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Abstract. Estimating 3D hand pose from 2D images is a difficult, inverse
problem due to the inherent scale and depth ambiguities. Current state-
of-the-art methods train fully supervised deep neural networks with
3D ground-truth data. However, acquiring 3D annotations is expensive,
typically requiring calibrated multi-view setups or labour intensive manual
annotations. While annotations of 2D keypoints are much easier to obtain,
how to efficiently leverage such weakly-supervised data to improve the
task of 3D hand pose prediction remains an important open question.
The key difficulty stems from the fact that direct application of additional
2D supervision mostly benefits the 2D proxy objective but does little to
alleviate the depth and scale ambiguities. Embracing this challenge we
propose a set of novel losses that constrain the prediction of a neural
network to lie within the range of biomechanically feasible 3D hand
configurations. We show by extensive experiments that our proposed
constraints significantly reduce the depth ambiguity and allow the network
to more effectively leverage additional 2D annotated images. For example,
on the challenging freiIHAND dataset, using additional 2D annotation
without our proposed biomechanical constraints reduces the depth error
by only 15%, whereas the error is reduced significantly by 50% when the
proposed biomechanical constraints are used.

Keywords: 3D hand pose, weakly-supervised, biomechanical constraints

1 Introduction

Vision-based reconstruction of the 3D pose of human hands is a difficult problem
that has applications in many domains. Given that RGB sensors are ubiquitous,
recent work has focused on estimating the full 3D pose [6, 19, 26, 36, 46] and
dense surface [5,14,16] of human hands from 2D imagery alone. This task is
challenging due to the dexterity of the human hand, self-occlusions, varying

*This work was done during an internship at NVIDIA.
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Fig. 1: Impact of the proposed biomechanical constraints (BMC). (b,e) Supplementing
fully supervised data with 2D annotated data yields 3D poses with correct 2D projections,
yet they are anatomically implausible. (c,f) Adding our biomechanical constraints
significantly improves the pose prediction quantitatively and qualitatively. The resulting
3D poses are anatomically valid and display more accurate depth/scale even under
severe self- and object occlusions, thus are closer to the ground-truth (d,g).

lighting conditions and interactions with objects. Moreover, any given 2D point
in the image plane can correspond to multiple 3D points in world space, all of
which project onto that same 2D point. This makes 3D hand pose estimation
from monocular imagery an ill-posed inverse problem in which depth and the
resulting scale ambiguity pose a significant difficulty.

Most of the recent methods use deep neural networks for hand pose estimation
and rely on a combination of fully labeled real and synthetic training data
(e.g., [4,6,16,16,19,26,36,48,50]). However, acquiring full 3D annotations for
real images is very difficult as it requires complex multi-view setups and labour
intensive manual annotations of 2D keypoints in all views [15,47,51]. On the other
hand, synthetic data does not generalize well to realistic scenarios due to domain
discrepancies. Some works attempt to alleviate this by leveraging additional
2D annotated images [5,19]. Such kind of weakly-supervised data is far easier
to acquire for real images as compared to full 3D annotations. These methods
use these annotations in a straightforward way in the form of a reprojection
loss [5] or supervision for the 2D component only [19]. However, we find that the
improvements stemming from including the weakly-supervised data in such a
manner are mainly a result of 3D poses that agree with the 2D projection. Yet,
the uncertainties arising due to depth ambiguities remain largely unaddressed
and the resulting 3D poses can still be implausible. Therefore, these methods still
rely on large amounts of fully annotated training data to reduce these ambiguities.
In contrast, our goal is to minimize the requirement of 3D annotated data as
much as possible and mazimize the utility of weakly-labeled real data.

To this end, we propose a set of biomechanically inspired constraints (BMC)
which can be integrated in the training of neural networks to enable anatomically
plausible 3D hand poses even for data with 2D supervision only. Our key insight is
that the human hand is subject to a set of limitations imposed by its biomechanics.
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We model these limitations in a differentiable manner as a set of soft constraints.
Note that this is a challenging problem. While the bone length constraints have
been used successfully [39,49], capturing other biomechanical aspects is more
difficult. Instead of fitting a hand model to the predictions, we extract the
quantities in question directly from the predictions to impose our constraints. As
such, the method of extraction has to be carefully designed to work under noisy
and malformed 3D joint predictions while simultaneously being fully differentiable
under any pose. We propose to encode these constraints into a set of losses that
are fully differentiable, interpretable and which can be incorporated into the
training of any deep learning architecture that predicts 3D joint configurations.
Due to this integration, we do not require a post-refinement step during test
time. More specifically, our set of soft constraints consists of three equations that
define 1) the range of valid bone lengths, ii) the range of valid palm structure, and
iii) the range of valid joint angles of the thumb and fingers. The main advantage
of our set of constraints is that all parameters are interpretable and can either be
set manually, opening up the possibility of personalization, or be obtained from
a small set of data points for which 3D labels are available. As backbone model,
we use the 2.5D representation proposed by Igbal et al. [19] due to its superior
performance. We identify an issue in absolute depth calculation and remedy it
via a novel refinement network. In summary, we contribute:

— A novel set of differentiable soft constraints inspired by the biomechanical
structure of the human hand.

— Quantitative and qualitative evidence that demonstrates that our proposed
set of constraints improves 3D prediction accuracy in weakly supervised
settings, resulting in an improvement of 55% as opposed to 32% as yielded
by straightforward use of weakly-supervised data.

— A neural network architecture that extends [19] with a refinement step.

— Achieving state-of-the-art performance on Dexter+Object using only syn-
thetic and weakly-supervised real data, indicating cross-data generalizability.

The proposed constraints require no special data nor are they specific to a
particular backbone architecture.

2 Related work

Hand pose estimation from monocular RGB has gained traction in recent years
due numerous possible applications. Generally there are two trains of thought.
Model-based methods ensure plausible poses by fitting a hand model
to the observation via optimization. As they are not learning-based, they are
sensitive to initial conditions, rely on temporal information [18,27-29] or do
not take the image into consideration during optimization [29]. Whereas some
make use of geometric primitives [27-29], other simply model the joint angles
directly [8,11,21,23,32,43], learn a lower dimensional embedding of the joints [24],
pose [18] or go a step further and model muscles of the hand [1]. Different to
these methods, we propose to incorporate these constraints directly into the
training procedure of a neural network in a fully differentiable manner. As such,
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we do not fit a hand model to the prediction, but extract and constrain the
biomechanical quantities from them directly. The resulting network predicts
biomechanically-plausible poses and does not suffer from the same disadvantages.

Learning-based methods utilize neural networks that either directly regress
the 3D positions of the hand keypoints [19, 26, 36, 40, 46, 50] or predict the
parameters of a deformable hand model [4,5,16,44,48]. Zimmermann et al. [50]
are the first to use deep neural network for root-relative 3D hand pose estimation
from RGB images via a multi-staged approach. Spurr et al. [36] learn a unified
latent space that projects multiple modalities into the same space, learning a
lower level embedding of the hands. Similarly, Yang et al. [46] learn a latent space
that disentangles background, camera and hand pose. However, all these methods
require large numbers of fully labeled training data. Cai et al. [6] try to alleviate
this problem by introducing an approach that utilizes paired RGB-D images
to regularize the depth predictions. Mueller et al. [26] attempt to improve the
quality of synthetic training data by learning a GAN model that minimizes the
discrepancies between real and synthetic images. Igbal et al. [19] decompose the
task into learning 2D and root-relative depth components. This decomposition
allows to use weakly-labeled real images with only 2D pose annotations which
are cheap to acquire. While these methods demonstrate better generalization by
adding a large number weakly-labeled training samples, the main drawback of
this approach is that the depth ambiguities remain unaddressed. As such, training
using only 2D pose annotations does not impact the depth predictions. This may
result in 3D poses with accurate 2D projections, but due to depth ambiguities
the 3D poses can still be implausible. In contrast, in this work, we propose a set
of biomechanical constraints that ensures that the predicted 3D poses are always
anatomically plausible during training (see Fig. 1). We formulate these constraints
in form of a fully-differentiable loss functions which can be incorporated into
any deep learning architecture that predicts 3D joint configurations. We use a
variant of Igbal et al. [19] as a baseline and demonstrate that the requirement of
fully labeled real images can be significantly minimized while still maintaining
performance on par with fully-supervised methods.

Other recent methods directly predict the parameters of a deformable hand
model, e.g., MANO [33], from RGB images [5, 16, 30, 44, 48]. The predicted
parameters consist of the shape and pose deformations wrt. a mean shape and
pose that are learned using large amounts of 3D scans of the hand. Alternatively,
[14,22] circumvent the need for a parametric hand model by directly predicting
the mesh vertices from RGB images. These methods require both shape and
pose annotations for training, therefore obtaining such kind of training data
is even harder. Hence, most methods rely on synthetic training data. Some
methods [4,5,48] alleviate this by introducing re-projection losses that measure
the discrepancy between the projection of 3D mesh with labeled 2D poses [5]
or silhouettes [4,48]. Even though they utilize strong hand priors in form of
a mean hand shape and by operating on a low-dimensional PCA space, using
re-projection losses with weakly-labeled data still does not guarantee that the
resulting 3D poses will be anatomically plausible. Therefore, all these methods
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Fig. 2: Method overview. A model takes an RGB image and predicts the 3D joints on
which we apply our proposed BMC. These guide the model to predict plausible poses.

rely on a large number of fully labeled training data. In body pose estimation,
such methods generally resort to adversarial losses to ensure plausibility [20].
Biomechanical constraints have also been used in the literature to encour-
age plausible 3D poses by imposing biomechanical limits on the structure of the
hands [9,10,12,25,34,38,41,42,45] or via a learned refinement model [7]. Most
methods [2,9,10,25,34,38,41,45] impose these limits via inverse kinematic in
a post-processing step, therefore the possibility of integrating them for neural
network training remains unanswered. Our proposed soft-constraints are fully
integrated into the network, which does not require a post-refinement step during
test time. Similar to our method, [12,42] also penalize invalid bone lengths.
However, we additionally model the joint limits and palmar structure.

3 Method

Our method is summarized in Figure 2. Our key contribution is a set of novel
constraints that constitute a biomechanical model of the human hand and capture
the bone lengths, joint angles and shape of the palm. We emphasize that we do
not fit a kinematic model to the predictions, but instead extract the quantities in
question directly from the predictions in order to constrain them. Therefore the
method of extraction is carefully designed to work under noisy and malformed
3D joint predictions while simultaneously being fully differentiable in any config-
uration. These biomechanical constraints provide an inductive bias to the neural
network. Specifically, the network is guided to predict anatomically plausible
hand poses for weakly-supervised data (i.e. 2D only), which in turn increases
generalizability. The model can be combined with any backbone architecture
that predicts 3D keypoints. We first introduce the notations used in this paper
followed by the details of the proposed biomechanical losses. Finally, we discuss
the integration with a variant of [19].

Notation. We use bold capital font for matrices, bold lowercase for vector
and roman font for scalars. We assume a right hand. The joints [j37,...,j3P] =
J3P ¢ IR21*3 define a kinematic chain of the hand starting from the root joint
j3P and ending in the fingertips. For the sake of simplicity, the joints of the
hands are grouped by the fingers, denoted as the respective set F1,...,F5,
visualized in Fig. 3a. Each j?D, except the root joint (CMC), has a parent,
denoted as p(i). We define a bone b; = j3P, — jf’)gﬂ) as the vector pointing
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Fig. 3: Illustration of our proposed biomechanical structure.

from the parent joint to its child joint. Hence [by,...,bgy] = B € IR?°*3. The
bones are named according to the child joint. For example, the bone connecting
MCP to PIP is called PIP bone. We define the five root bones as the MCP
bones, where one endpoint is the root j$¥. Intuitively, the root bones are those
that lie within and define the palm. We define the bones b; with i =1,...,5
to correspond to the root bones of fingers F'1,...,F5. We denote the angle
a(vi,ve) = arccos(wﬁ%) between the vectors vi,vy. The interval loss is
defined as Z(z;a,b) = max(a — 2,0) + max(z — b,0). The normalized vector is
defined as norm(x) = Lastly, Pxy(v) is the orthogonal projection operator,

HXII
projecting v orthogonally onto the x-y plane where x,y are vectors.

3.1 Biomechanical constraints

Our goal is to integrate our biomechanical soft constraints (BMC) into the
training procedure that encourages the network to predict feasible hand poses.
We seek to avoid iterative optimization approaches such as inverse kinematics in
order to avert significant increases in training time.

The proposed model consists of three functional parts, visualized in Fig. 3.
First, we consider the length of the bones, including the root bones of the palm.
Second, we model the structure and shape of the palmar region, consisting
of a rigid structure made up of individual joints. To account for inter-subject
variability of bones and palm structure, it is important to not enforce a specific
mean shape. Instead, we allow for these properties to lie within a valid range.
Lastly, the model describes the articulation of the individual fingers. The finger
motion is described via modeling of the flexion and abduction of individual bones.
As their limits are interdependent, they need to be modeled jointly. As such, we
propose a novel constraint that takes this interdependence into account.

The limits for each constraint can be attained manually from measurements,
from the literature (e.g [9,34]), or acquired in a data-driven way from 3D
annotations, should they be available.

Bone length. For each bone i, we define an interval [b" 518X of valid
bone length and penalize if the length ||b;||2 lies outside of this interval:

ﬁBL J3D 20 ZI ||b1‘|2,bmm bmax)
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This loss encourages keypoint predictions that yield valid bone lengths. Fig. 3a
shows the length of a bone in blue.

Root bones. To attain valid palmar structures we first interpret the root
bones as spanning a mesh and compute its curvature by following [31]:

(ei+1 - ei)T(biJrl - bi)
[[bit1 — by[|2

Where e; is the edge normal at bone b;:

, fori e {1,2,3,4} (1)

C; =

n; = norm(b; 1 X b;),for i € {1,2,3,4}

np, ifi=1 (2)
e; = ¢ norm(n; + n,_1), ifie {2,3,4}
ny, le = 5

Positive values of ¢; denote an arched hand, for example when pinky and thumb
touch. A flat hand has no curvature. Fig. 3b visualizes the mesh in dashed yellow
and the triangle over which the curvature is computed in dashed purple.

We ensure that the root bones fall within correct angular ranges by defining
the angular distance between neighbouring b;,b;11 across the plane they span:

¢i = a(bi7 bi+1) (3)

We constrain both the curvature ¢; and angular distance ¢; to lie within a valid

ra’nge [anln max] and [¢m1n’¢max]

ERB J3D

4
Z Cu imna ;rnax) +I(¢’H¢mm7¢§nax))

i=1

»4>\»—*

Lrp ensures that the predicted joints of the palm define a valid structure, which
is crucial since the kinematic chains of the fingers originate from this region.

Joint angles. To compute the joint angles, we first need to define a consistent
frame F; of a local coordinate system for each finger bone b;. F; must be consistent
with respect to the movements of the finger. In other words, if one constructs F;
given a pose J$P, then moves the fingers and corresponding F; into pose J37,
the resulting F; should be the same as if constructed from J3? directly.

We assume right-handed coordinate systems. To construct F;, we define
two out of three axes based on the palm. We start with the first layer of fin-
gers bones (PIP bones). We define their respective z-component of F,; as the
normalized bone of their respective parent bone (in this case, the root bones):
z; = norm(b,;)). Next, we define the z-axis, based on the plane normals spanned
by two neighbouring root bones:

Ny, if p(Z) € {17 2}

x; = { —norm(ny,;) +n,iy-1), if p(i) € {3,4} (4)



8 A. Spurr et al.

Where n; is defined as in Eq. 2. Lastly, we compute the last axis y; = norm(z; xx;).
Given F;, we can now define the flexion and abduction angles. Each of these
angles are given with respect to the local z-axis of F;. Given b; in its local
coordinates bZF" wrt. F;, we define the flexion and abduction angles as:

0 = a(P,.(bF), ;)

07 = (sz(bfi), bfl) ®

Fig. 3c visualizes F'; and the resulting angles. Note that this formulation leads to
ambiguities, where different bone orientations can map to the same (65, 62)-point.
We resolve this via an octant lookup, which leads to angles in the intervals
0f € [-m, 7] and 02 € [—7/2,7/2] respectively. See appendix for more details.

Given the angles of the first set of finger bones, we can then construct the
remaining two rows of finger bones. Let R% denote the rotation matrix that
rotates by 65 and 62 such that R%z; = bl'‘, then we iteratively construct the
remaining frames along the kinematic chain of the fingers:

F, = R%F,; (6)

This method of frame construction via rotating by 6 and 62 ensures consistency
across poses. The remaining angles can be acquired as described in Eq. 5.

Lastly, the angles need to be constrained. One way to do this is to consider
each angle independently and penalize them if they lie outside an interval. This
corresponds to constraining them within a box in a 2D space, where the endpoints
are the min/max of the limits. However, finger angles have inter-dependency,
therefore we propose an alternative approach to account for this. Given points
0; = (6%,602) that define a range of motion, we approximate their convex hull on
the (6%, 62)-plane with a fixed set of points H;. The angles are constrained to lie
within this structure by minimizing their distance to it:

15

L3P = 115ZDH (6:,H,) (7)

Where Dy is the distance of point 6; to the hull H;. Details on the convex hull
approximation and implementation can be found in the appendix.

3.2 Zr°°t Refinement

The 2.5D joint representation allows us to recover the value of the absolute
pose Z7°°t up to a scaling factor . This is done by solving a quadratic equation
dependent on the 2D projection J?P and relative depth values z”, as proposed
in [19]. In practice, small errors in J?? or z" can result in large deviations of
Z7o°t This leads to big fluctuations in the translation and scale of the predicted
pose, which is undesirable. To alleviate these issues, we employ an MLP to refine
and smooth the calculated Zm°t:

Zroot Zroot + MMLP (Z K- 1J2D Zroot ) (8)

ref
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Where Myp is a multilayered perceptron with parameters w that takes the
predicted and calculated values z" € R?', K~1J2P ¢ IR?'%3, Z7°°t ¢ IR and
outputs a residual term. Alternatively, one could predict Z7°° directly using
an MLP with the same input. However, as the exact relationship between the
predicted variables and Z7°°! is known, we resort to the refinement approach
instead of requiring a model to learn what is already known.

3.3 Final loss
The biomechanical soft constraints is constructed as follows:
Lemc = ABLLBL + ARBLRB + Aa LA (9)
Our final model is trained on the following loss function:
L = Ng20Ly20 + Agr Ly + Agroot Lzroor + LBMC (10)

Where Ly20, L, and Lzt are the L1 loss on any available J2P, z™ and Z7°%
labels respectively. The weights A\; balance the individual loss terms.

4 Implementation

We use a ResNet-50 backbone [17]. The input to our model is a 128 x 128 RGB
image from which the 2.5D representation is directly regressed. The model and
its refinement step is trained on fully supervised and weakly-supervised data.
The network was trained for 70 epochs using SGD with a learning rate of 5e-3
and a step-wise learning rate decay of 0.1 after every 30 epochs. We apply the
biomechanical constraints directly on the predicted 3D keypoints J3P.

5 Evaluation

Here we introduce the datasets used, show the performance of our proposed Lgmc
and compare in extensive settings. Specifically, we study the effect of adding
weakly supervised data to complement fully supervised training. All experiments
are conducted in a setting where we assume access to a fully supervised dataset,
as well as a supplementary weakly supervised real dataset. Therefore we have
access to 2D ground-truth annotations and the computed constraint limits. We
study two cases of 3D supervision sources:
Synthetic data. We choose RHD. Acquiring fully labeled synthetic data is
substantially easier as compared to real data. Section 5.3-5.5 consider this setting.
Partially labeled real data. In Section 5.6 we gradually increase the number
of real 3D labeled samples to study how the proposed approach works under
different ratio of fully to weakly supervised data.

To make clear what kind of supervision is used we denote 3D, if 3D annota-
tion is used from dataset A. We indicate usage of 2D from dataset A as 2D 4.
Section 5.3 and 5.4 are evaluated on FH.
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5.1 Datasets

Each dataset that provides 3D Table 1: Overview of datasets used for evaluation.
labels comes with the camera
intrinsics. Hence the 2D pose

o joints train/test

) A Name Typ #
can be easily acquired from the
3 Rendered Hand Pose (RHD) [50] Synth 21 42k / 2.7k
3D pgse. Tab. 1 provides an FreiHAND (FH) [51] Real 21 33k / 4.0k
overview of datasets used. The Dexter+Object (D+0) [37] Real 5 / 3.1k

test set of HO-3D and FH are Hand-Object 3D (HO-3D) [15] Real 21 11k / 6.6k
available only via a submission

system with limited number of total submissions. Therefore for the ablation
study (Section 5.4) and inspecting the effect of weak-supervision (Section 5.3),
we divide the training set into a training and validation split. For these sections,
we choose to evaluate on FH due to its large number of samples and variability
in both hand pose and shape.

5.2 Evaluation Metric

HO-3D. The error given by the submission system is the mean joint error in mm.
The INTERP is the error on test frames sampled from training sequences that
are not present in the training set. The EXTRAP is the error on test samples
that have neither hand shapes nor objects present in the training set. We used
the version of the dataset that was available at the time [3].

FH. The error given by the submission system is the mean joint error in mm.
Additionally, the area under the curve (AUC) of the percentage of correct
keypoints (PCK) plot is reported. The PCK values lie in an interval from 0
mm to 50 mm with 100 equally spaced thresholds. Both the aligned (using
procrustes analysis) and unaligned scores are given. We report the aligned score.
The unaligned score can be found in the appendix.

D+0. We report the AUC for the PCK thresholds of 20 to 50 mm comparable
with prior work [5,48, 51]. For [19, 26,36, 50] we report the numbers as presented
in [48] as they consolidate all AUC of related work in a consistent manner using
the same PCK thresholds. For [4], we recomputed the AUC for the same interval
based on the values provided by the authors.

5.3 Effect of Weak-Supervision

We first inspect how weak-supervision affects the performance of the model. We
decompose the 3D prediction error on the validation set of FH in terms of its 2D
(J2P) and depth component (Z) via the pinhole camera model Z~'KJ3P = J2P
and evaluate their individual error.

We train four models using different data sources. 1) Full 3D supervision on
both synthetic RHD and real FH (3Dgup + 3D ), which serves as an upper
bound for when all 3D labels are available 2) Fully supervised on RHD which
constitutes our lower bound on accuracy (3Dgrup) 3) Fully supervised on RHD
with naive application of weakly-supervised FH (+2Dyy) 4) Like setting 3) but
adding our proposed constraints (+Lsmc)-
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Table 2: The effect of weak-supervision on the validation split of FH. Training on
synthetic data (RHD) leads to poor accuracy on real data (FH). Adding real 2D labeled
data reduces 3D prediction error due to better alignment with the 2D projection. Adding
our proposed Lemc significantly reduces the 3D error due to more accurate Z.

Mean Error |
2D (px) Z (mm) 3D (mm)

Effect of weak-supervision Description

3Dgrup + 3Dru Fully supervised, synthetict+real 3.72 5.69 8.78
+ Lemc (ours) + BMC 3.70 5.44 8.60
3Drup Fully supervised, synthetic only ~— 12.35 ~ = 20.02° = ~30.82° ~
+ 2Dgy + Weakly supervised, real 3.80 17.02 20.92

+ Lsmc (ours) + BMC 3.79 9.97 13.78

Tab. 2 shows the results. The model trained with full 3D supervision from
real and synthetic data reflects the best setting. Adding Lpnc during training
slightly reduces 3D error (8.78mm to 8.6mm) primarily due to a regularization
effect. When the model is trained only on synthetic data (3Dgrup) we observe a
significant rise (8.78mm to 30.82mm) in 3D error due to the poor generalization
from synthetic data. When weak-supervision is provided from the real data
(+2DFp), the error is reduced (30.82mm to 20.92mm). However, inspecting
this more closely we observe that the improvement comes mainly from 2D
error reduction (12.35px to 3.8px), whereas the depth component is improved
marginally (20.02mm to 17.02mm). Observing these samples qualitatively (Fig. 1),
we see that many do not adhere to biomechanical limits of the human hand. By
penalizing such violations via our proposed losses Lymc to the weakly supervised
setting we see a significant improvement in 3D error (20.92mm to 13.78mm) which
is due to improved depth accuracy (20.02mm to 9.97mm). Inspecting (e.g. Fig. 1)
closer, we see that the model predicts the correct 3D pose in challenging settings
such as heavy self- and object occlusion, despite having never seen such samples
in 3D. Since Lpmc describes a valid range, rather than a specific pose, slight
deviations from the ground truth 3D pose have to be expected which explains
the small remaining quantitative gap from the fully supervised model.

5.4 Ablation Study

We quantify the individual contributions of our proposals on the validation set of
FH and reproduce these results on HO-3D in supplementary. Each error metric
is computed for the root-relative 3D pose.

Refinement network. Tab. 3 Table 3: Effect of Z"°°" refinement
shows the impact of Z"°°¢ refinement
(Sec. 3.2). We train two models that  yj.4i0n Study EPE (mm) ¢4

include (w. refinement) or omit (w/o mean | median |

refinement) the refinement step, using
full supervision on FH (3Dpy). Using
refinement, the mean error is reduced
by 1.44mm which indicates that refining effectively reduces outliers.

w/o refinement 11.20 8.62 0.95
w. refinement (ours) 9.76 8.14 0.97
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Fig. 4: Impact of our proposed losses. (a) All predicted 3D poses project to the same 2D
pose. (b) Ground-truth pose. (c) L£pr results in poses that have correct bone lengths,
but may have invalid angles and palm structure. (d) Including Lrp imposes a correct
palm, but the fingers are still articulated wrong. (e) Adding L£a leads to the finger bones
having correct angles. The resulting hand is plausible and close to the ground-truth.

Components of BMC. In Tab. Table 4: Effect of BMC components.
4, we perform a series of experiments
where we incrementally add each of the
proposed constraints. For 3D guidance,

EPE (mm)

Ablation Study mean | median |

AUC 7t

we use the synthetic RHD and only use 8Prup + 2Dru 2092 16.93  0.81
+ Lg1, (ours) 17.58 14.81 0.88
the 2D labels of FH. We first run the + Lrgp (ours) 15.48  13.49 091
baseline model trained only on this - _ _ _ + L4 (ours) 13.78 11.61  0.92
3Drup + 3Drn 878~ T7.25 T 098

data (3Dgrup + 2Dpp). Next, we add
the bone length loss Lpy,, followed by
the root bone loss Lrp and the angle loss £5. An upper bound is given by
our model trained fully supervised on both datasets (3Dgrup + 3Dpu). Each
component contributes positively towards the final performance, totalling a
decrease of 6.24mm in mean error as compared to our weakly-supervised baseline,
significantly closing the gap to the fully supervised upper bound. A qualitative
assessment of the individual losses can be seen in Fig. 4.

Co-dependency of angles. In Tab.  Table 5: Effect of angle constraints
5, we show the importance of modeling
the dependencies between the flexion sy jation Study EPE (mm) ;04
and abduction angle limits (Sec. 3), in- mean | median |

. . Independ . . .
stead of regarding therp 1.ndependent1y. Sle;é’fé‘eftnt }g?g ﬁ’é? 8.3;
Co-dependent angle limits yield a de-
crease in mean error of 1.40 mm.
Constraint limits. In Tab. 6, we Table 6: Effect of limits
investigate the effect of the used limits
on the final performance, as one may  spjation Study EPE (mm) ;0 4

mean | median |

have to resort to approximations. For
this, we instead take the hand parame-
ters from RHD and perform the same
weakly-supervised experiment as be-
fore (+LBmc). Approximating the limits from another dataset slightly increases
the error, but still clearly outperforms the 2D baseline.

Approximated 16.14 13.93 0.90
Computed 13.78 11.61 0.92
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Table 7: Results on the respective test split, evaluated by the submission systems.
Training on RHD leads to poor accuracy on both FH and HO-3D. Adding weakly-
supervised data improves results, as expected. By including our proposed Lsmc, our
model incurs a significant boost in accuracy, especially evident for the INTERP score.

Description R=FH R=HO-3D
mean | AUC t EXTRAP | INTERP |
3Dgrup + 3Dgr Fully sup. upper bound 0.90 0.82 18.22 5.02
3Dgup T Fully sup. lower bound =~ ~ | 1.60 = 0.69 | "20.84  ~ " 33.57
+2Dgr + Weakly sup. 1.26 0.75 19.57 25.16
+ Lemc (ours) + BMC 1.13  0.78 18.42 10.31

Table 8: Datasets used by prior work for evaluation on D+0O. With solely fully-supervised
synthetic and weakly-supervised real data, we outperform recent works and perform
on par with [48]. All other works rely on full supervision from real and synthetic data.
*These works report unaligned results.

Annotations used

D+0 Synth. Real Scans AUC 1
Ours (weakly sup,) - ______________3D 2Donly | 082
Zhang (2019) [48] 3D 3D 3D | 0.82
Boukhayma (2019) [5] 3D 3D 3D | 0.76
Igbal (2018)* [19] 3D 3D 0.67
Back (2019)* [4] 3D 3D 3D | 0.61
Zimmermann (2018) [50] 3D 3D 0.57
Spurr (2018) [36] 3D 3D 0.51
Mueller (2018)* [26] 3D Unlabeled 0.48

5.5 Bootstrapping with Synthetic Data

We validate Lgmc on the test set of FH and HO-3D. We train the same four
models like in Sec. 5.3 using fully supervised RHD and weakly-supervised real
data Re[FH,HO-3D].

For all results here we perform training on the full dataset and evaluate on the
official test split via the online submission system. Additionally, we evaluate the
cross-dataset performance on D+O dataset to show how our proposed constraints
improves generalizability and compare with prior work [4,5,19,26,48].

FH. The second column of Tab. 7 shows the dataset performance for R = FH.
Training solely on RHD (3Dgrup) performs the worst. Adding real data (+2Dpp)
with 2D labels reduces the error, as we reduce the real/synthetic domain gap.
Including the proposed Lmc results in an accuracy boost.

HO-3D. The third column of Tab. 7 shows a similar trend for R = HO-3D.
Most notably, our constraints yield a decrease of 14.85 mm for INTERP. This is
significantly larger than the relative decrease the 2D data adds (-8.41mm). For
EXTRAP, BMC yields an improvement of 1.15mm, which is close to the 1.27mm
gained from 2D data. This demonstrates that Lgnc is beneficial in leveraging
2D data more effectively in unseen scenarios.

D+O0. In Tab. 8 we demonstrate the cross-data performance on D+O for
R = FH. Most recent works have made use of MANO [4, 5,48], leveraging a
low-dimensional embedding of highly detailed hand scans and require custom
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synthetic data [4,5] to fit the shape. Using only fully supervised synthetic data and
weakly-supervised real data in conjunction with Lgmc, we reach state-of-the-art.

5.6 Bootstrapping with Real Data

We study the impact of our biomechanical constrains on reducing the num-
ber of labeled samples required in scenarios where few real 3D labeled sam-
ples are available. We train a model in a setting where a fraction of the data
contains the full 3D labels and the remainder contains only 2D supervision.

Here we choose R = FH, use the
entire training set and evaluate on the
test set. For each fraction of fully la-
belled data we evaluate two models.
The first is trained on both the fully
and weakly labeled samples. The sec-
ond is trained with the addition of
our proposed constraints. We show the 2000 2000
results in Fig. 5. For a given AUC, i it o7 007
we plot the number of labeled sam-

g000 | WM BMC
N no BMC 7327 7327

1.91x
less data
4000 4 3810

Number of 3D samples

3000 4 2.00x%
less data
1993 1993

2.00x

0.78

ples required to reach it. We observe ) ' Alaned AUC
that for lower labeling percentages, the
amount of labeled data required is ap-
proximately half using Lpmc. This
showcases its effectiveness in low label settings and demonstrates the decrease in
requirement for fully annotated training data.

Fig. 5: Number of 3D samples required to
reach a certain aligned AUC on FH.

6 Conclusion

We propose a set of fully differentiable biomechanical losses to more effectively
leverage weakly supervised data. Our method consists of a novel procedure to
encourage anatomically correct predictions of a backbone network via a set of
novel losses that penalize invalid bone length, joint angles as well as palmar
structures. Furthermore, we have experimentally shown that our constraints
can more effectively leverage weakly-supervised data, which show improvement
on both within- and cross-dataset performance. Our method reaches state-of-
the-art performance on the aligned D+0O objective using 3D synthetic and 2D
real data and reduces the need of training data by half in low label settings on FH.

Acknowledgments. We are grateful to Christoph Gebhardt and Shoaib Ahmed
Siddiqui for the aid in figure creation and Abhishek Badki for helpful discussions.
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Supplementary:
Weakly Supervised 3D Hand Pose Estimation
via Biomechanical Constraints

Here we provide additional implementation details and more experimental
comparisons. In Section 1 we describe details on how the angle loss is computed
and the joint angle interdependence is modeled. Section 2 repeats the ablation
study on additional datasets (HO-3D) to highlight the generalizability of results.
Section 3 demonstrates the effect of weak-supervision in two additional settings,
one using a real dataset as the fully-supervised data and the other using MPII in-
the-wild data as weak-supervision. Section 4 compares BMC to an adversarial loss.
Sections 5 and 6 provide additional results of bootstrapping via weak-supervision
with synthetic or real data. Section 7 shows further qualitative results of using
BMC. Sections 8 and 9 provide additional implementation details and results on
HANDS2019 challenge, respectively.

1 Joint angle loss

Joint angle ambiguity. The computation of the joint angles lead to ambiguities.
More specifically, two different vectors on the unit sphere may map to the same
joint angles.

For example, given two bones bf"’l = [1,0,1] and bfi’2 = [-1,0,1] in a
coordinate frame F;, we have using Pm(bf“l) = [1,0,1] and sz(bf"’Q) =
1,0, 1J:

00" = a(P.(br Y, 2:) = a([1,0,1], )
=7/4
67" = Py (b7 ), by )
= «([1,0,1],[1,0,1]) =0
07° = a(P.. (bl ?),2:) = a([-1,0,1], ;)
=r/4
072 = a(P,.(b; %), by ?)
= «([-1,0,1],[-1,0,1]) =0
Therefore, both bones map to the same angle pair (7/4,0). To resolve this, we

perform an octant look up. Given the flexion angle 6! and abduction angle 62
of bone i, we negate the respective angle if the bone lies within the negative
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z-octant or negative y-octant:

. {-9;.”, if b <0

i

6f, else @)
-6, ifbFi <0

0 = i

’ 0, else

Where bF

lﬁz,bfé is the x/y-component of the bone vector given in coordinates of
its local coordinate frame F;. This leads to angles in the range 6! € [-7, 7] and
0% € [-7/2,7/2] respectively.

Approximation of Convex Hull. Fig. 1 plots the distribution of the
pinkys MCP flexion/extension angles of the FH dataset, visualized as red
points. The red rectangle corresponds to the valid range of angles when con-
sidering both angle limits independently. Hence the corners correspond to
(min{ ,minf), (min{ ,max?), (maxfr , maxlf ), (maxlf ,min?) in counter-clockwise or-
der, where mini-€ , maxf corresponds to the minimum/maximum of angle 9?, where
k€ {a, f}.

In order to take the dependence of the angle limits in account, we first compute
the convex hull of the angle points. However, depending on the shape of the
point cloud, the number of points lying on the hull can vary and be numerous. In
order to keep the number of hull points low and consistent for all joint angles, we
approximate this hull in two steps. We first employ the Ramer-Douglas-Peucker
algorithm, a polygon simplification algorithm. This significantly reduces the
number of vertices in the hull, but still results in a variable number. To ensure
consistency, we apply a greedy algorithm that iteratively removes points such
that the hull encompasses as many points as possible until we reach the desired
number of points, resulting in our approximation ;. For all our experiments,
we set number of points to be 10. The green polygon in Fig. 1 displays this
approximation to the convex hull.

Distance computation. To compute the distance H;, we compute two
values. The first indicates if an angle point 6; is contained within the hull. The
second corresponds to the distance to the hull. Here we detail how we compute
both values. For ease of notation, we assume that the points in H; are ordered
counter-clockwise beginning from any point in #;. Let H; ;, be the k-th point in
H;. An edge vj of the hull is given as:

Vi = Hik+1 — Hiks for k € [1, 10]

3
wy=60; —H;, for ke [1, 10] )

Where we define H; 11 = H;,1 to wrap around the hull.

To compute if a point 6; is contained within H;, we exploit the convexity
of the hull and make use of the cross-product. Specifically, we compute the 2D
cross-product between v and wy. Intuitively, if the cross-product wy x vy is
positive for any given edge k, then the angle point lies outside of the hull. If its
negative for all, it is contained within. If it lies on the hull, we consider it to be
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Fig. 1: (%, 6*)-plane. Green: H;. Red: min/max-box

contained within it. More formally:

c= H]l(kaVk)SO (4)

To compute the distance of 8; to the hull, we compute its distance to each
edge and take the minimum. Given edge v and point 6, their distance is the
minimum distance between either endpoints of v, or the projection of wy onto
vi. Formally:

¢ = max(0, min(1, wl've/|[vi|13)
Pr = Hix +tvi (5)
D(v,0;) = | cos(0;) — cos(px)| + |sin(8;) — sin(py)|

Where the min/max ensures that we do not extend beyond the endpoints of vy.
Given the distance to the edge, we can compute the distance to the hull H;:

D(0;,H;) = mkinD(Vk,Oi) (6)

This formulation computes the distance towards H;, whether the point is con-
tained or not. We do not want to penalize points that lie within the hull, as that
constitutes our range of valid angles. Therefore we make use of the quantity c
computed in Eq. 4, which leads to the final angle loss function:

Da(0;,H:) = (1 —1.)D(6;,Hi) (7)

This returns a loss of 0 if the angle point 0; is contained, otherwise it returns
the distance to the approximation of the convex hull #H;. This constitutes our
angle loss for bone 1.

2 Ablation study

We repeat the ablation study with the HO-3D dataset. All evaluations are done
on a custom split, where we manually extract two sequences for the test and use
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the remainder for the training set. Each error is computed for the root relative
case.

Refinement network. We train two models using full supervision on HO-3D
(3Duosp). The first model (w/o refinement) does not use the proposed refinement
network, whereas the second does (w.refinement). We showcase the performance
difference in the first row of Tab. 1. We note a reduction of 2.97mm mean error
when using the refinement network.

BMC ablation. We study the individual contribution of the BMC losses. We
bootstrap the 3D annotation from synthetic data and use only the 2D annotation
of HO-3D. The first model constitutes our baseline, which is trained only on
that data (3Dgrup + 2Dnosp). We incrementally add the bone length loss Ly,
the root bone loss Lrp and lastly the angle loss £4. We train a fully supervised
model (3Dgrup + 3Dnosp) which is our upper bound. We refer to the second
section of Tab. 1. Each loss contributes towards a reduction in mean error,
culminating in a total decrease of 5.21mm as compared to our 2D only baseline.

Co-dependency between angles. We train two models. The first models
the angle limits independently, whereas the second takes the dependency of the
limits into account. The resulting performance is shown in Tab. 1. We note a
minor performance degradation. We attribute this to the extremely limited angle
range contained in the HO-3D dataset. As it contains subjects holding various
object in a gripping pose while rotating it in front of the camera, the actual
angles of the fingers do not change. Therefore the range of angles across the
dataset is low, which leads to a very tight angle limit. This does not generalize
well, which in turn hurts performance. Fig. 2 displays the angle-plane plot for
HO-3D using the pinkys MCP flexion/extension angles. Comparing with Fig. 1,
which plots the plane for the same finger for FH, we see that the resulting range
of HO-3D is a lot more severely limited. This is to be expected, as HO-3D is a
very constrained dataset due to the aforementioned reason.

BMC limits. We study the effect of approximating the BMC limits when us-
ing a different dataset to compute these values. We compute the hand parameters
from RHD and perform the same weakly-supervised experiment as previously
(83Dgrup + 2Dnosp). As can be seen in the last row of Tab. 1, we note a slight
increase in loss, however it still clearly outperforms the 2D baseline in mean error
(18.50 mm vs 23.71 mm).
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Table 1: Ablation studies on validation split of HO-3D. The models of the first section
was trained on our train split of HO-3D.

3D Pose Estimation (root-relative)
HO-3D EPE (mm)

mean | median | AUCT
Effect of Z"°°" refinement
w/o refinement 25.34 24.39 0.79
w. refinement 22.37 23.01 0.83
Effect of BMC components
8Dgup +2Dwoso . _ _ _ _ _ _ _ ___ __ ______237 2200 078
+ LpL 22.15 20.27 0.80
+ Lre 18.83 17.79 0.87
L + LA _ _ _ _ _ _ _______________s5 1741 087 _
3Dgrup + 3Dnosp 16.74 16.94 0.89
Effect of angle co-dependency
Independent 18.30 17.40 0.87
Dependent 18.50 17.41 0.87
Effect of BMC limits
Approximated 19.21 17.88 0.86
Computed 18.50 17.41 0.87

3 Effect of Weak-Supervision

We repeat the experiments of Section 5.3 in the main paper using different
datasets. We show that the effect of weak-supervision also holds when using fully
labeled real data or weakly-labeled in-the-wild data.

STB. We reproduce the results of Section 5.3 in the main paper, but instead
of using RHD we use STB [47] as the fully supervised dataset. The weakly-
supervised dataset remains FH. The purpose of this experiment is to demonstrate
that the effect of weak supervision also takes place when using a real dataset for
full supervision. Table 2 (top) shows the result.

MPII - in-the-wild dataset. We reproduce the results of Section 5.3 in
the main paper, but using MPII [35] as our weakly-supervised dataset. This is
to demonstrate the effect of weak-supervision stemming from datasets collected
in-the-wild, a potentially useful supervision source. We evaluate on the validation
split of FH. Table 2 (bottom) shows the result. Note that as the MPII dataset
only contains 2D labels and no 3D annotation is provided, the fully supervised
upper bound cannot be performed and is therefor omitted from the table.

4 Comparison with Adversarial loss

It is intuitive to think of drawing parallels between BMC and an adversarial loss.
BMC can be interpreted as a discriminator penalizing poses that do not adhere
to the distribution of valid hand poses. However, BMC models the task at hand
more closely and only requires the limits, whereas a discriminator requires access
to a full dataset of 3D poses. In order to see how a discriminator performs against
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Table 2: This table show-cases the same effect of weak-supervision as Table 2 in
the main paper but evaluated in different settings. All models are evaluated on the
validation split of FH. (top) We use STB as the fully labeled dataset and supplement
is using weakly-labeled FH. (bottom) We use RHD as the fully labeled dataset and
MPII as the weakly-supervised data. The same trend can be observed in both settings.
Adding weakly-supervised data improves 3D prediction performance due to predicted
3D poses with the correct 2D projection. By incorporating our proposed biomechanically
constraints we significantly improve 3D pose accuracy due to more accurate Z. Note
that as the MPII dataset only contains 2D labels and no 3D annotation is provided,
the fully supervised upper bound cannot be performed and is therefor omitted from the
table.

Effect of weak-supervision Description mean |
2D (pixel) Z (mm) 3D (mm)

3D labels: STB

3DstB + 3Dru Fully supervised, real 3.85 5.68 9.05
+ LeMmc (ours) + BMC 3.83 5.50 8.89
3Dsts T 7 Fully sup. Tower bound ~ ~ = | ~ 2045 ~ ©36.80 ~ 54.927
+ 2Dgyg + Weakly supervised, real 3.86 35.41 42.02

+ Lsmc (ours) + BMC 3.88 11.17 18.58

2D labels: MPII

3DRruD Fully supervised, synthetic only 12.35 20.02 30.82
+ 2Dwnp1r + Weakly supervised, real 10.36 19.77 28.81
+ Lemc (ours) + BMC 10.35 17.72 27.10

BMC, we perform an experiment in the same setting as the ablation study. We
train on fully supervised RHD and weakly-supervised FH, and evaluate on the
validation split of FH. As it has not been shown if and how the adversarial loss
works for the task of 3D hand pose estimation, we adapt a model from literature
applied to 2D body pose [13]. In order to adjust to the new setting, we performed
a search for the optimal hyperparameters to improve the performance of the
discriminator. We show the results in Table 3. As can be seen, BMC outperforms
the adversarial loss. We hypothesise this is due to BMC modeling the task at
hand more closely.

5 Bootstrapping with Synthetic Data

We show the full results of the online evaluation on FH and HO-3D in Table 4.

6 Bootstrapping with Real Data

Tab. 5 shows the full result of Bootstrapping with real data, as evaluated by the
online submission system !. Recall that we assume the remainder of the data to
be weakly-supervised, i.e it contains the 2D annotation. We list the exact number

! https://competitions.codalab.org/competitions/21238
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Table 3: We compare using BMC to an adversarial loss adapted from [13]. BMC
outperforms the adversarial loss. We hypothesise this is due to BMC modeling the task
at hand more closely.

3D Pose Estimation (root-relative)
Comparison to adversarial loss Description EPE (mm)

mean | median | AUCT
3Dgrup + 2Drn Baseline 20.92 16.93 0.81
3DRrup + 2Dru + LBMC BMC 15.48 13.49 0.91
3Dgrup + 2Dy + Ladv Adversarial 17.60 14.38 0.87

Table 4: Bootstrapping results on the respective test split, as evaluated by the online
submission system. Results are given in mm.

c aligned unaligned

FH Description mean | AUC 1t mean | AUC 1
Zimmermann et al. [51] fully supervised FH 1.10 0.78 7.13 0.19
3Dgrup + 3Dru fully supervised RHD/FH 0.90 0.82 7.54 0.20
3DRruD fully supervised RHD 1.60 0.69 15.15 0.06
+ 2Drn + weakly-supervised FH 1.26 0.75 13.02 0.14

+ LsMmc + BMC 1.13 0.78 10.39 0.15
HO3D Description EXTRAP | INTERP | OBJECT | SHAPE |
3DRrup + 3DyosD fully supervised HO3D 18.22 5.02 16.56 10.79
3DRruD fully supervised RHD 20.84 33.57 35.08 23.94
+ 2Dyosp + weakly supervised HO3D 19.57 25.16 25.79 21.05

+ LBMmc + BMC 18.42 10.31 19.91 12.51

of 3D labeled samples used, in addition to the percentage wrt. to the entire
dataset it corresponds to. Note that the percentage values have been rounded for
readability, but the number of samples is exact. We divide the table according to
three categories a) Aligned / Unaligned - Procrustes analysis is used to align
before computing the score b) Mean / AUC - The AUC is given for PCK values
that lie in an interval from 0 mm to 50 mm with 100 equally spaced thresholds.
¢) With / Without BMC - Using our proposed biomechanical constraints.
We first focus on the aligned results. Using BMC, the required amount of 3D
annotated data for a given AUC is approximately halved. This trend continues for
labeling percentages up to ~ 13%. For example, to achieve the same performance
as a model that is trained without BMC on 3810 3D labeled data samples, BMC
achieves the same performance with 1993 3D labeled samples, roughly half the
amount.

A similar trend can be observed for the unaligned score. For labeling per-
centages up to 6.8% (1993), the required amount of data to reach the same
performance is approximately halved (997).

7 Qualitative results

We show qualitative results of the Bootstrapping with Synthetic Data experiment
in Fig. 3. We display the predicted JP of both 3Drup + 2Drn (w/0o BMC) and
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Table 5: Scores as evaluated on the online submission system. The first column denotes
the percentage (in brackets) of 3D annotated samples used during training, where the
remainder is annotated only with 2D labels. Note that the percentages are rounded,
but the number of samples are exact. + indicates the model trained with BMC,
— indicates the model trained without it.

FH +: with BMC (ours) Aligned Unaligned
—: without BMC mean | AUC1T mean| AUC?Y
3D samples: Number 3D samples: Perc. -  + - 4+ - 4+ - 4+
1 (3.4e-3%) 1.96 1.64 0.62 0.68|34.8618.400.08 0.11
5 (0.017%) 1.85 1.41 0.64 0.72(26.4015.260.11 0.13
14 (0.045%) 1.78 1.39 0.65 0.73(25.2412.980.11 0.13
27 (0.094%) 1.75 1.34 0.66 0.73(23.9011.930.12 0.14
127 (0.43%) 1.54 1.24 0.70 0.76|21.8312.080.13 0.16
499 (1.7%) 1.23 1.18 0.76 0.77(11.6810.880.17 0.18
997 (3.4%) 1.14 1.12 0.77 0.78(9.85 9.42 0.18 0.19
1993 (6.8%) 1.10 1.07 0.78 0.79(8.83 8.75 0.19 0.20
3810 (13%) 1.06 1.04 0.79 0.79(8.01 7.90 0.21 0.21
7327 (25%) 1.02 1.01 0.80 0.80(7.91 7.84 0.21 0.21
14653 (50%) 0.99 1.00 0.80 0.80|7.46 7.56 0.22 0.22
29305 (100%) 0.98 0.98 0.81 0.81|7.18 7.18 0.23 0.23

3Dgup + 2Dpy + Lemc (w. BMC). Two views are shown. The first displays
the view from the front or camera view (looking in direction of the z-axis), the
second shows the view from the top of the world space, looking down (looking in
the opposite direction of the z-axis). Additionally, we plot the 2D predictions
of both models, where green corresponds to without BMC and red is the model
using BMC.

We see that despite both models predicting accurately the 2D pose, its pre-
dicted 3D pose are different. Not using BMC, the model predicts bio-physically
implausible poses. This is due to unseen 3D poses, views and occlusions. Addi-
tionally, the 3D component of the model has only been trained on synthetic data.
For example, RHD does not contain object occlusions or ego-centric views. Using
BMC, our model can better adapt its depth-component during training to these
unseen 3D poses, resulting in more accurate predictions.

8 Architecture and training

We use a standard ResNet-50 network for our backbone. We replace the last linear
layer to output a 21 x 3 dimensional vector. The first two dimensions correspond
to the 2D keypoints, whereas the last layer corresponds to the root-relative depth
AN

Our Z*°°! refiner consists of a three layered MLP, using leaky ReLU non-
linearity. We used BatchNorm in between all layers except the last. For the
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Fig. 3: Qualitative results of the Boostrapping with Synthetic Data experiment. Testing
performed on custom split of FH. Fig. 3a: We see that the model trained without BMC
(green), as well as the model trained with BMC (red), perform equally well on the 2D
prediction task. Fig. 3d, Fig. 3g show the ground-truth joint skeleton from the camera
view, as well as the "top” view looking down, respectively. Fig. 3b and Fig. 3e show the
3D predictions of the model trained fully supervised on RHD and weakly-supervised on
FH. Despite the accurate 2D predictions, the 3D pose is incorrect, displaying implausible
bio-physical poses. Fig. 3c and Fig. 3f show the result of incorporating BMC into the
model. The predictions are kinematically and structurally sound, and as a result closer
to the ground-truth predictions.
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Table 6: Architecture of the refinement network. It takes the predicted and calculated
values z" € R*', K~'J?P ¢ R*'*3, Z7°° ¢ R and outputs a residual term r such that

Sroot __ rrroot
ref — Z +r

Refinement Network
Linear(85, 128)
LeakyReLU(0.01)
BatchNorm
Linear (128, 128)
LeakyReLU(0.01)
BatchNorm
Linear (128, 1)

Table 7: HANDS2019 challenge results on the test split of HO-3D, as evaluated by
the online submission system. All methods were trained only on HO-3D. We show the
top four submission. The winner was selected based on the extrapolation score. Results
are given in mm.

HO-3D EXTRAP | INTERP | OBJECT | SHAPE |
Ours 24.74 6.70 27.36 13.21
Nplwe 29.19 4.06 18.39 15.79
lin84 31.51 19.15 30.59 23.47
Hasson et al. [16]  38.42 7.38 31.82 15.61

cross-dataset evaluation, we empirically found that not using BatchNorm resulted
in better accuracy. The exact architecture using BatchNorm is listed in Tab. 6.
The network was trained for 70 epochs using SGD with a learning rate of
He-3 and a step-wise learning rate decay of 0.1 after every 30 epochs.
We set the weight values as follows: Aoap = 1, Azr = 5, Agreot = 1. For all
experiments using BMC, we set the individual weights of the losses as follows:
AprL = 0.1, Aggp = 0.1, Ay = 0.01

9 HANDS2019 challenge

The HANDS2019 challenge? was organized to evaluate cutting edge methods
for 3D hand pose estimation. The rules of challenge task #3 required us to
train solely on the HO-3D dataset. We trained the proposed model without
auxiliary losses. The refinement step was vital for achieving the first place of the
competition, demonstrating the performance of the underlying backbone model.

2 https://competitions.codalab.org/competitions/21116



