes and tracking IDs. And mean
average precision (mAP) is used as the evaluation metric following the previous
methods [42].

The ImageNet VID dataset has extreme redundancy among video frames,
which prevents efficient training. At the same time, video frames of the ImageNet
VID dataset have poorer quality than images in the ImageNet DET [28] dataset.
So, we follow the previous method [40] to use both ImageNet VID and DET
dataset for training. For the ImageNet DET set, only the same 30 class categories
of ImageNet VID are used.

4.2 Implementation Detail

For the training process, each mini-batch contains three images. In both the
training and testing stage, the shorter side of the images will be resized to 600
pixels [27]. Feature before conv4 3 will be treated as Low-Level Feature Extrac-
tor. The whole ResNet will be used for High-Level Feature Extractor. Following
the setting of most previous methods, the R-FCN detector [2] pretrained on Im-
ageNet [5] with ResNet-101 [16] serves as the single-frame detector. During the
training stage, we adopt OHEM strategy [30] and horizontal flip data augmen-
tation. In our experiment, each GPU will hold one sample, namely three images
sampled from one video or repetition of the static image. We train our network
on an 8-GPUs machine for 4 epochs with SGD optimization, starting with a
learning rate of 2.5e-4 and reducing it by a factor of 10 at every 2.33 epochs.
The keyframe interval is 10 frames in default, as in [41,42].
Aggregation Unit. The aggregation weights of the features are generated by
a quality estimation network. It has three randomly initialized layers: a 3 × 3 ×
256 convolution, a 1 × 1 × 16 convolution and a 1 × 1 × 1 convolutions. The
output is position-wise raw score map which will be applied on each channel of
corresponding features. The normalized weights and the features are fused to
obtain the aggregated result.
Transform. To reduce the computational complexity, we only extract low-level
features for the non-keyframes, which is a lack of high-level semantic information.
A lightweight neural convolution unit containing 3 randomly initialized layers: a
3×3×256 convolution, a 3×3×512 convolution and a 3×3×1024 convolutions
has been utilized to compensate the semantic information.



Learning Where to Focus for Efficient Video Object Detection 11

Table 1. Performance comparison with the state-of-the-arts on ImageNet
VID validation set. In terms of both accuracy and speed, Our method outperforms
the most of them and has fewer parameters than the existing optical flow-based models.
V means that the speed is tested on TITAN V GPU

Model Online mAP (%) Runtime(FPS) #Params(M) Backbone

TCN [21] 7 47.5 - - GoogLeNet
TPN+LSTM [20] 7 68.4 2.1 - GoogLeNet
R-FCN [2] 3 73.9 4.05 60.0 ResNet-101
DFF [42] 3 73.1 20.25 97.8 ResNet-101
D (&T loss) [8] 3 75.8 7.8 - ResNet-101
LWDN [18] 3 76.3 20 77.5 ResNet-101
FGFA [41] 7 76.3 1.4 100.5 ResNet-101
ST-lattice [1] 7 79.5 20 - ResNet-101
MANet [35] 7 78.1 5.0 - ResNet-101
OGEMNet [4] 3 76.8 14.9 - ResNet-101
Towards [40] 3 78.6 13.0 - ResNet-101 + DCN
RDN [6] 7 81.8 10.6(V) - ResNet-101
SELSA [37] 7 80.3 - - ResNet-101
LRTR [31] 7 80.6 10 - ResNet-101
Ours 3 77.2 23.0 64.5 ResNet-101
Ours 3 80.1 21.2 65.5 ResNet-101 + DCN

MANet [35] + [13] 7 80.3 - - ResNet-101
STMN [38] + [13] 7 80.5 1.2 - ResNet-101
Ours + [13] 3 82.1 4.6 65.5 ResNet-101 + DCN

4.3 Results

We compare our method with existing state-of-the-art image and video object
detectors. The results are shown in Table 1. From the table, we can make the fol-
lowing conclusion. First of all, our method outperforms most previous approaches
considering the speed and accuracy trade-off. Secondly, our proposed approach
has fewer parameter comparing with flow-warping based method. Without ex-
ternal optical flow network, our approach can significantly simplify the overall
detection framework. Lastly, the results indicate that our LSTS module can
learn feature correspondences between consecutive video frames more precise
than optical flow-warping based methods.

To conclude, our detector surpasses the static image-based R-FCN detector
with a large margin (+3.3%) while maintaining high speed (23.0FPS). Further-
more, the parameter count (64.5M) is fewer than other video object detectors
using an optical flow network (e.g., around 100M), which also indicates that our
method is more friendly for mobile devices.

4.4 Ablation Studies

We conduct ablation studies on ImageNet VID dataset to demonstrate the ef-
fectiveness of proposed LSTS module and the proposed framework. We first
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Table 2. Ablation studies on accuracy, runtime and complexity between
ours and flow-warping methods. † belong to SRFU and ‡ belong to DFA

Architecture Component (a) (b) (c) (d) (e) (f) (g)

Sparse Deep Feature Extraction † 3 3 3 3 3 3 3

Keyframe Memory Update † 3

Quality-Aware Memory Update † 3 3 3 3 3

Non-Keyframe Aggregation ‡ 3 3

Non-Keyframe Transformer ‡ 3 3

Quality-Aware Non-Keyframe Aggregation ‡ 3 3

Optical flow
mAP(%) 73.0 75.2 75.4 75.5 75.7 75.9 76.1

Runtime(FPS) 29.4 29.4 29.4 19.2 18.9 19.2 18.9
#Params(M) 96.7 96.7 97.0 100.3 100.4 100.4 100.5

Ours
mAP(%) 73.5 75.8 75.9 76.4 76.5 76.8 77.2

Runtime(FPS) 23.8 23.5 23.5 23.3 23.0 23.3 23.0
#Params(M) 63.8 63.7 64.0 64.3 64.4 64.4 64.5

introduce the configuration of each element in our proposed framework for ab-
lation studies. Then we compare our LSTS with both optical flow and existing
non-optical flow alternatives. Finally, we conduct ablation studies of different
modules in our framework.
Effectiveness of the proposed framework. We first describe each component
about proposed SRFU and DFA. Then we compare our method with optical flow-
warping based method under different configurations to validate the effectiveness
of our proposed LSTS module. Each component of SRFU and DFA is listed
following:

- Sparse Deep Feature Extraction. The entire backbone network is used to
extract feature only on keyframes.

- Keyframe Memory Update. The keyframe feature aggregates with the last
keyframe memory to generate the task feature and updated memory feature
(see Fig. 4(a)). The weights are naively fixed to 0.5.

- Quality-Aware Memory Update. The keyframe feature aggregates with the
last keyframe memory to generate the task feature and updated memory
feature using a quality-aware aggregation unit.

- Non-Keyframe Transform. We apply a transform unit on the low-level feature
to generate a high-level semantic feature on the non-keyframe.

- Non-Keyframe Aggregation. The task feature for the non-keyframe is naively
aggregated with an aligned feature from keyframes, and the current low-level
feature is obtained by a part of the backbone network.

- Quality-Aware Non-Keyframe Aggregation. The task feature for the non-
keyframe is aggregated with an aligned feature from the keyframe using a
quality-aware aggregation unit, and the current high-level feature is obtained
through a transform unit.
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Table 3. Comparisons with MatchTrans [38] and Non-Local [36]

Method mAP (%) Runtime(FPS) #Params(M)

Non-Local 74.2 25.0 64.5
MatchTrans 75.5 24.1 64.5
Ours 77.2 23.0 64.5

Table 4. Comparisons of LSTS with different initialization methods

Method Learning mAP(%) Runtime(FPS) #Params(M)

Uniform
7 75.5 21.7 64.5
3 76.8 21.7 64.5

Gaussian
7 75.5 23.0 64.5
3 77.2 23.0 64.5

Our frame-by-frame baseline achieves 74.1% mAP and runs at 10.1FPS. Af-
ter using the sparse deep feature, we have 73.5% mAP and runs at 23.8FPS.
When applying the quality-aware keyframe memory propagation, we have 75.9%
mAP and runs at 23.5FPS with 64.0 M parameters. Last, non-keyframe quality-
aware aggregation can also improve performance which achieves 76.4% mAP at
23.3FPS. By adding quality-aware memory aggregation, non-keyframe trans-
former unit, and quality-aware non-keyframe aggregation, our approach can
achieve 77.2% mAP and run 23.0FPS with 64.5M parameters.

Comparison with Optical Flow-Based Method. Optical flow can predict
motion field between consecutive frames. DFF [42] proposed to propagate feature
across frames by using flow-warping operation. To validate the effectiveness of
LSTS on estimating spatial correspondences, we make a detailed comparison
with optical flow. The results can be seen as in Table. 2. Our proposed LSTS
can outperform optical flow on all settings with fewer model parameters.

Comparison with Non-Optical Flow-Based Method. The results of using
different feature propagation methods are listed in Table. 3. By attending on
the local region, our method outperforms the Non-Local by a large margin. The
reason is that the motion distribution is limited to the near center, as shown in
5. Our method can surpass both the MatchTrans and Non-Local a lot, which
show the effectiveness of LSTS.

Learnable Sampled Locations. To demonstrate the effectiveness of learn-
ing sampled locations, we perform ablation study on two different initialization
methods, Uniform Initialization and Gaussian Initialization.

The first one is just like MatchTrans [38] module with the neighbourhoods
are set to 4. While the second is two-dimensional Gaussian Distribution with
zero means and one variance The results of different initialization settings can
be seen in Table 4. We can figure out, no matter what the initialization meth-
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(a) Horizontal offset distribution.
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(b) Vertical offset distribution.

Fig. 5. The comparison of offset distribution on the horizontal and vertical
between ours and the dataset. For the dataset distribution, we random sample 100
videos from the training dataset, then calculate motion across frames by FlowNet [7].
To verify the effectiveness of learnable spatial-temporal sampling, we also compare the
learned offset distribution with the initialized Gaussian distribution.

ods are, there is a consistent trend that the performance can be significantly
boosted by learning sampled locations. To be more specific, Gaussian initializa-
tion can achieve 77.2% mAP. Comparing with the fixed Gaussian initialization
75.5%, learnable sampling locations could obtain 1.7% mAP improvement. And
Uniform initialization can achieve 76.8% mAP. Comparing with the fixed Uni-
form initialization 75.5%. learnable sampling locations could obtain 1.3% mAP
improvement.

5 Conclusion

In this paper, we have proposed a novel module, Learnable Spatio-Temporal
Sampling (LSTS), which could estimate spatial correspondences across frames
accurately. Based on this module, Sparsely Recursive Feature Updating (SRFU)
and Dense Feature Aggregation (DFA) are proposed to model the temporal re-
lation and enhance the features on the non-keyframes, respectively. Elaborate
ablative studies have shown the advancement of our LSTS module and architec-
ture design. Without any whistle and bell, the proposed framework has achieved
state-of-the-art performance (82.1% mAP) on ImageNet VID dataset. We hope
the proposed differential paradigm could extend to more tasks, such as sampling
locations for general convolution operation, sampling locations of aggregating
features for semantic segmentation, and so on.
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