arXiv:2009.06610v1 [cs.CV] 14 Sep 2020

Adaptive Text Recognition through Visual Matching

Chuhan Zhang
University of Oxford

czhang@robots.ox.ac.uk

Abstract

This work addresses the problems of generalization and
flexibility for text recognition in documents. We introduce
a new model that exploits the repetitive nature of charac-
ters in languages, and decouples the visual decoding and
linguistic modelling stages through intermediate represen-
tations in the form of similarity maps. By doing this, we turn
text recognition into a visual matching problem, thereby
achieving generalization in appearance and flexibility in
classes.

We evaluate the model on both synthetic and real datasets
across different languages and alphabets, and show that it
can handle challenges that traditional architectures are un-
able to solve without expensive re-training, including: (i)
it can change the number of classes simply by changing the
exemplars; and (ii) it can generalize to novel languages and
characters (not in the training data) simply by providing a
new glyph exemplar set. In essence, it is able to carry out
one-shot sequence recognition. We also demonstrate that
the model can generalize to unseen fonts without requiring
new exemplars from them.

Code, data, and model checkpoints are available at:
http://www.robots.ox.ac.uk/~vgg/research/
FontAdaptor20/.

1. Introduction

Our objective in this work is generalization and flexibil-
ity in text recognition. Modern text recognition meth-
ods [4, 9,27, 40] achieve excellent performance in many
cases, but generalization to unseen data, i.e., novel fonts
and new languages, either requires large amounts of data
for primary training or expensive fine-tuning for each new
case.

The text recognition problem is to map an image of a
line of text x into the corresponding sequence of charac-
ters y = (y1,%2,...,Yr), where k is the length of the
string and y; € A are characters in alphabet A (e.g.,

Ankush Gupta
DeepMind, London

ankushguptal@google.com

Andrew Zisserman
University of Oxford

az@robots.ox.ac.uk

abcdefghi jklmhopqutuvwxgg

q

English: alphabet-size: 26 characters

0 5100

P aRYSEINOLKAUVEOTIPGOTUPX Y

v1vgrg

Greek: novel glyph shapes and alphabet-size: 24 characters

Figure 1: Visual matching for text recognition. Current
text recognition models learn discriminative features spe-
cific to character shapes (glyphs) from a pre-defined (fixed)
alphabet. We train our model instead to establish visual sim-
ilarity between given character glyphs (top) and the text-
line image to be recognized (left). This makes the model
highly adaptable to unseen glyphs, new alphabets (different
languages) and extensible to novel character classes, e.g.,
English — Greek, without further training. Brighter colors
correspond to higher visual similarity.

{a,b,...,z,<space>}). Current deep learning based
methods [9, 27, 40] cast this in the encoder-decoder frame-
work [10, 45], where first the text-line image is encoded
through a visual ConvNet [26], followed by a recurrent neu-
ral network decoder, with alignment between the visual fea-
tures and text achieved either through attention [5] or Con-
nectionist Temporal Classification (CTC) [16].

Impediments to generalization. The conventional meth-
ods for text recognition train the visual encoder and the se-
quence decoder modules in an end-to-end manner. While
this is desirable for optimal co-adaptation, it induces mono-
lithic representations which confound visual and linguis-
tic functions. Consequently, these methods suffer from
the following limitations: (1) Discriminative recognition
models specialize to fonts and textures in the training set,

http://www.robots.ox.ac.uk/~vgg/research/FontAdaptor20/
http://www.robots.ox.ac.uk/~vgg/research/FontAdaptor20/

hence generalize poorly to novel visual styles. (2) The de-
coder discriminates over a fixed alphabet/number of char-
acters. (3) The encoder and decoder are tied to each other,
hence are not inter-operable across encoders for new vi-
sual styles or decoders for new languages. Therefore, cur-
rent text recognition methods generalize poorly and require
re-initialization or fine-tuning for new alphabets and lan-
guages. Further, fine-tuning typically requires new training
data for the target domain and does not overcome these in-
herent limitations.

Recognition by matching. Our method is based on a key
insight: text is a sequence of repetitions of a finite number
of discrete entities. The repeated entities are characters in a
text string, and glyphs, i.e., visual representations of charac-
ters/symbols, in a text-line image. We re-formulate the text
recognition problem as one of visual matching. We assume
access to glyph exemplars (i.e., cropped images of charac-
ters), and task the visual encoder to localize these repeated
glyphs in the given text-line image. The output of the visual
encoder is a similarity map which encodes the visual simi-
larity of each spatial location in the text-line to each glyph
in the alphabet as shown in Figure 1. The decoder ingests
this similarity map to infer the most probable string. Fig-
ure 2 summarizes the proposed method.

Overcoming limitations. The proposed model overcomes
the above mentioned limitations as follows: (1) Training the
encoder for visual matching relieves it from learning spe-
cific visual styles (fonts, colors efc.) from the training data,
improving generalization over novel visual styles. (2) The
similarity map is agnostic to the number of different glyphs,
hence the model generalizes to novel alphabets (different
number of characters). (3) The similarity map is also ag-
nostic to visual styles, and acts as an interpretable interface
between the visual encoder and the decoder, thereby disen-
tangling the two.

Contributions. Our main contributions are threefold. First,
we propose a novel network design for text recognition
aimed at generalization. We exploit the repetition of glyphs
in language, and build this similarity between units into our
architecture. The model is described in Sections 3 and 4.
Second, we show that the model outperforms state-of-the-
art methods in recognition of novel fonts unseen during
training (Section 5). Third, the model can be applied to
novel languages without expensive fine-tuning at test time;
it is only necessary to supply glyph exemplars for the new
font set. These include languages/alphabets with different
number of characters, and novel styles e.g., characters with
accents or historical characters ‘/” (also in Section 5).

Although we demonstrate our model for document OCR
where a consistent visual style of glyphs spans the entire
document, the method is applicable to scene-text/text-in-

the-wild (e.g., SVT [49], ICDAR [21,22] datasets) where
each instance has a unique visual style (results in Ap-
pendix E).

2. Related Work

Few-shot recognition. Adapting model behavior based
on class exemplars has been explored for few-shot object
recognition. Current popular few-shot classification meth-
ods, e.g., Prototypical Nets [42], Matching Nets [48], Re-
lation Nets [44], and MAML [14], have been applied only
to recognition of single instances. Our work addresses the
unique challenges associated with one-shot classification of
multiple instances in sequences. To the best of our knowl-
edge this is the first work to address one-shot sequence
recognition. We discuss these challenges and the proposed
architectural innovations in Section 3.4. A relevant work is
from Cao et al. [7] which tackles few-shot video classifi-
cation, but similar to few-shot object recognition methods,
they classify the whole video as a single instance.

Text recognition. Recognizing text in images is a classic
problem in pattern recognition. Early successful applica-
tions were in reading handwritten documents [0, 26], and
document optical character recognition (OCR) [41]. The
OCR industry standard—7esseract [4|]—employs special-
ized training data for each supported language/alphabet.!
Our model enables rapid adaptation to novel visual styles
and alphabets and does not require such expensive fine-
tuning/specialization. More recently, interest has been fo-
cussed towards text in natural images. Current methods
either directly classify word-level images [19], or take
an encoder-decoder approach [10,45]. The text-image is
encoded through a ConvNet, followed by bidirectional-
LSTMs for context aggregation. The image features are
then aligned with string labels either using Connectionist
Temporal Classification (CTC) [16, 18, 38, 43] or through
attention [5, 8, 9,27, 39]. Recognizing irregularly shaped
text has garnered recent interest which has seen a resur-
gence of dense character-based segmentation and classi-
fication methods [13, 31]. Irregular text is rectified be-
fore feature extraction either using geometric transforma-
tions [29, 39,40, 51] or by re-generating the text image in
canonical fonts and colors [30]. Recently, Baek ef al. [4]
present a thorough evaluation of text recognition methods,
unifying them in a four-stage framework—input transfor-
mation, feature extraction, sequence modeling, and string
prediction.

! Tesseract’s specialized training data for 103 languages:
https://github.com/tesseract-ocr/tesseract/wiki/
Data-Files

https://github.com/tesseract-ocr/tesseract/wiki/Data-Files
https://github.com/tesseract-ocr/tesseract/wiki/Data-Files

glyph-width

dinate grids
(xy) coordinate grids bands

similarity map S

glyph-line
image g

Visual
E’ Similarity

Encoder

': || self-
| El _> ~ attention

stack

Similarity Di: biguation

cosine

zhixsianysabdovtpyiyfap

enhanced
= 3 % similarity map|
turn into something heautiful
w

text-line image @ w,

[Al+1

———
M w
glyph-width
map

cosine

emb(}/") emb(S*)

W,

glyph-width bands
[Al+1

A——

’
E Wy

glyph-width map

Class Aggregator

P

character
probabilities

|A]+1

w' w'

Figure 2: Architecture for adaptive visual matching. We cast the problem of text recognition as one of visual matching
of glyph exemplars in the given text-line image. Left: Overview of the architecture. The visual encoder ® embeds the
glyph-line g and text-line images and produces a similarity map S, which scores the similarity of each glyph against
each position along the text-line. Then, ambiguities in (potentially) imperfect visual matching are resolved to produce the
enhanced similarity map S*. Finally, similarity scores are aggregated to output class probabilities PP using the ground-truth
glyph width contained in M. Right: Illustration of how glyph-widths are encoded into the model. The glyph-width bands
(top) have the same height as the width of their corresponding glyph exemplars, and their scalar values are the glyph widths
in pixels. The glyph-width map (bottom) is a binary matrix with a column for each character in the alphabet .4; the columns
indicate the extent of glyphs in the glyph-line image by setting the corresponding rows to a non-zero value (=1).

3. Model Architecture

Our model recognizes a given text-line image by localiz-
ing glyph exemplars in it through visual matching. It takes
both the text-line image and an alphabet image containing a
set of exemplars as input, and predicts a sequence of prob-
abilities over N classes as output, where N is equal to the
number of exemplars given in the alphabet image. For infer-
ence, a glyph-line image is assembled from the individual
character glyphs of a reference font simply by concatenat-
ing them side-by-side, and text-lines in that font can then be
read.

The model has two main components: (1) a visual simi-
larity encoder (Section 3.1) which outputs a similarity map
encoding the similarity of each glyph in the text-line image,
and (2) an alphabet agnostic decoder (Section 3.2) which
ingests this similarity map to infer the most probable string.
In Section 3.3 we give details for the training objective. Fig-
ure 2 gives a concise schematic of the model.

3.1. Visual Similarity Encoder

The visual similarity encoder is provided with a set of
glyphs for the target alphabet, and tasked to localize these
glyphs in the input text-line image to be recognized. It first
embeds the text-line and glyphs using a shared visual en-
coder ® and outputs a similarity map S which computes

the visual similarity between all locations in the text-line
against all locations in every glyph in the alphabet.

Mathematically, let z € R XWX be the text-line image,
with height H, width W and C' channels. Let the glyphs be
{gi}zllfll’ gi € REXWixC 'where A is the exemplar set —
the alphabet plus the blank space and image padding, and
W, is the width of the i'" glyph. The glyphs are stacked
along the width to form a glyph-line image g € R"*WsxC,
Embeddings are obtained using the visual encoder ¢ for
both the text-line ®(z) € R™W %P and the glyph-line
®(g) € R™WaxP where D is the embedding dimension-
ality. The output widths are downsampled by the network
stride s (i.e., W' = %). Finally, each spatial location along
the width in the glyph-line image is scored against the every
location in the text-line image to obtain the similarity map

S e [-1, 1W< W,

0(g)7 (),
Sij = (®(g)i, B(x);) = SRy €]
! T lle(g)ill - (@ ()]l
where score is the cosine similarity, and i € {1,..., W},

jed{l,...,Wh
3.2. Alphabet Agnostic Decoder

The alphabet agnostic decoder discretizes the similarity
maps into probabilities for each glyph in the exemplars for

all spatial locations along the width of the text-line image.
Concretely, given the visual similarity map S € RWaxW' it
outputs logits over the glyph exemplars for each location in
the text-line: P € RIAXW' P = log p(y;|x,), where x;
is the j** column in text-line image (modulo encoder stride)
and y; is the i*" exemplar in A.

A simple implementation would predict the argmax or sum
of the similarity scores aggregated over the extent of each
glyph in the similarity map. However, this naive strategy
does not overcome ambiguities in similarities or produce
smooth/consistent character predictions. Hence, we pro-
ceed in two steps: first, similarity disambiguation resolves
ambiguities over the glyphs in the alphabet producing an en-
hanced similarity map (S*) by taking into account the glyph
widths and position in the line image, and second, class ag-
gregator computes glyph class probabilities by aggregating
the scores inside the spatial extent of each glyph in $*. We
detail the two steps next; the significance of each compo-
nent is established empirically in Section 5.4.

Similarity disambiguation. An ideal similarity map would
have square regions of high-similarity. This is because the
width of a character in the glyph and text-line images will
be the same. Hence, we encode glyph widths along with
local z, y coordinates using a small MLP into the similarity
map. The input to the MLP at each location is the similarity
map value S stacked with: (1) two channels of x, y coor-
dinates (normalized to [0, 1]), and (2) glyph-width bands G:
G = wy17T, where w, € R"s is a vector of glyph widths
in pixels; see Figure 2 for an illustration. For disambigua-
tion, we use a self-attention module [46] which attends over
columns of S and outputs the final enhanced similarity map
S* of the same size as S.

Class aggregator. The class aggregator A maps the similar-
ity map to logits over the alphabet along the horizontal di-
mension in the text-line image: A : RWoxXW' oy RIAIXW!,
S* — P. This mapping can be achieved by multiplication
through a matrix M € RIAXW3 which aggregates (sums)
the scores in the span of each glyph: P = MS*, such
that M = [my,mo,...,m4]" and m; € {0, 1MW =
[0,...,0,1,...,1,0,...,0] where the non-zero values cor-
respond to the span of the i*" glyph in the glyph-line image.

In practice, we first embed columns of $* and M T inde-
pendently using learnt linear embeddings. The embeddings
are />-normalized before the matrix product (equivalent to
cosine similarity). We also expand the classes to add an ad-
ditional “boundary” class (for CTC) using a learnt 1 4 1-
Since, the decoder is agnostic to the number of characters
in the alphabet, it generalizes to novel alphabets.

3.3. Training Loss

The dense per-pixel decoder logits over the glyph exemplars
‘P are supervised using the CTC loss [15] (Lore) to align
the predictions with the output label. We also supervise the
similarity map output of the visual encoder S using an aux-
iliary cross-entropy loss (Lg;,,) at each location. We use
ground-truth character bounding-boxes for determining the
spatial span of each character. The overall training objective
is the following two-part loss,

Epred - ECTC (SOftMaX(P)7 ygt)) (2)

Laim = — Y _log(SoftMax(S,,;)) 3)
ij

Etotal = Epre(i + Aﬁsim (4)

where, SoftMax(-) normalization is over the glyph exem-
plars (rows), y4: is the string label, and y; is the ground-
truth character associated with the i*" position in the glyph-
line image. The model is insensitive to the value of A within
a reasonable range (see Appendix B.2), and we use A = 1
for a good balance of losses.

3.4. Discussion: One-shot Sequence Recognition

Our approach can be summarized as a method for one-
shot sequence recognition. Note, existing few-shot meth-
ods [20,42,44,48] are not directly applicable to this problem
of one-shot sequence recognition, as they focus on classifi-
cation of the whole of the input (e.g. an image) as a sin-
gle instance. Hence, these cannot address the following
unique challenges associated with (text) sequences: (1) seg-
mentation of the imaged text sequence into characters of
different widths; (2) respecting language-model/sequence-
regularity in the output. We develop a novel neural archi-
tectural solutions for the above, namely: (1) A neural ar-
chitecture with explicit reasoning over similarity maps for
decoding sequences. The similarity maps are key for gener-
alization at both ends—novel fonts/visual styles and new al-
phabets/languages respectively. (2) Glyph width aware sim-
ilarity disambiguation, which identifies contiguous square
blocks in noisy similarity maps from novel data. This is crit-
ical for robustness against imprecise visual matching. (3)
Class aggregator, aggregates similarity scores over the ref-
erence width-spans of the glyphs to produce character logit
scores over the glyph exemplars. It operates over a vari-
able number of characters/classes and glyph-widths. The
importance of each of these components is established in
the ablation experiments in Section 5.4.

layer Kernel channels pooling output size
in/out HxW
convl 3x3 1 / 64 max=(2,2) | 16 x W/2
resBlock1 3x3 64 / 64 max = (1, 2) 8§ x W22
resBlock2 | 3x3 64 / 128 | max =(2,2) 4 x W/
upsample - - 2,2) 8§ x W22
skip 3x3 | 128+64 /128 - 8 x W2
pool - - avg=(2, 1) 4 x W2
conv2 1x1 128 / 64 - 4 x W2
reshape - 64 / 256 - I x W2
Table 1: Visual encoder architecture (Sections 3.1

and 4.1). The input is an image of size 32xW x1
(height x width x channels).

4. Implementation details

The architectures of the visual similarity encoder and the
alphabet agnostic decoder are described in Section 4.1 and
Section 4.2 respectively, followed by training set up in Sec-
tion 4.3.

4.1. Visual Similarity Encoder

The visual similarity encoder (®) encodes both the text-line
() and glyph-line (g) images into feature maps. The in-
puts of height 32 pixels, width W and 1 channel (grayscale
images) are encoded into a tensor of size 1x % x256. The
glyph-line image’s width is held fixed to a constant W, =
720 px: if S/ =4 W, < W, the image is padded at the end
using the <space> glyph, otherwise the image is down-
sampled bilinearly to a width of W, = 720 px. The text-
line image’s input width is free (after resizing to a height
of 32 proportionally). The encoder is implemented as a U-
Net [37] with two residual blocks [17]; detailed architecture
in Table 1. The visual similarity map (S) is obtained by tak-
ing the cosine distance between all locations along the width
of the encoded features from text-line ®(x) and glyph-line
®(g) images.

4.2. Alphabet Agnostic Decoder

Similarity disambiguation. We use the self-attention
based Transformer model [46] with three layers with four
attention heads of vector dimension 360 each. The input to
this module is the similarity map S stacked with with lo-
cal positions (z, y) and glyph widths, which are then en-
coded through a three-layer (4x16, 16x32, 32x1) MLP
with ReLLU non-linearity [35].

Class aggregator. The columns of S* and glyph width tem-
plates (refer to Section 3.2) are embedded independently us-
ing linear embeddings of size W!; X Wg’, where Wé = % =
% = 360 (s = encoder stride).

regular bold italic light test fonts mug realy beautiful
abcde | abede | abcde | docce | abede xrtimaae veashaied

abede | abede | abede| abcde | abede
abede | abede | abede | abode | ABCD SNy

Figure 3: Left: FontSynth splits. Randomly selected fonts
from each of the five font categories — (1) regular (R),
(2) bold (B), (3) italic (), (4) light (L) — used for gener-
ating the synthetic training set, and (5) other (i.e. none of
the first four) — used for the test set. Right: Synthetic data.
Samples from FontSynth (top) generated using fonts from
MJSynth [19], and Omniglot-Seq (bottom) generated using
glyphs from Omniglot [25] as fonts (Section 5.2).

Inference. We decode greedily at inference, as is com-
mon after training with CTC loss. No additional language
model (LM) is used, except in Experiment VS-3 (Sec-
tion 5.5.3), where a 6-gram LM learnt from over 10M sen-
tences from the WMT News Crawl (2015) English cor-
pus [!] is combined with the model output with beam-
search using the algorithm in [32] (parameters: a=1.0,
£=2.0, beam-width=15).

4.3. Training and Optimization

The entire model is trained end-to-end by minimizing the
training objective Equation (4). We use online data augmen-
tation on both the text-line and glyph images, specifically
random translation, crops, contrast, and blur. All param-
eters, for both ours and SotA models, are initialized with
random weights. We use the Adam optimizer [24] with
a constant learning rate of 0.001, a batch size of 12 and
train until validation accuracy saturates (typically 100k iter-
ations) on a single Nvidia Tesla PA0 GPU. The models are
implemented in PyTorch [36].

5. Experiments

We compare against state-of-the-art text-recognition mod-
els for generalization to novel fonts and languages. We first
describe the models used for comparisons (Section 5.1),
then datasets and evaluation metrics (Section 5.2), followed
by an overview of the experiments (Section 5.3), and a thor-
ough component analysis of the model architecture (Sec-
tion 5.4). Finally, we present the results (Section 5.5) of all
the experiments.

5.1. State-of-the-art Models in Text Recognition

For comparison to state-of-the-art methods, we use three
models: (i) Baek er al. [4] for scene-text recognition; (ii)
Tesseract [41], the industry standard for document OCR;

language — EN FR IT ES

books 780 40 40 140
alphabet size 26 35 29 32
% accented letters 0 26 07 1.5

Table 2: Google1000 dataset summary. Total number of
books, alphabet size and percentage of letters with accent
(counting accented characters a new) for various languages
in the Google1000.

and (iii) Chowdhury et al. [1 1] for handwritten text recog-
nition.

For (i), we use the open-source models provided, but with-
out the transformation module (since documents do not
have the scene-text problem of non-rectilinear characters).
Note, our visual encoder has similar number of parameters
as in the encoder ResNet of [4] (theirs: 6.8M, ours: 4.7M
parameters). For (ii) and (iii) we implement the models
using the published architecture details. Further details of
these networks, and the verification of our implementations
is provided in the Appendix D.

5.2. Datasets and Metrics

FontSynth. We take fonts from the MJSynth dataset [19]
and split them into five categories by their appearance
attributes as determined from their names: (1) regular,
(2) bold, (3) italic, (4) light, and (5) others (i.e., all fonts
with none of the first four attributes in their name); visual-
ized in Figure 3 (left). We use the first four splits to create
a training set, and (5) for the test set. For training, we select
50 fonts at random from each split and generate 1000 text-
line and glyph images for each font. For testing, we use all
the 251 fonts in category (5). LRS2 dataset [12] is used as
the text source. We call this dataset FontSynth; visualization
in Figure 3 (right) and further details in the Appendix D.

Omniglot-Seq. Omniglot [25] consists of 50 alphabets with
a total of 1623 characters, each drawn by 20 different writ-
ers. The original one-shot learning task is defined for single
characters. To evaluate our sequence prediction network we
generate a new Omniglot-Seq dataset with sentence images
as following. We randomly map alphabets in Omniglot to
English, and use them as ‘fonts’ to render text-line images
as in FontSynth above. We use the original alphabet splits
(30 training, 20 test) and generate data online for training,
and 500 lines per alphabet for testing. Figure 3 (right) visu-
alizes a few samples.

Google1000. Google1000 [47] is a standard benchmark for
document OCR released in ICDAR 2007. It constitutes
scans of 1000 public domain historical books in English
(EN), French (FR), Italian (IT) and Spanish (ES) languages;
Table 2 provides a summary. Figure 4 visualizes a few sam-

ples from this dataset. This dataset poses significant chal-
lenges due to severe degradation, blur, show-through (from
behind), inking, fading, oblique text-lines etc. Type-faces
from 18" century are significantly different from modern
fonts, containing old ligatures like ”$t,¢,Qi”. We use this
dataset only for evaluation; further details in Appendix D.

Evaluation metrics. We measure the character (CER) and
word error rates (WER); definitions in Appendix A.

5.3. Overview of Experiments

The goal of our experiments is to evaluate the proposed
model against state-of-the-art models for text recognition
on their generalization ability to (1) novel visual styles (VS)
(e.g., novel fonts, background, noise efc.), and (2) novel al-
phabets/languages (A). Specifically, we conduct the follow-
ing experiments:

1. VS-1: Impact of number of training fonts. We use
FontSynth to study the impact of the number of differ-
ent training fonts on generalization to novel fonts when
the exemplars from the testing fonts are provided.

2. VS-2: Cross font matching. In this experiment, we
do not assume access to the testing font. Instead of
using exemplars from the test font, the most similar
font from the training set is selected automatically.

3. VS-3: Transfer from synthetic to real data. This
evaluates transfer of models trained on synthetic data
to real data with historical typeface and degradation.

4. A-1: Transfer to novel Latin alphabets. This evalu-
ates transfer of models trained on English to new Latin
languages in Google1000 with additional characters in
the alphabet (e.g., French with accented characters).

5. A-2: Transfer to non-Latin glyphs. The above ex-
periments both train and test on Latin alphabets. Here
we evaluate the generalization of the models trained
on English fonts to non-Latin scripts in Omniglot-Seq
(e.g., from English to Greek).

5.4. Ablation Study

We ablate each major component of the proposed model
on the VS-1 experiment to evaluate its significance. Ta-
ble 4 reports the recognition accuracy on the FontSynth
test set when trained on one (R) and all four (R+B+L+I)
font attributes. Without the decoder (last row), simply re-
porting the argmax from the visual similarity map reduces
to nearest-neighbors or one-shot Prototypical Nets [42]
method. This is ineffective for unsegmented text recogni-
tion (49% CER vs. 9.4% CER for the full model). Exclud-
ing the position encoding in the similarity disambiguation

Italian

English alphabet + blank

¢ la solit’ opera del volgo in | abedefghi jklm

French Spanish

dans fes dégﬁo‘s«mmm igpnprém busca los medios aparentes de justicia y aprovechamiento [4ccents (non-English)
‘ol Pélégance du langage eft proportionnée de ‘tan diversas clases @bgfié,"ug}gieniéil trc'm é)&é&&ei@b(“)ﬁ‘

Figure 4: Google1000 printed books dataset. (left): Text-line image samples from the Google1000 [47] evaluation set for
all the languages, namely, English, French, Italian and Spanish. (right): Common set of glyph exemplars used in our method
for all books in the evaluation set for English and accents for the other languages.

training set — R R+B R+B+L R+B+L+I R+B+L+I+0S
model El‘;;,ﬁs CER WER | CER WER | CER WER | CER WER | CER WER
nown
CTC Back et al. [1] X | 175 461 | 115 303 | 104 282 | 104 277 | — —
Attn. Baek et al. [4] X 16.5 41.0 12.7 34.5 11.1 27.4 10.3 23.6 — —
Tesseract [41] X 19.2 48.6 12.3 37.0 10.8 31.7 9.1 27.8 — —
Chowdhury et al. [11] X 16.2 39.1 12.6 28.6 11.5 29.5 10.5 24.2 — —
mean 11.0 33.7 9.3 30.8 9.1 28.6 7.6 222 7.0 25.8
Ours-cross (std) X 29 98 | (14 (59 | (L) @22 | 02 (09 | 09 @37
ours-cross selected X 9.8 30.0 8.4 29.4 8.4 27.8 7.2 21.8 5.3 18.3
ours v 94 30.2 8.3 28.8 8.1 27.3 5.6 224 3.5 12.8

Table 3: VS-1, VS-2: Generalization to novel fonts with/without known test glyphs and increasing number of training
fonts. The error rates (in %; J. is better) on FontSynth test set. Ours-cross stands for cross font matching where test glyphs
are unknown and training fonts are used as glyph exemplars, mean and standard-dev reported when the exemplar fonts are
randomly chosen from the training set, while selected shows results from the best matched exemplars automatically chosen
based on confidence measure. R, B, L and I correspond to the FontSynth training splits; OS stands for the Omniglot-Seq

dataset (Section 5.2).

module leads to a moderate drop. The similarity disam-
biguation (sim. disamb.) and linear embedding in class ag-
gregator (agg. embed.) are both important, especially when
the training data is limited. With more training data, the ad-
vantage brought by these modules becomes less significant,
while improvement from position encoding does not have
such a strong correlation with the amount of training data.

5.5. Results
5.5.1 VS-1: Impact of number of training fonts.

We investigate the impact of the number of training fonts
on generalization to unseen fonts. For this systematic eval-
uation, we train the models on an increasing number of
FontSynth splits—regular, regular + bold, regular + bold +
light, efc. and evaluate on FontSynth test set. These splits
correspond to increments of 50 new fonts with a differ-
ent appearance attribute. Table 3 summarizes the results.
The three baseline SotA models have similar CER when
trained on the same amount of data. Tesseract [41] has

a slightly better performance but generalizes poorly when
there is only one attribute in training. Models with an
attention-based LSTM (Attn. Baek ez al. [4], Chowdhury et
al. [11]) achieve lower WER than those without due to bet-
ter language modelling. Notably, our model achieves the

training data

R R+B+L+I1
CER WER |CER WER
94 301 | 5.6 223
11.8 379 | 79 229
239 68.8 |13.0 520
229 658 | 85 264
25.8 63.1 | 184 450
49.0 96.2 383 789

sim. enc. sim. disamb. agg.

embed.

pos. enc. [self-attn

SSNSNSNKNIN @
ERIANRIR AN
RSN I NEN
BRI NENAN

Table 4: Model component analysis. The first row corre-
sponds to the full model; the last row corresponds to reading
out characters using the CTC decoder from the output of the
visual encoder. R, B, L and I correspond to the FontSynth
training splits: Regular, Bold, Light and Italic respectively.

124 Test-glyphs
Regular
Bold

Light

Italic

10 A

CER (%)
o

R R+B R+B+L R+B+L+l R+B+L+14+0Omni
Training attributes

Figure 5: VS-2: Performance on FontSynth when using
different exemplars for cross-font matching. When using
glyphs from other fonts (e.g. regular, bold efc.) as exem-
plars, the accuracy is insensitive to the attribute. Further, us-
ing test-glyphs as exemplars significantly improve the per-
formance. On the z-axis we show the FontSynth training
splits (Figure 3 left).

same accuracy with 1 training attribute (CER=9.4%) as the
SotA’s with 4 training attributes (CER>10%), i.e., using
150 (=3x%50) less training fonts, proving the strong gen-
eralization ability of the proposed method to unseen fonts.

Leveraging visual matching. Since, our method does
not learn class-specific filters (unlike conventional discrim-
inatively trained models), but instead is trained for visual
matching, we can leverage non-English glyphs for training.
Hence, we further train on Omniglot-Seq data and drasti-
cally reduce the CER from 5.6% (4 attributes) to 3.5%. Be-
ing able to leverage language-agnostic data for training is a
key strength of our model.

5.5.2 VS-2: Cross font matching.

In VS-1 above, our model assumed privileged access to
glyphs from the test image. Here we consider the set-
ting where glyphs exemplars from training fonts are used
instead. This we term as cross matching, denoted ‘ours-
cross’ in Table 3. We randomly select 10 fonts from each
font attribute and use those as glyph exemplars. In Ta-
ble 3 we report the aggregate mean and standard-deviation
over all attributes. To automatically find the best font
match, we also measure the similarity between the refer-
ence and unseen fonts by computing the column-wise en-
tropy in the similarity map S during inference: Similarity
scores within each glyph span are first aggregated to ob-
tain logits P € RIAXW' " the averaged entropy of logits

over columns 7 ZZV —P; log(P;) is then used as the cri-
terion to choose the best-matched reference font. Perfor-

CTC Attn. Tesseract | Ch. et al.

Baek [4] ‘ Baek [4] ‘ [41] [11] ‘ ours
IM X V| X V|Xx v|Xx VI|X V
CER 35 31|54 54|47 38|55 56|31 24
WER 129 11.4|13.1 13.8|15.9 12.2|149 15.6(14.9 8.0

Table 5: VS-3: Generalization from synthetic to real
data. Mean error rates (in %; | is better) on Google1000
English document for models trained only on synthetic data
(Section 5.5.3). LM stands for 6-gram language model.

mance from the best-matched exemplar set is reported in
‘ours-cross selected” in Table 3. With CER close to the
last row where test glyphs are provided, it is shown that the
model does not rely on extra information from the new fonts
to generalize to different visual styles. Figure 5 details the
performance for each attribute separately. The accuracy is
largely insensitive to particular font attributes—indicating
the strong ability of our model to match glyph shapes. Fur-
ther, the variation decreases as expected as more training
attributes are added.

5.5.3 VS-3: Transfer from synthetic to real data.

We evaluate models trained with synthetic data on the
real-world Google1000 test set for generalization to novel
visual fonts and robustness against degradation and other
nuisance factors in real data. To prevent giving per test
sample specific privileged information to our model, we
use a common glyph set extracted from Google1000
(visualized in Figure 4). This glyph set is used for all test
samples, i.e., is not sample specific. Table 5 compares our
model trained on FontSynth+Omniglot-Seq against the
SotAs. These models trained on modern fonts are not able
to recognize historical ligatures like long s: ‘/” and usually
classify it as the character f’. Further, they show worse
ability for handling degradation problems like fading and
show-through, and thus are outperformed by our model,
especially when supported by a language model (LM)
(CER: ours = 2.4% vs. CTC = 3.14%).

5.5.4 A-1: Transfer to novel Latin alphabets.

We evaluate our model trained on English FontSynth +
Omniglot-Seq to other languages in Google1000, namely,
French, Italian and Spanish. These languages have more
characters than English due to accents (see Table 2). We
expand the glyph set from English to include the accented
glyphs shown in Figure 4. For comparison, we pick the
CTC Baek er al. [4] (the SotA with the lowest CER when
training data is limited), and adapt it to the new alphabet size

by fine-tuning the last linear classifier layer on an increasing
number of training samples. Figure 6 summarizes the re-
sults. Images for fine-tuning are carefully selected to cover
as many new classes as possible. For all three languages, at
least 5 images with new classes are required in fine-tuning
to match our performance without fine-tuning; Depending
on the number of new classes in this language (for French
16 samples are required). Note that for our model we do
not need fine-tuning at all, just supplying exemplars of new
glyphs gives a good performance.

5.5.5 A-2: Transfer to non-Latin glyphs.

In the above experiments, the models were both trained
and tested on English/Latin script and hence, are not tasked
to generalize to completely novel glyph shapes. Here we
evaluate the generalization ability of our model to new
glyph shapes by testing the model trained on FontSynth
+ Omniglot-Seq on the Omniglot-Seq test set, which con-
sists of novel alphabets/scripts. We provide our model
with glyph exemplars from the randomly generated alpha-
bets (Section 5.2). Our model achieves CER=1.8%/7.9%,
WER=7.6%/31.6% (with LM/without LM), which demon-
strates strong generalization to novel scripts. Note, the base-
line text recognition models trained on FontSynth (English
fonts) cannot perform this task, as they cannot process com-
pletely new glyph shapes.

6. Conclusion

We have developed a method for text recognition which
generalizes to novel visual styles (e.g., fonts, colors, back-
grounds efc.), and is not tied to a particular alphabet
size/language. It achieves this by recasting the clas-
sic text recognition as one of visual matching, and we
have demonstrated that the matching can leverage random
shapes/glyphs (e.g., Omniglot) for training. Our model is
perhaps the first to demonstrate one-shot sequence recogni-
tion, and achieves superior generalization ability as com-

language: FR

language: IT

5 10 15
num fine-tuning samples

Figure 6: A-2: Transfer to novel alphabets in
Google1000. We evaluate models trained over the English
alphabet on novel languages in the Google1000 dataset,
namely, French, Italian and Spanish. CER is reported (in
%; | is better).

pared to conventional text recognition methods without
requiring expensive adaptation/fine-tuning. Although the
method has been demonstrated for text recognition, it is ap-
plicable to other sequence recognition problems like speech
and action recognition.

Acknowledgements. This research is funded by a
Google-DeepMind Graduate Scholarship and the EP-
SRC Programme Grant Seebibyte EP/M013774/1. We
would like to thank Triantafyllos Afouras, Weidi Xie,
Yang Liu and Erika Lu for discussions and proof-reading.

References

[1] EMNLP 2015 Tenth Workshop On Statistical Machine
Translation. http://www.statmt.org/wmt15/. 5
[2] Emmanuel Augustin, Matthieu Carré, Emmanuele Grosicki,
J-M Brodin, Edouard Geoffrois, and Francoise Préteux.
Rimes evaluation campaign for handwritten mail processing.
2006. 23
[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 23
[4] Jeonghun Baek, Geewook Kim, Junyeop Lee, Sungrae Park,
Dongyoon Han, Sangdoo Yun, Seong Joon Oh, and Hwalsuk
Lee. What is wrong with scene text recognition model com-
parisons? dataset and model analysis. In Proc. ICCV, 2019.
1,2,5,6,7,8,22,23,24
[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473,2014. 1,2
[6] Horst Bunke, Samy Bengio, and Alessandro Vinciarelli. Of-
fline recognition of unconstrained handwritten texts using
HMMs and statistical language models. PAMI, 2004. 2
[7] Kaidi Cao, Jingwei Ji, Zhangjie Cao, Chien-Yi Chang, and
Juan Carlos Niebles. Few-shot video classification via tem-
poral alignment. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
10618-10627, 2020. 2
[8] Zhanzhan Cheng, Fan Bai, Yunlu Xu, Gang Zheng, Shiliang
Pu, and Shuigeng Zhou. Focusing attention: Towards accu-
rate text recognition in natural images. In Proc. ICCV, 2017.
2
[9] Zhanzhan Cheng, Yangliu Xu, Fan Bai, Yi Niu, Shiliang Pu,
and Shuigeng Zhou. Aon: Towards arbitrarily-oriented text
recognition. In Proc. CVPR, 2018. 1,2
[10] Kyunghyun Cho, Bart van Merrienboer, Caglar Giilgehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. In
EMNLP, 2014. 1,2
[11] Arindam Chowdhury and Lovekesh Vig. An efficient end-
to-end neural model for handwritten text recognition. Proc.
BMVC, 2018. 6,7, 8,23
[12] Joon Son Chung and Andrew Zisserman. Lip reading in the
wild. In Proc. ACCV, 2016. 6

http://www.statmt.org/wmt15/

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

Wei Feng, Wenhao He, Fei Yin, Xu-Yao Zhang, and Cheng-
Lin Liu. Textdragon: An end-to-end framework for arbitrary
shaped text spotting. In Proc. ICCV,2019. 2

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In Proc. ICML, 2017. 2

Alex Graves, Santiago Fernidndez, Faustino Gomez, and
Jiirgen Schmidhuber. Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural
networks. In Proc. ICML, 2006. 4, 14

Alex Graves and Jiirgen Schmidhuber. Framewise phoneme
classification with bidirectional Istm and other neural net-
work architectures. Neural Networks, 2005. 1, 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc.
CVPR, 2016. 5

Pan He, Weilin Huang, Yu Qiao, Chen Change Loy, and Xi-
aoou Tang. Reading scene text in deep convolutional se-
quences. In Thirtieth AAAI conference on artificial intelli-
gence, 2016. 2

Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and An-
drew Zisserman. Synthetic data and artificial neural net-
works for natural scene text recognition. In Workshop on
Deep Learning, NIPS, 2014. 2, 5, 6, 28

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V
Gool. Dynamic filter networks. In Proc. NIPS, 2016. 4
Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos
Nicolaou, Suman Ghosh, Andrew Bagdanov, Masakazu Iwa-
mura, Jiri Matas, Lukas Neumann, Vijay Ramaseshan Chan-
drasekhar, Shijian Lu, Faisal Shafait, Seiichi Uchida, and
Ernest Valveny. ICDAR 2015 robust reading competition.
In Proc. ICDAR, pages 1156-1160, 2015. 2, 24, 25
Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida,
Masakazu Iwamura, Lluis G. Bigorda, Sergi R. Mestre, Joan
Mas, David F. Mota, Jon A. Almazan, and Llus P. de las
Heras. ICDAR 2013 robust reading competition. In Proc.
ICDAR, 2013. 2, 24, 25

Jaeyoung Kim, Mostafa El-Khamy, and Jungwon Lee.
Residual Istm: Design of a deep recurrent architec-
ture for distant speech recognition. arXiv preprint
arXiv:1701.03360, 2017. 23

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B
Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 2015. 5, 6

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie
Henderson, Richard E. Howard, Wayne E. Hubbard, and
Lawrence D. Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural Computation, 1(4):541—
551, 1989. 1,2

Chen-Yu Lee and Simon Osindero. Recursive recurrent nets
with attention modeling for OCR in the wild. In Proc. CVPR,
2016. 1,2

V. Levenshtein. Binary codes capable of correcting deletions,
insertions and reversals. In Soviet Physics Doklady, 1966. 12

10

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

[43]

(44]

[45]

Wei Liu, Chaofeng Chen, and Kwan-Yee K Wong. Char-
net: A character-aware neural network for distorted scene
text recognition. In Thirty-Second AAAI Conference on Arti-
ficial Intelligence, 2018. 2

Yang Liu, Zhaowen Wang, Hailin Jin, and Ian Wassell. Syn-
thetically supervised feature learning for scene text recogni-
tion. In Proc. ECCV, 2018. 2

Pengyuan Lyu, Minghui Liao, Cong Yao, Wenhao Wu, and
Xiang Bai. Mask textspotter: An end-to-end trainable neu-
ral network for spotting text with arbitrary shapes. In Proc.
ECCV,2018. 2

Andrew Maas, Ziang Xie, Dan Jurafsky, and Andrew Ng.
Lexicon-free conversational speech recognition with neural
networks. In NAACL-HLT, 2015. 5

U-V Marti and Horst Bunke. The iam-database: an english
sentence database for offline handwriting recognition. In-
ternational Journal on Document Analysis and Recognition,
5(1):39-46, 2002. 23

A. Mishra, K. Alahari, and C. V. Jawahar. Scene text recog-
nition using higher order language priors. In BMVC, 2012.
24,25

Vinod Nair and Geoffrey E. Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Proc. ICML, 2010.
5

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 5

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Proc. MICCAI, pages 234-241. Springer, 2015. 5
Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end
trainable neural network for image-based sequence recog-
nition and its application to scene text recognition. PAMI,
2016. 2

Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao,
and Xiang Bai. Robust scene text recognition with automatic
rectification. In Proc. CVPR, 2016. 2

Baoguang Shi, Mingkun Yang, Xinggang Wang, Pengyuan
Lyu, Cong Yao, and Xiang Bai. Aster: An attentional scene
text recognizer with flexible rectification. PAMI, 2018. 1, 2
Ray Smith. An overview of the tesseract ocr engine. In Ninth
international conference on document analysis and recogni-
tion (ICDAR 2007), volume 2, pages 629—-633. IEEE, 2007.
2,5,7,8,22

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In Proc. NIPS, 2017. 2,4, 6
Bolan Su and Shijian Lu. Accurate scene text recognition
based on recurrent neural network. In Proc. ACCV, 2014. 2
Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In Proceedings of the
IEEFE Conference on Computer Vision and Pattern Recogni-
tion, pages 1199-1208, 2018. 2, 4

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to
sequence learning with neural networks. In Advances in neu-
ral information processing systems, pages 3104-3112, 2014.
1,2

[46]

(47]

(48]

(49]

[50]

[51]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Proc. NIPS, 2017.
4,5

L. Vincent. Google book search: Document understanding
on a massive scale. In PROC. ninth International Confer-
ence on Document Analysis and Recognition (ICDAR), pages
819-823, Washington, DC, 2007. 6, 7, 27

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray
Kavukcuoglu, and Daan Wierstra. Matching networks for
one shot learning. In Proc. NIPS, 2016. 2, 4

Kai Wang and Serge Belongie. Word spotting in the wild. In
Proc. ECCV, 2010. 2, 24,25

Cong Yao, Xiang Bai, Baoguang Shi, and Wenyu Liu.
Strokelets: A learned multi-scale representation for scene
text recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4042—
4049, 2014. 24

Fangneng Zhan and Shijian Lu. Esir: End-to-end scene text
recognition via iterative image rectification. In Proc. CVPR,
2019. 2

11

Appendix

Contents
Evaluation Metrics Appendix A
Ablation Study Appendix B
Examples and Visualizations Appendix C
Implementation of SotA Models Appendix D
Performance on Scene Text Appendix E
Dataset Details Appendix F

A. Evaluation Metrics

We measure the character (CER) and word error rates (WER):

1
Ni

EditDist (yéf) , y[()fgd)

CER = -
1 Length (yg))

] =

where, yéf) and yéfgd are the i ground-truth and predicted strings respectively in a dataset containing N strings; EditDist is
the Levenshtein distance [28]; Length (yg) is the number of characters in yy. WER is computed as CER above with words

(i.e. contiguous characters separated by whitespace) in place of characters as tokens.

B. Ablation study
B.1. Ablation on modules at a larger scale

In Section 5.4, we ablated each major component of the proposed model architecture to evaluate its relative contribution to
the model’s performance. However, there the training set was limited to only one FontSynth attribute (regular fonts). Here
in Table 6, we ablate the same model components, but couple it with increasing number of training fonts from the FontSynth
dataset (Section 5.2), still evaluating on the FontSynth test set.

Predictions straight from the output of the visual encoder (not using the decoder) are quite noisy (row 6). Using a class
aggregator (‘agg. embed’) lends robustness to noise in the similarity maps which leads to consistent improvements across
all training data settings (compare rows 3 and 5). Using position encoding (‘pos. enc.”) which encodes glyph extents
also leads to consistent improvements (compare rows 1 and 2). Self-attention in the similarity disambiguator is a critical
component, without which error increases at least twofold (compare rows 2 and 3). With increasing training data, the
performance generally improves for all the ablated versions of the model explored here. However, it is evident that all the
model components retain their functional significance even with large amounts of training data.

B.2. Ablation on balance of losses
Figure 7 shows the impact of A when training with one FontSynth attribute, where A is the weight on L;,,, as in Equation (4).

The use of Lg;,, is essential as the model does not converge when its ratio is smaller than 0.05, labelled by ‘x” mark in
Figure 7. The CER is also increased by about 1% when its weight is five times larger than that on Ly;cq.

12

sim. enc sim. disamb a training data

o ' e TR R+B | R+B+L | R+B+L+I |R+B+L+I+OS

[pos. enc.[self-attn| " "|CER WER|CER WER |CER WER|CER WER|CER WER

1. v v v v ‘ 94 30.2| 83 28.8|81 273 |5.6 223|335 128
2. v X v v |11.8 379|124 41.1|94 276|779 229|42 1638
3. v X X v 239 688|154 394|132 435(13.0 52.0|11.4 49.6
4. 4 4 v X 1229 658 |86 34383 285|85 26445 202
5. v X X X [25.8 63.119.3 549 |18.5 48.7 184 45.0 |20.1 62.1
6. v — — — 149.0 96.2|33.7 67.7|31.8 72.0|38.3 78.9 |41.8 98.0

Table 6: Model component analysis. We ablate various components of the model and report performance on the FontSynth
test set when trained on an increasing number of FontSynth attributes. The first row corresponds to the full model; the
last row (#6) corresponds to reading out characters using the CTC decoder from the output of the visual encoder. ‘R’, ‘B’,
‘L and ‘T’ correspond to the FontSynth training splits: ‘Regular’, ‘Bold’, ‘Light’ and ‘Italic’; while ‘OS’ stands for the
Omniglot-Sequence dataset.

CERVS. A

115 % T3
100 °
11.0 4
10.
0
10.5 104~
®
10.0 4
o
3]
o5 o 9.4
o1 _e— ¢
o/
9.0 1
8.5
8.0 T T T T T T T
005 01 0.2 1 5 10 20

A

Figure 7: Impact of A on CER when training with one FontSynth attribute.

13

C. Examples and Visualizations

In Figures 9 to 13 we show the similarity maps at various stages in the model for all the main experiments presented in
the paper VS1-3, A1-2 (Section 5.3). The three similarity maps correspond to (from left to right): (1) S similarity map
from cosine similarity of features from the visual encoder (), (2) similarity map after local position encoding, and (3) &*
similarity map after the self-attention module. All maps are in the range [-1,1].

By comparing maps at different stages, it is clear that the position encoding removes some ambiguities in shape matching,
e.g. ‘w’ and ‘v’, ‘m’ and ‘n’, by using the positional and width information of exemplars. Further, self-attention is crucial as it
compares the confidence across all glyphs and suppresses the lower confidence glyphs, while boosting the higher confidence
glyphs, as is evident by increased contrast of the maps.

Figure 8 shows a zoomed in version of S*. The self-attention module (coupled with the class aggregator; see fig. 2 in the
paper) introduces the boundary token for the CTC loss [5] to separate characters, especially repeated characters. Training
with CTC is known to result in peaky distribution along the sequence — it predicts character classes when the confidence
is very high, usually at the center of the character, while predicting all the other positions between characters as boundary
token. This effect can be seen from the top rows of the map, where white pixels correspond to boundary token and the gaps
are where the model looks at the central column in each ‘glyph-square’ with high confidence.

1.00

-0.25

—-0.50

-0.75

=
sk
:
=1
_-—
a2
=1
=4
o I
—
=N
-« F
.
".*i
N B

—-1.00

Figure 8: An example of a similarity map S* after the self-attention module.

14

Figure 9: Experiment VS-1: Generalization to novel fonts with known glyph exemplars. We use FontSynth to study
generalization to novel fonts when the exemplars from test fonts are provided in matching. Challenging samples from the
FontSynth test set (novel fonts) are visualized below. Note the marked improvement in the confidence and coherence of the
similarity maps through the through various processing stages.

S (from visual encoder P) S + position encoding enhanced S™ (after self-attention)

B
™
o]
B
[
=y
kp
S
&
&=
Y
L
&
9
bt
b
I
th
g
£
£
I
!
N

Ay

ORI A ' 1.1}}:':}?52";11,

[
4

5~ b

KNoWIN 20Len otner FoR veORSIKNoWIN 20en o

GT: known each other for years

0 v |

zAxmanysabdouwpiigh

a great script and i think it v [0 great_scrip’t and Hhink: T was

a great scriptu i Ehink it w

GT: a great script and i think it was Pred: a great script and i think it was

15

Figure 10: Experiment VS-2: Cross font matching. Text recognition on the FontSynth test set with cross-font matching —
using exemplars from the training set when we do not have access to the test font. The model succeeds at cross-font matching
even when the exemplars and line images are in very different visual styles. A difficulty occurs when the same glyph in the
two fonts are not quite visually similar, e.g. due to differences in upper vs. lower case. One example is shown in the last row
where the capital ‘Q’ is matched to lower case ‘o’ instead of ‘q’. However, using consensus from multiple training exemplars
can help overcome this limitation.

S (from visual encoder ®) S + position encoding enhanced S* (after self-attention)

op2de

54

ydouw |yl 1 ys

recommend in my bradshaw |recommend in mmy bradshaw |recommend in my bradshaw

GT: recommend in my bradshaw Pred: recommend in my bradshaw
e)

3
g
3
3
3
>
b
N
%
by
3
w
X
S
:;.Al

cosmeTicaLLy Improved aume]cosmeTicaLLy improven aume]cosmeTicalLy ImProven ouime

GT: cosmetically improved quite Pred: cosmetically improved ouite

16

Figure 11: Experiment VS-3: Transfer from synthetic to real data. We test our model trained purely on synthetic data for
generalization to real world Google1000 English books. The model is robust to nuisance factors prevalent in scans of real
historical books, e.g. over-exposure and low contrast, as well as degradation and show-through.

S (from visual encoder) S + position encoding enhanced S* (after self-attention)

e A —— -

ZLxm A'ngs sbdouuwpopf vy d Jepoqe:

L
&
=
[+]
=
”
=3
=N
E
|
X
n
e
El
-
[
-
N

-]
(1
=
(<]
=
a3
=
!—'-
s
=
=
°
=
=
=
=
]
ol
e
N

yode ‘to feek his reverend yqd.'e“to_ feck his reverend chi_é-‘td- feck Nis réverend

GT: yode to seek his reverend Pred: yode to seek his reverend

17

Figure 12: Experiment A-1: Transfer to novel Latin alphabets. To test generalization to unseen alphabets/novel languages,
we test how well our model trained on English transfers to all the other languages in Google1000, namely, French, Spanish
and Italian. Below, we show four text-line samples from each language and also similarity map progression as above for one
sample. These new languages have an expanded alphabet due to accented letters, e.g. €, €, 4, G, U, efc. These are especially
challenging as the visual differences between these letters is quite subtle. Our model is able to successfully recognize such
fine-grained differences and decode these completely unseen languages For example, in the French similarity map example
below, the model successfully distinguishes between ‘u’, ‘0’ and “0” when their exemplars are provided.

French

GT: supportera plus la surtaxe résultant actuellement de la GT: cane pour léxtradition réciproque des mal
Pred: supportera plus la surtaxe résultant actuellement de la Pred: cane pour léxtradition réciproque des mal

p!g,u ,sm m gcm,dhﬂa cane pour Péxtradition réciproque des mal:
GT: se présente a nos regards de lautre coté des GT: emploie toutes les forces a approfon
Pred: se présente a nos regards de lautre c6té des Pred: emploie toutes res forces a approfon
se présente a nos regards de l'autre coté des emploie :outes fes fmces a appro?om
S (from visual encoder) S + position encoding enhanced S™* (after self-attention)

-
=
[~1
=
[
]
a3
=0
.
=
=
E
1
w
-
=
-
L
-
N
P
(-8
[
G-
=-
o>
54
—
=3

ou plusieurs d’entre eux doivent déjetnerou plusieurs d’entre eux doivent déjetner

ot plusieurs d’entre eux doivent déjetiner

GT: ou plusieurs dentre eux doivent déjetiner Pred: ou plusieurs dentre eux doivent dé&jetiner

18

Spanish

GT: declar6 haber recibido en dote de su segunda mujer GT: nifestaré con documentos auténticos que tengo en
Pred: declar6 haber recibido en dote de su segunda mujer Pred: nifestaré con documentos auténticos que tengo en

declar6 haber recibido en dote de su segunda mujer nifestaré con documentos auténticos que tengo en
GT: rente a la suerte que le preparaba esa faccion GT: regresar todos los ausentes y debiendo ser puestos en li
Pred: rente 4 la suerte que le preparaba esa faccion Pred: regresar todos los ausentes y debicndo ber puestos en li

rente 4 la suerte que le preparaba esa faccion

S (from visual encoder) S + position encoding enhanced S™ (after self-attention)

fjapoqe

hd o iy

=R
15
=k
EE
=
=
< §
N
o
=8

=N
£
=k
=
=

Sabe que la fortuna esti subida]Sabe que la fortuna estd sub'da

GT: sabe que la fortuna estd subda Pred: sabe que la fortuna estd subda

Sabe que la fortuna estid subida

19

Italian

GT: un tal prodigio per indizio di una qualche GT: era gia intanto miglior lo stato degli asse
Pred: un tal prodigio per indizio di una qualche Pred: era gia intanto miglior lo stato degli asse
un tal prodigio per indizio di una qualche era gid intanto miglior lo stato degli asse-
GT: dicosa che lascio di essere buona e GT: pio cid non arrecd meraviglia che a pastori
Pred: di cosa che lascio di essere buona e Pred: pio cid nop arrecd meraviglia che a pastori
di cosa che lascio di essere buona e pio cid non arrecd meraviglia che a’ pastori
S (from visual encoder ®) S + position encoding enhanced S* (after self-attention)

N, et L i e M et A B et P e et O

-
&
[x]
=
[<-]
=
a3
=
e
E
°
=
[
-
=
-
”
]
»
P
&

Lm0 = -] o L] -

pitt_facilmente quegli effetti che] pii facilmente quegli effetti che]piti facilmente guegli effetti che

GT: piu facilmente quegli effetti che Pred: piu facilmente quegli effetti che

20

Figure 13: Experiment A-2: Transfer to non-Latin glyphs. We evaluate our model on the novel glyph styles in the
Omniglot-Sequence test set. The Omniglot-Sequence dataset is constructed by mapping Omniglot glyphs randomly to the
English alphabet and then rendering text-line images using those as characters (refer to Section 5.2 in the paper). The ground-
truth English sentence used for assembling the text-line image is shown underneath the similarity maps. This demonstrates
strong generalization to novel visual styles. The position encoder and self-attention module resolve many ambiguities and
predict accurate matches.

04,0V S 1 6 VA D IV 20 21207 (P S

63k T e B eFHEAMILTf I NFRm R LEm

Tt
=

7

TADATIN LAY AV N

VIO 7

S (from visual encoder ®) S + position encoding enhanced S* (after self-attention)

T3S T Ve) St LGP IS L WD) ST Lo

Pred: quite liked the bear

- - . — 5 = = —

Gﬁgnaﬁq}ia’g\bﬂeimag s Peozflaliz 0 gdy W= eq

Pred: everybody sideways

SN C s FOC oA YVAFDFOVID AamVAC A FOC DA™ ZAFRFVID S~ C s FOC DA TAFDFOMICD

GT: because its the original Pred: because its the original

21

D. Implementation of SotA models

In the experiments in the main paper, we compare our model with four state-of-the-art models from three different domains:
scene text, handwritten text and document text recognition. In the following subsections, we describe the details of how we
implement and use them.

D.1. Attn. and CTC model — Baek ez al. [4]

We follow the recent work of Baek er al. [4] to identify the two of the strongest state-of-the-art text recognition models,
named Aftn. and CTC model in the main paper, to benchmark against our method on generalization to novel fonts and
alphabets. They unify modern text recognition methods in a four-stage framework, visualized below — (1) input transforma-
tion, (2) feature extraction, (3) sequence modeling and (4) string prediction. We do not use the first transformation stage as

Input image X Normalized image X Visual feature V Contextual feature H Prediction Y

e P [T [rex > 0 - oo 1 G = 1> oo

Figure 14: Four stages of modern text-recognition methods. State-of-the-art text recognition models constitute of four
stages — transformation, feature extraction, sequence modelling and prediction. We compare our proposed method against
two of the strongest text-recognition models. Figure reproduced from [4]

document line images are mostly rectilinear and are not severely curved/distorted. For the remaining three stages, we use:
(2) ResNet visual encoder (‘Feat.’), (3) 2-layer bidirectional-LSTM (256 state size) (‘Seq.’), and for the last ‘Pred.” stage
(4), we consider both: (1) CTC, and (2) attention based (with a 128-state LSTM) sequence prediction. The ResNet visual
encoder in the baseline models is designed to have the same (or more) number of parameters as our visual encoder (please
refer to Table 1): baseline ResNet: 6.8M; our encoder: 4.7M parameters. Detailed architecture of the visual encoder used in
the baseline models is given in the table below.

layer kernel channels pool # conv layers output size
in / out HxWwW
convl 3x3 1/64 max = (2, 2) 4 16xW /2
resBlockl | 3x3 64/64 | max=(2,1)x2 6 4xW/2
resBlock2 | 3x3 64/128 | max=(2,1)x2 6 2xW/4
resBlock3 | 3x3 | 128/256 max = (1, 2) 4 2xW/8
resBlock4 | 3x3 |256/512 | max=(l,1) 2 2xW/8
AvgPool - - avg=(2,1) - 1xW/8

Table 7: Architecture details of the visual encoder used for feature extraction.
D.2. Industry Standard Model — Tesseract [41]

Tesseract is a widely-used engine for text recognition in documents like pdf files. They provide free user interface where
people can render texts to train the engine on a wide range fonts and languages. However, 1) the online engine does not
support parallel training in gpu, this restricts the batch size to be 1 and training usually runs into divergence , 2) it does not
use much data augmentation during training, which leads to serve overfitting problem, 3) checkpoints are saved by selecting
the ones with low training error rates, not from validation results on other fonts. It results in large error rate in generalization
to unseen fonts. When the model is trained on our four training attributes in Experiment VS-1, the CER on unseen fonts is
33.5%. Therefore, we implement Tesseract in PyTorch and train it in the same way as we do for other models. We follow

22

the standard network architecture they use for English, details are given on Tesseract’s github page 2, details are shown in
Table 8.

layers kernel c’hannels hidden size
in / out
conv 3x3 1/16 -
tanh
maxpool 3x3 16/16 -
LSTM - 16 /48 48
Bi-LSTM - 48 /192 96
LSTM - 192 /256 256
linear - 256 / #classes -

Table 8: Architecture details of Tesseract.

D.3. Handwritten Text Model — Chowdhury ez al. [11]

The architecture of the handwritten text recognition model from Chowdhury et al. [1 1] is similar to the A#tn. model in Baek et
al. [4] — it uses CNNs as the feature extractor, Bi-LSTM as the sequence modelling module and attention-based LSTM as
the predictor. However, it adds residual connection [23] and Layer Normalization [3] in their LSTMs. Codes of this model
are not available online. Therefore, we verify our implementation by training and testing on handwriting benchmarks IAM
[33] and RIMES [2]. We compare the numbers they report in their paper to ours. Please note that their best performance is
achieved with a beam search algorithm in the final LSTM, we do not implement this stage because in our paper we use beam
search with an external n-gram language model on every model for a fair comparison.

Our implementation is able to achieve similar or lower CER, but has a consistently higher WER, especially in the IAM dataset.
It might be caused by different methods of measuring WER, e.g. the inclusion of punctuations, numbers and abbreviations.
Since no details are given in their paper, we treat everything between two white spaces as words when computing the WER,
which takes punctuations, numbers as well as words into account.

IAM RIMES

CER WER CER WER

) reported 174 255 120 19.1

Baseline -

implemented | 13.5 309 6.2 16.0

LN ' reported 13.1 229 9.7 15.8
implemented | 11.4 26.6 5.1 12.6

+ LN + Focal Loss | reported 114 21.1 7.3 13.5
implemented | 109 254 4.6 12.8

Table 9: Verification of our implementation of the SotA model [] in handwritten text recognition. We compare the error
rates they report in their paper with those from our implementation on IAM and RIMES.

2Tesseract’s specification of architecture details.
https://github.com/tensorflow/models/blob/master/research/street/g3doc/vgslspecs.md

23

https://github.com/tensorflow/models/blob/master/research/street/g3doc/vgslspecs.md

E. Performance on Scene Text

Although our model are trained to recognize rectilinear text images, it can be applied to scene text with a transformation
module. We use the pre-trained transformation module from Baek et al. [4] to transform the images and test our model on
commonly used scene text dataset: SVT [49], ICDAR [21,22] and IIITSk [34]. Given that the visual style in scene texts
images is inconsistent and we don’t have access to the fonts, we cross-match the images with exemplars from a randomly
selected font. We show the similarity maps and predictions from our model below, with examples of both Arabic numbers
and words in various visual styles.

We compare our results with Yao et al. [50] which also learn to recognizes texts by using visual primitives, and show the
results in Table 10.

Model HITSK (small) IIITSK (medium) IC03 (full) IC03 (50) SVT
Yao et al. [50] 80.2 69.3 80.3 885 759
Ours 96.2 92.8 93.3 98.2 924

Table 10: Results on scene text dataset IIITSK, IC03, SVT with lexicon.

24

Figure 15: Visualization of our model’s performance on scene text datasets: SVT [49], ICDAR [21,22] and IIIT5k [34].
We show the alphabet image, scene text image and the similarity map from the feature encoder for each example.

E §
§ §
-1 w
a a
= =
" "
a -
L] n
= =
m m
= =
[— [—
= =
= =
= =
]]
= =
£ £8
= =
w wn
- [
= =
e =
E E
o o
- -
N N

E
§
w
-]
=
n
B
L]
=
[-]
=
[
=
g
=
]
=
£
=
"
-
=
=
E
)
-
N

Meto ol capelle

GT: metool Pred: metool GT: com Pred: com GT: apollo Pred: apollo

zAxmanisibdouw)yliy3jopirqees9syEzio
zAxmanisibdouw)yliysjapirqeesosyEzio

zAxmanisibdouw)yliy3jopirqeesosyezio

—T— 2877-945-39 — G
GT: eve Pred: eve GT: 87794539 Pred: 87794539 GT: 20p Pred: 20p

zAxmanisibdouw)yliysjopirqesgrosyezio
zAxmanisibdouw)yliysjapirqesgrosrezio

zAxmanisibdouw)yliysjopirqesgr9syezio

GT: could Pred: could GT: larry Pred: larry GT: cityarts Pred: cityarts

25

P —

=T

GT: six Pred: six

GT: endorses Pred: endorses

0123456789aAbBcdDeEfFeGhHiljkILmnNopgarRstTuvwxyz 0123456789aRbBcdDeEfFgGhHiljkILmnNopqarRstTuvwxyz 0123456789aRbBcdDeEfFgGhHiljkILmaNopqarRstTuvwxyz

GT: reliance Pred: reliance

GT: regency Pred: regency

0123456789aRbBcdDeEfFgGhtiljkilmnNopqerRstTuvwxyz 0123456789aRbBcdDeEfFgGhHiljkILmnNopqerRstTuvwxyz

GT: mobile Pred: mobile

GT: diet Pred: diet

0123456789aAbB¢dDeEfFpGhHiljkiLmnNopgarRst Tuvwxyz

GT: salt Pred: salt2

GT: ubernahme Pred: jbernahme

GT: 83km Pred: 83km

26

F. Dataset Details

F.1. Training and Testing Datasets

We summarize the distribution and size of all our training and testing datasets in Table 11.

datasets distribution number of images | language
training
FontSynth 200 fonts 200000 English
Omniglot-Seq | 30 alphabets x 20 writers 60000 Various
testing
FontSynth 251 fonts 12550 English
Google1000_EN 40 books 2000 English
Google1000_FR 40 books 2000 French
Google1000_ES 40 books 2000 Spanish
Google1000_IT 40 books 2000 Italian
Omniglot-Seq | 20 alphabets x 20 writers 40000 Various

Table 11: Details of training and testing datasets used in experiments VS1-3 and A1-2.

F.2. Google1000 Dataset Details

We benchmark our method on a large-scale real world dataset of historical books — Google1000 [

For this, we randomly select 40 volumes for each language; Below, we list the volume-ids for completeness.

English

0194
0612
0050
0287

French

0930
0957
0947
0923

Spanish

0701
0315
0047
0131

0951
0940
0921
0948

0343
0034
0093
0174

0931
0925
0926
0929

0025
0084
0676
0380

0927
0942
0959
0928

0006 0100
0128 0513
0448 0347
0059 0151
0954 0937
0932 0922
0953 0943
0956 0958

27

0663
0441
0511
0340

0946
0950
0934
0945

0255
0709
0335
0068

0935
0944
0924
0955

0147
0224
0218
0176

0952
0936
0938
0920

] (Section 5.2). Specifi-
cally, we employ Google1000 for two experiments: (1) experiment VS-3: to evaluate our models trained on synthetic data
for generalization to nuisance factors encountered in the real data like degradation, blur, show-through (from behind), inking,
fading, oblique text-lines etc and (2) experiment A-1: to evaluate generalization from English (training language) to novel
Latin alphabets/new languages in Google1000, namely French, Spanish and Italian.

0054
0587
0438
0569

0949
0933
0941
0939

0843
0836
0865
0918

Italian

0967
0968
0963
0987

F.3. FontSynth Dataset Details

Figure 16: FontSynth font embeddings. The training font splits (regular, bold, light, italic) are distinct from the test fonts.

The FontSynth dataset (Section 5.2) used for evaluating the effect of increasing diversity of training fonts on generalization
to novel fonts, is created by taking fonts used in MJSynth [19] and splitting them per attributes as determined from their font
names, namely — regular, bold, light, italic, and other (i.e. rest of the fonts with none of the four attributes in their name). We
select 50 fonts at random from each of the four attributes to create the training set, while all of the other 251 fonts constitute

0795
0878
0860
0864

0983
0969
0961
0994

0820
0818
0793
0846

0986
0997
0976
0996

0827
0875
0788
0899

0978
0991
0988
0984

the test set. Data are available to download at:
http://www.robots.ox.ac.uk/~vgg/research/FontAdaptor20/.

Figure 16 visualizes font-embeddings from a font classifier trained on the MJSynth fonts. The training font embeddings form
tight clusters, while the test embeddings are spread out, indicating that they are visually distinct from the training set. Hence,

0797
0875
0826
0874

0972
0981
0965
0985

0810
0916
0897
0850

0964
0979
0998
0980

0864
0845
0871
0910

0962
0975
0960
0992

FontSynth forms a good benchmark for evaluating generalization to novel fonts.

Please refer to Figure 3 for a visualization of the fonts in these splits.

28

0872
0888
0824
0870

0970
0993
0999
0989

L 2N

0898
0818
0845
0790

0971
0990
0982
0966

test
regular
Bold
Light
italic

0857
0808
0883
0901

0995
0977
0973
0974

http://www.robots.ox.ac.uk/~vgg/research/FontAdaptor20/

