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Abstract. Deep generative models have been successfully applied to
Zero-Shot Learning (ZSL) recently. However, the underlying drawbacks
of GANs and VAEs (e.g., the hardness of training with ZSL-oriented reg-
ularizers and the limited generation quality) hinder the existing genera-
tive ZSL models from fully bypassing the seen-unseen bias. To tackle the
above limitations, for the first time, this work incorporates a new family
of generative models (i.e., flow-based models) into ZSL. The proposed
Invertible Zero-shot Flow (IZF) learns factorized data embeddings (i.e.,
the semantic factors and the non-semantic ones) with the forward pass
of an invertible flow network, while the reverse pass generates data sam-
ples. This procedure theoretically extends conventional generative flows
to a factorized conditional scheme. To explicitly solve the bias problem,
our model enlarges the seen-unseen distributional discrepancy based on
a negative sample-based distance measurement. Notably, IZF works flex-
ibly with either a naive Bayesian classifier or a held-out trainable one
for zero-shot recognition. Experiments on widely-adopted ZSL bench-
marks demonstrate the significant performance gain of IZF over existing
methods, in both classic and generalized settings.
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1 Introduction

With the explosive growth of image classes, there is an ever-increasing need
for computer vision systems to recognize images from never-before-seen classes,
a task which is known as Zero-Shot Learning (ZSL) [23]. Generally, ZSL aims
at recognizing unseen images by exploiting relationships between seen and un-
seen images. Equipped with prior semantic knowledge (e.g., attributes [24], word
embeddings [35]), traditional ZSL models typically mitigate the seen-unseen do-
main gap by learning a visual-semantic projection between images and their
semantics. In the context of deep learning [45,46], the recent emergence of gener-
ative models has slightly changed this schema by converting ZSL into supervised
learning, where a held-out classifier is trained for zero-shot recognition based on
the generated unseen images. As both seen and synthesized unseen images are
observable to the model, generative ZSL methods largely favor Generalized ZSL
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Fig. 1: A brief illustration of IZF for ZSL. We propose a novel factorized condi-
tional generative flow with invertible networks.

(GZSL) [42] and yet perform well in Classic ZSL (CZSL) [23,34,56]. In prac-
tice, Generative Adversarial Networks (GANs) [11], Variational Auto-Encoders
(VAEs) [20] and Conditional VAEs (CVAEs) [48] are widely employed for ZSL.
Despite the considerable success current generative models [25,36,59,61,67] have
achieved, their underlying limitations are still inevitable in the context of ZSL.

First, GANs [11] suffer from mode collapse [5] and instability during training
with complex learning objectives. It is usually hard to impose additional ZSL-
oriented regularizers to the generative side of GANs other than the real/fake
game [43]. Second, the Evidence Lower BOund (ELBO) of VAEs/CVAEs [20,48]
requires stochastic approximate optimization, preventing them from generating
high-quality unseen samples for robust ZSL [61]. Third, as only seen data are
involved during training, most generative models are not well-addressing the
seen-unseen bias problem, i.e., generated unseen data tend to have the same
distribution as seen ones. Though these concerns are as well partially noticed
by the recent ZSL research [43,61], they either simply bypass the drawback of
GAN in ZSL by resorting to VAE or vice versa, which can be yet suboptimal.

Therefore, we ought to seek a novel generative model that can bypass the
above limitations to further boost the performance of ZSL. Inspired by the re-
cently proposed Invertible Neural Networks (INNs) [2], we find that another
branch of generative models, i.e., flow-based generative models [6,7], align well
with our insights into generative ZSL models. Particularly, generative flows adopt
an identical set of parameters and built-in network for encoding (forward pass)
and decoding (reverse pass). Compared with GANs/VAEs, the forward pass in
flows acts as an additional ‘encoder’ to fully utilize the semantic knowledge.
Furthermore, flows can be easily extended into a conditional scheme to generate
unseen data of good quality.

In this paper, we fully exploit the advantages of generative flows [6,7], based
on which a novel ZSL model is proposed, namely Invertible Zero-shot Flow (IZF).
In particular, the forward pass of IZF projects visual features to the semantic em-
bedding space, with the reverse pass consolidating the inverse projection between
them. We adopt the idea of factorized representations in [51,54] to disentangle
the output of the forward pass into two factors, i.e., semantic and non-semantic
ones. Thus, it becomes possible to inject category-wise similarity knowledge into
the model by regularizing the semantic factors. Meanwhile, the respective reverse
pass of IZF performs conditional data generation with factorized embeddings for
both seen and unseen data. We visualize this pipeline in Fig. 1. To further ac-
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commodate IZF to ZSL, we propose novel bidirectional training strategies to
(1) centralize the seen prototypes for stable classification, and (2) diverge the
distribution of synthesized unseen data and real seen data to explicitly address
the bias problem. Our main contributions include:

1. IZF shapes a novel factorized conditional flow structure that supports exact
density estimation. This differs from the existing approximated [2] and the
non-factorized [3] approach. To the best of our knowledge, IZF is the first
generative flow model for ZSL.

2. A novel mechanism tackling the bias problem is proposed with the merits
of the generative nature of IZF, i.e., measuring and diversifying the sample-
based seen-unseen data distributional discrepancy.

3. Extensive experiments on both real-world data and simulated data demon-
strate the superiority of IZF over existing methods in terms of GZSL and
CZSL settings.

2 Related Work

Zero-Shot Learning. ZSL [23] has been extensively studied in recent years. The
evaluation of ZSL can be either classic (CZSL) or generalized (GZSL) [42], while
recent research also explores the potential in retrieval [30,44]. CZSL excludes
seen classes during test, while GZSL considers both seen and unseen classes, be-
ing more popular among recent articles [4,8,17,26]. To tackle the problem of seen-
unseen domain shift, there propose three typical ways to inject semantic knowl-
edge for ZSL, i.e., (1) learning visual→semantic projections [1,10,21,24,41],
(2) learning semantic→visual projections [40,65,63], and (3) learning shared
features or multi-modal functions [66]. Recently, deep generative models have
been adapted to ZSL, subverting the traditional ZSL paradigm to some ex-
tent. The majority of existing generative methods employ GANs [25,59,33],
CVAEs [22,36,43] or a mixture of the two [16,61] to synthesize unseen data
points for a successive classification stage. However, as mentioned in Sec. 1,
these models suffer from their underlying drawbacks in the context of ZSL.
Generative Flows. Compared with GANs/VAEs, flow-based generative mod-
els [6,7,19] have attracted less research attention in the past few years, probably
because this family of models require special neural structures that are in prin-
ciple invertible for encoding and generation. It was not until the first appear-
ance of the coupling layer in NICE [6] and RealNVP [7] that generative flows
with deep INNs became practical and efficient. In [27], flows are extended to a
conditional scheme, but the density estimation is not deterministic. The Glow
architecture [19] is further introduced with invertible 1×1 convolution for real-
istic image generation. In [3], conditions are injected into the coupling layers.
IDF [15] and BipartiteFlow [52] define a discrete case of flows. Flows can be
combined with adversarial training strategies [12]. In [39], generative flows have
also been successfully applied to speech synthesis.
Literally Invertible ZSL. We also notice that some existing ZSL models in-
volve literally invertible projections [21,64]. However, these methods are unable
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to generate samples, failing to benefit GZSL with the held-out classifier schema
[59] and our inverse training objectives. In addition, [21,64] are linear models
and cannot be paralleled as deep neural networks during training. This limits
their model capacity and training efficiency on large-scale data.

3 Preliminaries: Generative Flows and INNs

Density Estimation with Flows. Generative flows are theoretically based on
the change of variables formula. Given a d-dimentional datum x ∈ X ⊆ Rd and
a pre-defined prior pZ supporting a set of latents z ∈ Z ⊆ Rd, the change of
variables formula defines the estimated density of pθ(x) using an invertible (also
called bijective) transformation f : X → Z as follows:

pθ(x) = pZ (f (x))

∣∣∣∣det
∂f

∂x

∣∣∣∣ . (1)

Here θ indicates the set of model parameters and the scalar |det (∂f/∂x)| is the
absolute value of the determinant of the Jacobian matrix (∂f/∂x). One can refer
to [6,7] and our supplementary material for more details. The choice of the
prior pZ is arbitrary and a zero-mean unite-variance Gaussian is usually ade-
quate, i.e., pZ(z) = N (z|0, I). The respective generative process can be written
as x̂ = f−1 (z) ,where z ∼ pZ . f is usually called the forward pass, with f−1 be-
ing the reverse pass.3 Stacking a series of invertible functions f = f1 ◦f2 ◦ · · ·◦fk
literally complies with the name of flows.
INNs with Coupling Layers. Generative flows admit networks with (1) ex-
actly invertible structure and (2) efficiently computed Jacobian determinant.
We adopt a typical type of INNs, called the coupling layers [6], which split net-
work inputs/outputs into two respective partitions: x = [xa,xb], z = [za, zb].
The computation of the layer is defined as:

f(x) = [xa,xb � exp (s(xa)) + t(xa)] ,

f−1(z) = [za, (zb − t(za))� exp (s(za))] ,
(2)

where � and � denote element-wise multiplication and division respectively.
s(·) and t(·) are two arbitrary neural networks with input and output lengths of
d/2. We show this structure in Fig. 2 (b). Its corresponding log-determinant of
Jacobian can be conveniently computed by

∑
|s|. Coupling layers usually come

together with element-wise permutation to build compact transformation.

4 Formulation: Factorized Conditional Flow

ZSL aims at recognizing unseen data. The training set Ds = {(vs, ys, cs)} of it
is grounded on Ms seen classes, i.e., ys ∈ Ys = {1, 2, ...,Ms}. Let Vs ⊆ Rdv
and Cs ⊆ Rdc respectively represent the visual space and the semantic space
of seen data, of which vs ∈ Vs and cs ∈ Cs are the corresponding feature

3 Note that reverse pass and back-propagation are different concepts.
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Fig. 2: (a) The architecture of the proposed IZF model. The forward pass and
reverse pass are indeed sharing network parameters as invertible structures are
used. Also note that only seen visual samples are accessible during training
and IZF is an inductive ZSL model. (b) A typical illustration of the coupling
layer [6] used in our model.

instances. The dimensions of these two spaces are denoted as dv and dc. Given
an unseen label set Yu = {Ms + 1,Ms + 2, ...,Ms + Mu} of Mu classes, the
unseen data are denoted with the superscript of ·u as Du = {(vu, yu, cu)}, where
vu ∈ Vu, yu ∈ Yu and cu ∈ Cu. In this paper, the superscript are omitted when
the referred sample can be both seen or unseen, i.e., v ∈ V = Vs ∪ Vu, y ∈ Y =
Ys ∪ Yu and c ∈ C = Cs ∪ Cu.

The framework of IZF is demonstrated in Fig. 2 (a). IZF factors out the high-
level semantic information with its forward pass f(·), equivalently performing
visual→semantic projection. The reverse pass handles conditional generation,
i.e., semantic→visual projection, with identical network parameters to the for-
ward pass. To reflect label information in a flow, Eq. (1) is slightly extended to
a conditional scheme with visual data v and their labels y:

pθ(v|y) = pZ (f (v) |y)

∣∣∣∣det
∂f

∂v

∣∣∣∣ . (3)

Detailed proofs are given in the supplementary material. Next, we consider
reflecting semantic knowledge in the encoder outputs for ZSL. To this end, a
factorized model takes its shape.

4.1 Forward Pass: Factorizing the Semantics

High-dimensional image representations contain both high-level semantic-related
information and non-semantic information such as low-level image details. As
factorizing image features has been proved effective for ZSL in [51], we adopt
this spirit, but with different approach to fit the structure of flow. In [51], the
factorization is basically only empirical, while IZF derives full likelihood model
of a training sample.

As shown in Fig. 2 (a), the proposed flow network learns factorized indepen-
dent image representations ẑ = [ĉ, ẑf ] = f(v) with its forward pass f(·), where
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ĉ ∈ Rdc denotes the predicted semantic factor of an arbitrary visual sample v
and ẑf ∈ Rdv−dc is the low-level non-semantic independent to ĉ, i.e., ẑf ⊥⊥ ĉ.
We assume ẑf is not dependent on data label y, i.e., ẑf ⊥⊥ y as it is designed
to reflect no high-level semantic/category information. Therefore, we rewrite the
conditional probability of Eq. (3) as

pθ(v|y) = pZ
(
[ĉ, ẑf ] = f(v)|y

) ∣∣∣∣det
∂f

∂v

∣∣∣∣ = pC|Y(ĉ|y)pZf (ẑf )

∣∣∣∣det
∂f

∂v

∣∣∣∣ . (4)

The conditional independence property gives pZ(ĉ, ẑf |y) = pC|Y(ĉ|y)pZf (ẑf ).
According to [14,54], this property is implicitly enforced by imposing fix-formed
priors on each variable. In this work, the factored priors are

pC|Y(ĉ|y) = N (ĉ|c(y), I), pZf (ẑf ) = N (ẑf |0, I), (5)

where c(y) simply denotes the semantic embedding corresponding to y. Similar
to the likelihood computation of VAEs [20], we empirically assign a uniformed
Gaussian to pC|Y(ĉ|y) centered at the corresponding semantic embedding c(y)
of the visual sample so that it can be simply reduced to a l2 norm.

The conditional schema of Eq. (4) is different from the one of [27] where an
additional condition encoder is required. IZF involves no auxiliary conditional
component by learning factorized latents.
The Injected Semantic Knowledge. The benefits of the factorized pC|Y(ĉ|y)
are two-fold: 1) it explicitly reflects the degree of similarity between different
classes, ensuring smooth seen-unseen generalization for ZSL. This is also in line
with the main motivation of several existing approaches [21,41]; 2) a well-trained
IZF model with pC|Y(ĉ|y) factorizes the semantic meaning from non-semantic
information of an image, making it possible to conditionally generate samples
with f−1(·) by directly feeding the semantic category embedding (see Eq. (6)).

4.2 Reverse Pass: Conditional Sample Generation

One advantage of deep generative ZSL models is the ability to observe synthe-
sized unseen data. IZF fulfills this by

c ∈ C, zf ∼ pZf , v̂ = f−1
(
[c, zf ]

)
. (6)

The Use of Reverse Pass. Different from most generative ZSL approaches
[36,59] where synthesized unseen samples simply feed a held-out classifier, IZF
additionally uses these synthesized samples to measure the biased distributional
overlap between seen and synthesized unseen data. We will elaborate the corre-
sponding learning objectives and ideas in Sec. 5.3.

4.3 Network Structure

In the spirits of Eq. (4) and (6), we build the network of IZF as shown in
Fig. 2 (a). Concretely, IZF consists of 5 permutation-coupling blocks to shape
a deep non-linear architecture. Inspired by [2,7], we combine the coupling layer
with channel-wise permutation in each block. The permutation layer shuffles the
elements of an input feature in a random but fixed manner so that the split of two
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successive coupling layers are different and the encoding/decoding performance
is assured. We use identical structure for the built-in neural network s(·) and t(·)
of the coupling layers in Eq. (2), i.e., fcdv/2 → LReLU → fcdv/2, where LReLU

is the leaky ReLU activation [31]. In the following, we show how the network is
trained to enhance ZSL.

5 Training with the Merits of Generative Flow

To transfer knowledge from seen concepts to unseen ones, we employ the idea of
bi-directional training of INNs [2] to optimize IZF. In principle, generative flows
can be trained only with the forward pass (Sec. 5.1). However, considering the
fact that the reverse pass of IZF is used for zero-shot classification, we impose
additional learning objectives to its reverse pass to promote the ability of seen-
unseen generalization (Sec. 5.2 and 5.3).

5.1 Learning to Decode by Encoding

The first learning objective of IZF comes from the definition of generative flow as
depicted in Eq. (1). By analytic log-likelihood maximization of the forward pass,
generative flows are ready to synthesize data samples. As only visual features of
seen categories are observable to IZF, we construct this loss term upon Ds as

LFlow = E(vs,ys,cs) [− log pθ(v
s|ys)] , (7)

where (vs, ys, cs) are seen samples from the training set Ds and pθ(v
s|ys) is

computed according to Eq. (4). LFlow is not only an encoding loss, but also can
legitimate unconditional seen data generation due to the invertible nature of IZF.
Compared with the training process of GAN/VAE-based ZSL models [36,59], IZF
defines an explicit and simpler objective to fulfill the same functionality.

5.2 Centralizing Classification Prototypes

IZF supports naive Bayesian classification by projecting semantic embeddings
back to the visual space with its reverse pass. For each class-wise semantic rep-
resentation, we define a special generation procedure v̂c = f−1([c,0]) as the
classification prototype of a class. As these prototypes are directly used to
classify images by distance comparison, it would be harmful to the final accuracy
when the prototypes are too close to unrelated visual samples. To address this
issue, f−1 is expected to position them close to the centres v̄c of the respec-
tive classes they belong to. This idea is illustrated in Fig. 3, denoted as LC . In
particular, this centralizing loss is imposed on the seen classes as

LC = E(cs,v̄s
c)

[
‖ f−1([cs,0])− v̄sc ‖2

]
, (8)

where v̄sc is the corresponding numerical mean of the visual samples that belong
to the class with the semantic embedded cs. Similar to the semantic knowledge
loss, we directly apply l2 norm to the model to regularize its behavior.

5.3 Measuring the Seen-Unseen Bias
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Fig. 3: Typical illustration of the IZF
training losses w.r.t. the reverse pass.
In particular, LC refers to the central-
izing loss (Sec. 5.2) for naive Bayesian
classification. LiMMD pushes the syn-
thesized unseen visual distribution pV̂u

from colliding with the real seen one pVs

to tackle the bias problem (Sec. 5.3).

Recalling the bias problem in ZSL
with generative models, the synthe-
sized unseen samples could be un-
expectedly too close to the real
seen ones. This would significantly de-
crease the classification performance
for unseen classes, especially in the
context of GZSL where seen and un-
seen data are both available. We pro-
pose to explicitly tackle the bias prob-
lem by preventing the synthesized
unseen visual distribution pV̂u from
colliding with the real seen one pVs .
In other words, pVs is slightly pushed
away from pV̂u .

Our key idea is illustrated in
Fig. 3, denoted as LiMMD. With gen-
erative models, it is always possible
to measure distributional discrepancy
without acknowledging the true dis-
tribution parameters of pV̂u and pVs

by treating this as a negative two-sample-test problem. Hence, we resort to Max-
imum Mean Discrepancy (MMD) [2,50] as the measurement. Since we aim to
increase the discrepancy, the last loss term of IZF is defined upon the numerical
negation of MMD

(
pVs ||pV̂u

)
in a batch-wise fashion as

LiMMD =−MMD
(
pVs ||pV̂u

)
= 2

n2

∑
i,j

κ(vsi , v̂
u
j )

− 1
n(n−1)

∑
i 6=j

(
κ(vsi ,v

s
j) + κ(v̂ui , v̂

u
j )
)
,

where vsi ∈ Vs, cui ∈ Cu, zfi ∼ pZf , v̂ui = f−1([cui , z
f
i ]).

(9)

Here n refers to the training batch size, and κ(·) is an arbitrary positive-definite
reproducing kernel function. Importantly, as only seen visual samples vsi are
directly used and v̂ui are synthesized, LiMMD is indeed an inductive objec-
tive. The same setting has also been adopted in recent inductive ZSL meth-
ods [28,43,48,59], i.e., the names of the unseen classes are accessible during
training while their visual samples remain inaccessible. We also note that re-
placing LiMMD by simply tuning the values of unseen classification templates
f−1([cu,0]) is infeasible in inductive ZSL since there exists no unseen visual
reference sample for direct regularization.
Discussion: the Negative MMD. Positive MMD has been previously used in
several ZSL articles such as ReViSE [53]. However, [53] employs MMD to align
the cross-modal latent space (minimizing MMD(seen 1||seen 2)), while LiMMD

here solves the bias problem by slightly pushing the generated pV̂u away from pVs

(slightly increasing MMD(seen||gen unseen)). We resort to this solution for the
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bias problem as unseen samples are unavailable in inductive ZSL. The possible
side-effect of the large values of LiMMD is also noticed which could confuse some
generative models to produce unrealistic samples to favor the value of LiMMD.

5.4 Overall Objective and Training

By combining the above-discussed losses, the overall learning objective of IZF
can be simply written as

LIZF = λ1LFlow + λ2LC + λ3LiMMD. (10)

Three hyper-parameters λ1, λ2 and λ3 are introduced to balance the contribu-
tions of different loss terms. IZF is fully differentiable w.r.t. LIZF. Hence, the
corresponding network parameters can be directly optimized with Stochastic
Gradient Descent (SGD) algorithms.

5.5 Zero-Shot Recognition with IZF

We adopt two ZSL classification strategies (i.e., IZF-NBC and IZF-Softmax)
that work with IZF. Specifically, IZF-NBC employs a naive Bayesian classifier
to recognize a given test visual sample vq by comparing the Euclidean distances
between it and the classification prototypes introduced in Sec 5.2. IZF-Softmax
leverages a held-out classifier similar to the one used in [59]. The classification
processes are performed as

IZF-NBC: ŷq = arg min
y

‖ f−1([c(y),0])− vq ‖,

IZF-Softmax: ŷq = arg max
y

softmax (NN(vq)) .
(11)

Here NN(·) is a single-layered fully-connected network trained with generated
unseen data and the softmax cross-entropy loss on top of the softmax activation.
We use c(y) to indicate the corresponding class-level semantic embedding of y
for convenience. Note that y ∈ Yu in CZSL and y ∈ Ys ∪ Yu in GZSL.

6 Experiments

6.1 Implementation Details

IZF is implemented with the popular deep learning toolbox PyTorch [37]. We
build the INNs according to the framework of FrEIA [2,3]. The network architec-
ture is elaborated in Sec. 4.3. The built-in networks s(·) and t(·) of all coupling
layers of IZF are shaped by fcdv/2 → LReLU→ fcdv/2. Following [2,50], we em-

ploy the Inverse Multiquadratic (IM) kernel κ(v,v′) = 2dv/
(
2dv+ ‖ v − v′ ‖2

)
in Eq. (9) for best performance. We testify the choice of λ1, λ2 and λ3 within
{0.1, 0.5, 1, 1.5, 2} and report the results of λ1 = 2, λ2 = 1, λ3 = 0.1 for all com-
parisons. The Adam optimizer [18] is used to train IZF with a learning rate of
5× 10−4 w.r.t. LIZF. The batch size is fixed to 256 for all experiments.
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Fig. 4: Illustration of the 4-class toy experiment in Sec. 6.2. (a, e) 2-D Ground
truth simulation data, with the top-right class being unseen. (b) Synthesized
samples of IZF. (c, d) Synthesized results of conditional GAN and CVAE re-
spectively with LiMMD. (f) Results without LiMMD of IZF. (g) Failure results
with extremely and unreasonably large LiMMD (λ3 = 10) of IZF. (h) Results
with positive MMD of IZF.

6.2 Toy Experiments: Illustrative Analysis

Before evaluating IZF with real data, we firstly provide a toy ZSL experiment
to justify our motivation. Particularly, the following themes are discussed:

1. Why Do We Resort to Flows Instead of GAN/VAE with LiMMD?
2. The effect of LiMMD regarding the bias problem.

Setup. We consider a 4-class simulation dataset with 1 class being unseen. The
class-wise attributes are defined as Cs = {[0, 1], [0, 0], [1, 0]} for the seen classes
A, B and C respectively, while the unseen class would have attribute of Cu =
{[1, 1]}. The ground truth data are randomly sampled around a linear transfor-
mation of the attributes, i.e., v := 2c−1 + ε ∈ R2, where ε ∼ N (0, 1

3I). To meet
the dimensionality requirement, i.e., dv > dc, we follow the convention of [2] to
pad two zeros to data when feeding them to the network, i.e., v′ := [v, 0, 0]. The
toy data are plotted in Fig. 4 (a) and (e).
Why Do We Resort to Flows Instead of GAN/VAE? We firstly show the
synthesized results of IZF in Fig. 4 (b). It can be observed that IZF successfully
interprets the relations of the unseen class to the seen ones, i.e., being closer to
A and C but further to B. To legit the use of generative flow, we accordingly
build two baselines by combining Conditional GAN (CGAN) and CVAE with our
LiMMD loss (see our supplementary document for implementation details).
The respective generated results are shown in Fig. 4 (c) and (d). Aligning with
our motivation, LiMMD quickly fails the unstable training process of GAN in
ZSL. Besides, CVAE+LiMMD isn’t producing good-quality samples, undergoing
the risk of obtaining biased classification hyper-planes of the held-out classifier.



Invertible Zero-Shot Recognition Flows 11

AwA1 [24] AwA2 [24] CUB [55] SUN [38] aPY [9]

Method Reference As Au H As Au H As Au H As Au H As Au H

DAP [24] PAMI13 88.7 0.0 0.0 84.7 0.0 0.0 67.9 0.0 0.0 25.1 4.2 7.2 78.3 4.8 9.0
CMT [47] NIPS13 86.9 8.4 15.3 89.0 8.7 15.9 60.1 4.7 8.7 28.0 8.7 13.3 74.2 10.9 19.0
DeViSE [10] NIPS13 68.7 13.4 22.4 74.7 17.1 27.8 53.0 23.8 32.8 27.4 16.9 20.9 76.9 4.9 9.2
ALE [1] CVPR15 16.8 76.1 27.5 81.8 14.0 23.9 62.8 23.7 34.4 33.1 21.8 26.3 73.7 4.6 8.7
SSE [66] ICCV15 80.5 7.0 12.9 82.5 8.1 14.8 46.9 8.5 14.4 36.4 2.1 4.0 78.9 0.2 0.4
ESZSL [41] ICML15 75.6 6.6 12.1 77.8 5.9 11.0 63.8 12.6 21.0 27.9 11.0 15.8 70.1 2.4 4.6
LATEM [57] CVPR16 71.1 7.3 13.3 77.3 11.5 20.0 57.3 15.2 24.0 28.8 14.7 19.5 73.0 0.1 0.2
SAE [21] CVPR17 77.1 1.8 3.5 82.2 1.1 2.2 54.0 7.8 13.6 18.0 8.8 11.8 80.9 0.4 0.9
DEM [65] CVPR17 84.7 32.8 47.3 86.4 30.5 45.1 57.9 19.6 29.2 34.3 20.5 25.6 11.1 75.1 19.4
RelationNet [49] CVPR18 91.3 31.4 46.7 93.4 30.0 45.3 61.1 38.1 47.0 - - - - - -
DCN [28] NIPS18 84.2 25.5 39.1 - - - 60.7 28.4 38.7 37.0 25.5 30.2 75.0 14.2 23.9
CRNet [63] ICML19 74.7 58.1 65.4 78.8 52.6 63.1 56.8 45.5 50.5 36.5 34.1 35.3 68.4 32.4 44.0
LFGAA [29] ICCV19 - - - 90.3 50.0 64.4 79.6 43.4 56.2 34.9 20.8 26.1 - - -

CVAE-ZSL [36] ECCVW18 - - 47.2 - - 51.2 - - 34.5 - - 26.7 - - -
SE-GZSL [22] CVPR18 67.8 56.3 61.5 68.1 58.3 62.8 53.3 41.5 46.7 30.5 40.9 34.9 - - -
f-CLSWGAN [59] CVPR18 61.4 57.9 59.6 - - - 57.7 43.7 49.7 36.6 42.6 39.4 - - -
LisGAN [25] CVPR19 76.3 52.6 62.3 - - - 57.9 46.5 51.6 37.8 42.9 40.2 - - -
SGAL [62] NIPS19 75.7 52.7 62.2 81.2 55.1 65.6 44.7 47.1 45.9 31.2 42.9 36.1 - - -
CADA-VAE [43] CVPR19 72.8 57.3 64.1 75.0 55.8 63.9 53.5 51.6 52.4 35.7 47.2 40.6 - - -
GDAN [16] CVPR19 - - - 67.5 32.1 43.5 66.7 39.3 49.5 89.9 38.1 53.4 75.0 30.4 43.4
DLFZRL [51] CVPR19 - - 61.2 - - 60.9 - - 51.9 - - 42.5 - - 38.5
f-VAEGAN-D2 [61] CVPR19 70.6 57.6 63.5 - - - 60.1 48.4 53.6 38.0 45.1 41.3 - - -

IZF-NBC Proposed 75.2 57.8 65.4 76.0 58.1 65.9 56.3 44.2 49.5 50.6 44.5 47.4 58.3 39.8 47.3
IZF-Softmax Proposed 80.5 61.3 69.6 77.5 60.6 68.0 68.0 52.7 59.4 57.0 52.7 54.8 60.5 42.3 49.8

Table 1: Inductive GZSL performance of IZF and the state-of-the-art methods
with the PS setting [60]. As and Au are per-class accuracy scores (%) on seen and
unseen test samples, and H denotes their harmonic mean.

This is because the side-effects of LiMMD would slightly skew the generated data
distributions from being realistic with its negative MMD, which aggravates the
drawbacks of unstable training (GAN) and inaccurate ELBO (VAE) discussed in
Sec. 1. However, the stable-training and exact-likelihood-estimation properties
of flows allow IZF to bypass the side-effects of LiMMD, fully utilizing it towards
the seen-unseen bias in ZSL.
Towards the Bias Problem with LiMMD. We also illustrate the effects of
LiMMD with more baselines. It is shown in Fig. 4 (f) that the model is biased
by the seen classes without LiMMD (also see Baseline 4 of Sec. 6.5). The un-
seen generated samples are positioned closely to the seen ones. This would be
harmful to the employed classifiers when there exist multiple unseen categories.
Fig. 4 (g) is a failure case with large seen-unseen discrepancy loss, which domi-
nates the optimization process and overfits the network to generate unreasonable
samples. We also discuss this issue in hyper-parameter analysis (see Fig. 5 (c)).
Fig. 4 (h) describes an extreme situation when employing positive MMD to IZF
(negative λ3, Baseline 5 of Sec. 6.5). The generated unseen samples are forced
to fit the seen distribution and thus, the network is severely biased.

6.3 Real Data Experimental Settings

Benchmark Datasets. Five datasets are picked in our experiments. Animals
with Attributes (AwA1) [24] contains 30,475 images of 50 classes and 85 at-
tributes, of which AwA2 is a slightly extended version with 37,322 images.
Caltech-UCSD Birds-200-20 (CUB) [55] carries 11,788 images from 200 kinds
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of birds with 312-attribute annotations. SUN Attribute (SUN) [38] consists
of 14,340 images from 717 categories, annotated with 102 attributes. aPascal-
aYahoo (aPY) [9] comes with 32 classes with 64 attributes, accounting 15,339
samples. We adopt the PS train-test setting [60] for both CZSL and GZSL.
Representations. All images v are represented using the 2048-D ResNet-
101 [13] features and the semantic class embeddings c are category-wise attribute
vectors from [58,60]. We pre-process the image features with min-max rescaling.
Evaluation Metric. For GZSL, we adopt the top-1 average per-class accuracy
for comparison. The per-class accuracy of seen classes is denoted as As, with Au

the accuracy on unseen classes. The harmonic mean H of As and Au is reported
as well. As to CZSL, the identical per-class accuracy is used as measurement.

6.4 Comparison with the State-of-the-Arts

Baselines. IZF is compared with the state-of-the-art ZSL methods, including
DAP [24], CMT [47], SSE [66], ESZSL [41], SAE [21], LATEM [57], ALE [1], De-
ViSE [10], DEM [65], RelationNet [49], DCN [28], CVAE-ZSL [36], SE-GZSL [22],
f-CLSWGAN [59], CRNet [63], LisGAN [25], SGAL [62], CADA-VAE [43], GDAN
[16], DLFZRL[51], f-VAEGAN-D2 [61] and LFGAA [29]. We report the official
results of these methods from referenced articles with the identical experimental
setting used in this paper for fair comparison.

Method AwA1 AwA2 CUB SUN aPY

DAP [24] 44.1 46.1 40.0 39.9 33.8
CMT [66] 39.5 37.9 34.6 39.9 28.0
SSE [66] 60.1 61.0 43.9 51.5 34.0
ESZSL [41] 58.2 58.6 53.9 54.5 38.3
SAE [21] 53.0 54.1 33.3 40.3 8.3
LATEM [57] 55.1 55.8 49.3 55.3 35.2
ALE [1] 59.9 62.5 54.9 58.1 39.7
DeViSE [10] 54.2 59.7 52.0 56.5 39.8
RelationNet [49] 68.2 64.2 55.6 - -
DCN [28] 65.2 - 56.2 61.8 43.6
f-CLSWGAN [59] 68.2 - 57.3 60.8 -
LisGAN [25] 70.6 - 58.8 61.7 43.1
DLFZRL [51] 61.2 60.9 51.9 42.5 38.5
f-VAEGAN-D2 [61] 71.1 - 61.0 65.6 -
LFGAA [29] - 68.1 67.6 62.0 -

IZF-NBC 72.7 71.9 59.6 63.0 45.2
IZF-Softmax 74.3 74.5 67.1 68.4 44.9

Table 2: CZSL per-class accuracy (%)
comparison with the PS setting [60].

Results. The GZSL comparison re-
sults are shown in Tab. 1. It can be
observed that deep generative models
obtains better on-average ZSL scores
than the non-generative ones, while
some simple semantic-visual project-
ing models hit comparable accuracy
to them such as CRNet [63]. IZF-
Softmax generally outperforms the
compared methods, where the per-
formance margins on AwA [24] are
significant. IZF-NBC also works well
on AwA [24] The proposed model
produces balanced accuracy between
seen and unseen data and obtains sig-
nificant higher unseen accuracy. This
shows the effectiveness of the discrep-
ancy loss LiMMD in solving the bias problem of ZSL. In addition to the GZSL
results, we conduct CZSL experiments as well, which is shown in Tab. 2. As a
relatively simpler setting, CZSL provides direct clues of the ability to transform
knowledge from seen to unseen.

6.5 Component Analysis

We evaluate the effectiveness of each component of IZF to legitimate our design,
including the loss terms and overall network structure. The following baselines
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NBC Softmax

Baseline As Au H As Au H

1 CVAE + LC + LiMMD 65.1 30.8 41.8 71.1 36.8 48.5
2 Without LC and LiMMD 66.0 43.4 52.7 78.9 38.1 51.4
3 Without LC 67.0 41.7 51.4 79.2 60.9 68.8
4 Without LiMMD 79.6 49.0 60.7 81.3 53.2 64.3
5 Positive MMD 76.2 21.1 33.0 80.7 44.5 57.4
6 IM Kernel→Gaussian Kernel 73.6 54.9 62.9 79.6 61.7 69.5

IZF (full model) 75.2 57.8 65.4 80.5 61.3 69.6

Table 3: Component analysis results on
AwA1 [24] (Sec. 6.5). NBC: results with
distance-based classifier. Softmax: results
with a held-out trainable classifier.
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parameter analysis for λ1, λ2 and
λ3. (d) Effect w.r.t. numbers of
the permutation-coupling blocks.

are proposed. (1) CVAE+LC+LiMMD. We firstly show the importance of gen-
erative flow for our task by replacing it with a simple CVAE [48] structure. This
baseline uses the semantic representation as condition, and outputs synthesized
visual features. In addition to the Evidence Lower BOund (ELBO) of CVAE,
LC and LiMMD are applied to the baseline. (2) Without LC & LiMMD. All
regularization on the reverse pass is omitted. (3) Without LC. The prototype
centralizing loss is removed. (4) Without LiMMD. The discrepancy loss to con-
trol the seen-unseen bias problem of ZSL is deprecated. (5) Positive MMD.
In Eq. (9), we employ negative MMD to tackle the bias problem. We propose
a baseline with a positive MMD version of it to study its influence. This is re-
alized by setting λ3 = −1. (6) IM Kernel→Gaussian Kernel. Instead of
the Inverse Multiquadratic kernel, another widely-used kernel function, i.e., the
Gaussian kernel, is tested in implementing Eq. (9).
Results. The above-mentioned baselines are compared in Tab. 3 on AwA1 [24].
The GZSL criteria are adopted here as they are more illustrative metrics for IZF,
showing different performance aspects of the model. Through our test, Baseline
1, i.e., CVAE+LC+LiMMD, is not working well with the distance-based classifier
(Eq. (11)). With loss components omitted (Baseline 2-4), IZF does not work
as expected. In Baseline 4, the classification results are significantly biased
to the seen concepts. When imposing positive MMD to the loss function, the
test accuracy of seen classes increases while the accuracy of unseen data drops
quickly. This is because the bias problem gets severer and all generated samples,
including the unseen classification prototypes, overfit to the seen domain. The
choice of kernel is not a key factor in IZF, and Baseline 7 obtains on-par
accuracy to IZF. Similar to GAN/VAE-based models [25,36,59], IZF works with
a held-out classifier, but it requires additional computational resources.

6.6 Hyper-Parameters

IZF involves 3 hyper-parameters in balancing the contribution of different loss
items, shown in Eq. (10). The influences of the values of them on AwA1 are
plotted in Fig. 5 (a), (b) and (c) respectively. A large weight is imposed to the
semantic knowledge loss LFlow, i.e., λ1 = 2, for best performance, as it plays
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an essential role in formulating the normalizing flow structure that ensures data
generation with the sampled conditions and latents. A well-regressed visual-
semantic projection necessitates conditional generation and, hence, bi-directional
training. On the other hand, it is notable that a large value of λ3 fails IZF overall.
A heavy penalty to LiMMD overfits the network to generate unreasonable samples
to favour large seen-unseen distributional discrepancy, and further prevents the
encoding loss LFlow from functioning. We observe significant increase of LFlow

throughout the training steps with λ3 = 2, though LiMMD decreases quickly.
The performance of IZF w.r.t. different numbers of permutation-coupling blocks
is reported in Fig. 5 (d), where we use 5 blocks in all comparisons. In general,
IZF-Softmax is less sensitive to the depth of the network than IZF-NBC, but
deeper networks would have higher likelihood to produce infinite gradients as
coupling layers [7] involve element-wise division. We further report the training
efficiency of IZF in Fig.6 (c), where IZF only requires ∼20 epochs to obtain
best-performing parameters.

6.7 Discriminability on Unseen Classes

We intuitively analyze the discriminability and generation quality of IZF on
unseen data by plotting the generated samples. The t-SNE [32] visualization
of synthesized unseen data on AwA1 [24] is shown in Fig. 6 (b). Although no
direct regularization loss is applied to unseen classes, IZF manages to generate
distinguishable samples according to their semantic meanings. In addition, the
CZSL confusion matrix on AwA1 is reported in Fig. 6 (a) as well.

7 Conclusion
In this paper, we proposed Invertible Zero-shot Flow (IZF), fully leveraging the
merits of generative flows for ZSL. The invertible nature of flows enabled IZF to
perform bi-directional mapping between the visual space and the semantic space
with identical network parameters. The semantic information of a visual sam-
ple was factored-out with the forward pass of IZF. The classification prototypes
of the reverse pass were regularized to stabilize distance-based classification.
Last but not least, to handle the bias problem, IZF penalized seen-unseen sim-
ilarity by computing kernel-based distribution discrepancy with the generated
data. The proposed model consistently outperformed state-of-the-art baselines
on benchmark datasets.
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