
Deep Image Compression using Decoder Side
Information

Sharon Ayzik and Shai Avidan

Dept. of Electrical Engineering
Tel Aviv University

ayziksha@mail.tau.ac.il , avidan@eng.tau.ac.il

Abstract. We present a Deep Image Compression neural network that
relies on side information, which is only available to the decoder. We
base our algorithm on the assumption that the image available to the
encoder and the image available to the decoder are correlated, and we
let the network learn these correlations in the training phase.
Then, at run time, the encoder side encodes the input image without
knowing anything about the decoder side image and sends it to the de-
coder. The decoder then uses the encoded input image and the side
information image to reconstruct the original image.
This problem is known as Distributed Source Coding (DSC) in Informa-
tion Theory, and we discuss several use cases for this technology. We com-
pare our algorithm to several image compression algorithms and show
that adding decoder-only side information does indeed improve results.
Our code is publicly available 1.

Keywords: Deep Distributed Source Coding, Deep Neural Networks,
Deep Learning, Image Reconstruction

Without SI 0.03199 bpp With SI (ours) 0.03019 bpp

Fig. 1: Reconstruction from very low bits per pixel (bpp). Our method that use
an additional Side Information (SI) image in the decoders’ side can restore fine
details as well as colors and textures that vanished as a result of the aggressive
compression rate. Note the small red car, the crosswalk, the building to the back
right side with the blue vehicle, and even the trees textures.

1Our code is available at: https://github.com/ayziksha/DSIN

ar
X

iv
:2

00
1.

04
75

3v
2

 [
cs

.C
V

]
 2

9
Ju

l 2
02

0

https://github.com/ayziksha/DSIN

2 S. Ayzik and S. Avidan

1 Introduction

Deep Image Compression uses Deep Neural Networks (DNN) for image com-
pression. Instead of relying on handcrafted representations to capture natural
image statistics, DNN methods learn this representation directly from the data.
Recent results show that indeed they perform better than traditional methods.

Ultimately, there is a limit to the compression rate of all methods, that is
governed by the rate-distortion curve. This curve determines, for any given rate,
what is the minimal amount of distortion that we must pay. We can break this
barrier by introducing side information that can assist the network in compress-
ing the target image even further.

Figure 1 gives an example of results obtained by our system. The left image
shows the results of a state-of-the-art deep image compression algorithm. The
right image shows the results of our method that relies on side information. As
can be seen, our method does a better job of restoring the details.

One can catalogue image compression schemes into three classes (see Fig-
ure 2). The first (top row) is a standard image compression scheme. Such a
network makes no use of side information, and the trade-off is governed by the
rate-distortion curve of the image.

Deep Video Compression (second row in Figure 2) goes one step further and,
in addition to natural image statistics, also relies on previous frames as side in-
formation that is available to both the encoder and the decoder. The availability
of this side information improves the compression ratio of video compared to
images. The limit of this scheme is bounded by the conditional probability of
the current frame given previous frames. This works well when the two frames
are correlated, as is often the case in video.

We consider a different scenario in which the side information is only avail-
able at the decoder side (third row of Figure 2). This is different from deep
video compression, where side information is available both to the decoder and
the encoder. It turns out that even in this case, the compression scheme can
benefit from side information. That is, DSC can, in theory, achieve the same
compression ratios as deep video compression, even though the side information
is not available to the encoder. But when does this scenario occur in practice?

It turns out that this DSC scenario occurs quite frequently, and here are
a couple of examples. Consider the case of a camera array. For simplicity, we
focus on a stereo camera, which is the simplest of camera arrays. The left and
right cameras of the stereo pair are each equipped with a micro-controller that
captures the image from the camera, compresses it, and sends it to the host
computer. Since both cameras capture the same scene at the same time, their
content is highly correlated with each other. But since the left and right cam-
eras do not communicate, they only communicate with the host computer and
can not use the fact that they capture highly correlated images to improve the
compression ratio. This puts a heavy burden on the host computer, which must
capture two images in the case of stereo camera and many more in the case of a
camera array.

Deep Image Compression using Decoder Side Information 3

Encoder Decoder� �̂

Encoder Decoder�
�̂

�

Encoder Decoder� �̂

(�)

(�)

(�)

�

Fig. 2: Different compression schemes. (a) Single image encoding-decoding. (b)
Video coding: joint encoding-decoding. The successive frame Y is used as side in-
formation. (c) Distributed source coding - image X is encoded and then decoded
using correlated side information image Y .

Now suppose that the left camera transmitted its image to the host com-
puter and the right camera as well. Then the right camera can encode its image
conditioned on the left image and transmit fewer bits to the host computer. This
reduces the burden on the host computer at the cost of sending the left image
to the right camera. Distributed Source Coding theory tells us that we do not
have to transmit the image from the left camera to the right camera at all, and
still achieve the same compression ratio. When considering a camera array with
multiple cameras, the savings can be substantial.

Camera arrays are assumed to be calibrated and synchronized, but we can
take a much more general approach. For example, a group of people taking
pictures of some event is a common occurrence nowadays. We can treat that as
a distributed, uncalibrated, and unsynchronized camera array. Instead of each
person uploading his images to the cloud, we can pick, at random, a reference
person to upload his images to the cloud and let the rest of the people upload
their images conditioned on the reference images.

Taking this idea one step further, we envision a scenario in which before
uploading an image to the cloud, we will first transmit the camera’s position
and orientation (information that is already collected by smartphones). As a
result, the cloud will be able to select existing images that are only stored in the
cloud to use as side information.

Our approach is using recent advances in deep image compression, where we
add side information to the decoder side. During training, we provide the network
with pairs of real-world, correlated images. The network learns to compress the
input image, and then add the side information image to help restore the original
image. At inference time, the encoder is used for compressing the image before
transmitting it. The rest of the network, which lies at the receiver side, is used
by the decoder to decode the original image, using the compressed image and
the side information image. To the best of our knowledge, this is the first time
Deep Learning is used for DSC in the context of image compression.

4 S. Ayzik and S. Avidan

We evaluate our system on two versions of the KITTI dataset that are de-
signed to simulate some of the scenarios described earlier. In the first, we use the
KITTI Stereo dataset to simulate the scenario of a camera array (in this case, a
stereo camera). In the second case, we use pairs of images from the KITTI Stereo
dataset that are taken several frames apart. This case is designed to simulate
the scenario where an image is uploaded to the cloud, and some other image,
from the same location, is used as side information.

Our experiments show that using the side information can help reduce the
communication bandwidth by anywhere between 10% and 50%, depending on
the distortion level and the correlation between the side information image and
the image to be compressed.

2 Related work

Deep compression: Using DNN in many applications has gained much popu-
larity in recent years, the same goes for the task of image compression. Common
usage of DNN for the task of compression are RNNs [28,29] and auto-encoders
[36,4,19]. The networks are usually designed in an end-to-end manner, aiming
to minimize the final loss on the decompressed image.

Toderici et al . [28,29] used progressive image compression techniques and
tested various types of recurrent neural networks to create a hybrid network
that extracts a binary representation code using an entropy coder. Ballé et al .
[4] used quantization rather than binarization. Theis et al . [27] use a simple ap-
proximation to replace the rounding-based quantization, in addition to bounding
the discrete entropy loss. And Mentzer et al . [19] use an auto-encoder and a con-
text model that learns to asses the distribution of the bitstream in addition to
an importance map to improve performance.

Recent work by Agustsson et al . [3] suggests using GAN based architecture to
break the rate-distortion bounds. They encode the image with fewer bits than
what is dictated by the rate-distortion curve. Then they use a GAN, on the
decoder side, to synthesize a similar image that is visually pleasant.

Building on the success of Deep image compression schemes, we witnessed
the emergence of Deep video compression schemes. Early work replaced various
steps in the video compression scheme with a DNN counterpart. For example,
Lu et al. [18] use a deep network to remove compression artifacts in the post-
processing step. Tsai et al. [30] use an auto-encoder to compress the residuals
of an H.264 encoder. Wu et al. [34] treat video compression as a repeated image
interpolation and build a full network for that. Recently, Lu et al. [18] proposed
a network that replaces all the components of a video encoder with a single
end-to-end architecture.

Distributed Source Coding: Distributed Source Coding (DSC) started with
the groundbreaking result of Slepian-Wolf [25,10] who proved that it is possible
to encode a source X given a correlated source Y even if Y is only available to
the decoder side. This result applied to the lossless case and was later extended

Deep Image Compression using Decoder Side Information 5

by Wyner-Ziv [35] to the lossy case by first quantizing the continuous signal and
then applying the Slepian-Wolf theorem.

Although the theory of DSC dates back to the ’70s, it was only 30 years
later that its first practical implementation was presented. One of the most
important works was done by Pradhan and Ramchandran - Distributed Source
Coding Using Syndromes (DISCUS) [23]. They presented a practical framework
for the asymmetric case of source coding with side information at the decoder,
based on sending the syndrome of the code-word coset for statistically dependent
binary and Gaussian sources.

Much of the work on DSC was in the context of light-weight video com-
pression. That is, instead of running a standard video compression scheme (i.e.,
MPEG) that requires motion estimation on the encoder side [17], DSC offers the
possibility of shifting the computational load from the encoder to the decoder.
This scheme is useful, for example, in the case of a smartphone that needs to send
a video to the cloud. For example, Girod et al . [2,1,12] focused on Distributed
Video Coding (DVC). The video sequence was split to odd and even frames,
the odd frames were used as side information at the decoder while Wyner-Ziv
coding was applied to the even frames.

In [31,8] the authors apply DSC to stereo images, in which one encoded image
is decoded with reference to side information derived from disparity-compensated
versions of the other image with the additional use of gray code.

3 Deep Distributed Source Coding For Images

Toy Example: To gain some intuition into the DSC problem, consider the
following toy example. Suppose X and Y are two 8-bit gray-scale images that
are known to be aligned such that pixel X(i) corresponds to pixel Y (i). Assume
image X is available to the encoder on the smartphone, and image Y is avail-
able to the decoder in the cloud. Transmitting X to the cloud requires 8-bits
per pixel. But what if the corresponding pixels, X(i), Y (i) are correlated? For
example, they satisfy the following correlation: |X(i) − Y (i)| ≤ 3. How can we
take advantage of this correlation? A moment of thought shows that given Y (i),
X(i) can only take seven different values, so we should hope to encode X(i)
using only 3 bits and not 8.

How can we do this in practice? Here is a numerical example. Let X(i) = 110
and Y (i) = 113. Consider the following DSC scheme: the encoder computes
6 = mod(X(i), 8) and sends the number 6 to the cloud using only 3 bits. The
modulo operation created a coset {6, 14, 22, ..., 102, 110, 118, ..., 254} of pixel val-
ues. Every element x of this coset satisfy the constraint that mod(x, 8) = 6.
And, by construction, the minimal distance between any pair of elements in the
coset is at least 8. Given these facts, the decoder knows that the unknown X(i)
must be one of the elements in the coset. It also knows that |X(i) − Y (i)| ≤ 3.
Given that Y (i) = 113, the decoder can deduce that X(i) must be 110. We have
encoded X using only 3 bits per pixel, instead of 8. Observe that the encoder

6 S. Ayzik and S. Avidan

did not know the value of pixel Y (i) that is only available to the decoder. The
prior information on the correlation between the two images is sufficient.

DSC for images: DSC was applied to video compression, where successive
frames are almost aligned. This near alignment was enough to assume that
patches in successive frames that are in the same location in the image plane
are correlated. Applying DSC to video compression did not get traction because
the side information (i.e., previous frame in the case of video) is known to the
encoder as well as the decoder.

Here, we consider the case where the two images are taken by two different
cameras at slightly different time steps. We assume that one camera uploads its
image to the cloud and then let the other camera upload its image conditioned on
the other image without ever having access to that image. The shift in space and
time is enough to render the alignment assumption useless. We can no longer
assume that the two images are aligned, nor that the layout of the images is
similar. For example, we would like two images containing a house next to a tree
to be correlated even if the tree is to the right of the house in one image, and is
to the left in the other.

One way to address this challenge is to break the two images into patches
and use patches to measure the correlation between the images. But this raises a
new problem- instead of having one (image) X and one (image) Y , we now have
multiple (patches) X and multiple (patches) Y . Now, if we use the coset trick,
then we don’t know which patch in Y to use since the images are not aligned.

We have conflicting demands. On the one hand, we need to transmit sufficient
information about a patch in X, to allow the decoder to pick the correlated patch
in Y . On the other hand, we only wish to transmit a code for the coset and let
the decoder use that, together with the corresponding patch in Y , to recover the
correct patch in X. We solve the DSC problem for images using DNN.

3.1 Architecture

The overall architecture of the network is given in Figure 3. The encoder has
access to the input image X, and the decoder has access to a correlated image
Y . Our architecture consists of two sub-networks, the first is an auto-encoder
designed for image compression and based on the model of Mentzer et al . [19].
It takes the input image X and produces the decoded image Xdec. The second
network takes the decoded image Xdec along with image Y and uses it to con-
struct a synthetic side information image Ysyn. The decoded image Xdec and
synthetic side information Ysyn are then concatenated and used to produce the

final output image X̂. The entire network, consisting of both sub-networks, is
trained jointly. Then, at inference time, the encoder uses the encoder part of the
auto-encoder sub-network, while the decoder uses the rest of the network.

It should be noted that the quantized latent vector Z̄ of our auto-encoder
network is not designed to reconstruct the original image X, nor is it designed
to create a coset from which the decoder can recover the correct X. Its goal is
to provide sufficient information to construct a good synthetic image Y that,

Deep Image Compression using Decoder Side Information 7

Encoder
�¯

SI-Decoder

Decoder�

����

���� 32
x3
x3
|1

32
x3
x3
|2

32
x3
x3
|4

32
x3
x3
|8

32
x3
x3
|1
6

32
x3
x3
|3
2

32
x3
x3
|6
4

32
x3
x3
|1
28

32
x3
x3
|1

3x
1x
1|
1

SI-Net

�

�̂

Autoencoder

SI-Finder

Fig. 3: Our network’s architecture. The image X is encoded to Z̄ and decoded
to the image Xdec using the auto-encoder model based on [19]. Xdec is used
to create Ysyn using the SI-Finder block that finds for each patch in Xdec, the
closest patch in Y . Xdec and Ysyn are concatenated (marked as ⊕) and forwarded

to the SI-Net block that outputs the final reconstruction - X̂. The SI-Net block
is based on [9] and uses convolution layers with increasing dilation rates that
approximate enlarged convolutions receptive field. C × K × K notation in the
SI-Net block refers to K ×K convolutions with C filters. The number following
the pipe indicates the rate of kernel dilation.

together with the decoded image Xdec, can be used to recover the final result
X̂. This means it should reconstruct an image Xdec that has sufficient details to
search for good patches in Y that are as correlated, as much as possible, with
their corresponding patches in X.

Formally, image compression algorithms encode an input image X to some
quantized latent representation Z̄ from which they can decode a reconstructed
image Xdec. The goal of the compression is to minimize a distortion function.
The trade-off between compression rate and distortion is defined by:

d(X, X̂) + βH(Z̄) (1)

where H(Z̄) is the entropy of Z̄ (i.e., the bit cost of encoding Z̄), d(X, X̂) is the
distortion function and β is a scalar that sets the trade-off between the two.

3.2 Using Side Information

We wish to minimize (1) given a correlated image Y that is only available to the
decoder. To do that, we wish to create an image Ysyn from Y that is aligned with
X. Let f encode the offset of every patch in Xdec to its corresponding patch in
Ydec, where Ydec is the result of passing Y through the auto-encoder:

f(i) = argmax
j

corr(π(Xdec(i)), π(Ydec(j))) (2)

where corr(·) is a correlation metric, π(Xdec(i)) is the patch around pixel
Xdec(i). Then the synthetic image Ysyn is given by:

Ysyn(i) = Y (f(i)) (3)

8 S. Ayzik and S. Avidan

���� ����

���� �

����

SI-Finder

�

����

Encoder

Decoder

Fig. 4: SI-Finder block illustration. This block receives Xdec and Y images,
projects Y to the same plane as Xdec by passing Y through the auto-encoder
in inference mode to receive Ydec. Each non-overlapping patch in image Xdec is
compared to all possible patches in Ydec. The location of the maximum correla-
tion patch in Ydec is chosen, and the corresponding patch is taken from Y image.
Finally, the patch is placed in Ysyn in the corresponding Xdec patch location.

That is, Ysyn is a reconstruction of X from Y . We perform this reconstruction
step in the SI-Finder block, which is illustrated in Figure 4. It receives the
images Xdec and Y . We then pass Y through the auto-encoder to produce Ydec
(this is only done at inference mode, so the encoder does not learn anything
about Y). We do this since we found that matching Ydec with Xdec works better
than matching Y with Xdec. Then, the SI-Finder compares each non-overlapping
patch in Xdec to all possible patches in Ydec. This creates a (sparse) function
f that is used to create Ysyn from Y . It should be noted that the SI-Finder is
implemented as part of the network graph using CNN layers but is non-trainable
since the CNN kernels are the image Xdec.

Eventually we feed Xdec and Ysyn to the SI-Net block and let it try to recon-
struct X. Since we use concatenation of Xdec to the side information image Ysyn
during training, we must maintain a reconstruction loss over Xdec. Therefore,
the total rate-distortion trade-off from (1) is set to be:

(1− α) · d(X,Xdec) + αd(X, X̂) + βH(Z̄) (4)

where α denotes the weight for the final system’s output X̂, and the total dis-
tortion weight sums to 1 in order to maintain the balance between the distortion
and the rate.

4 Experiments

In the following section, we discuss the datasets we use and the training proce-
dure in 4.1, and then present the results of our experiments in 4.2. A detailed
example regarding our chosen prior, images from our constructed dataset, and
additional visual results appear in the supplementary material.

Deep Image Compression using Decoder Side Information 9

4.1 Implementation details

Datasets: We constructed our datasets from the KITTI 2012 [11] and KITTI
2015 [20,21] datasets to approximate the two settings discussed in section 1.

The first termed KITTI Stereo, consists of 1578 stereo pairs taken from the
calibrated stereo cameras in the KITTI stereo datasets (i.e. a pair of two images
each taken at the same time from a different camera). It is designed to illustrate
the calibrated and synchronized camera array use case.

The second termed KITTI General, consists of 789 scenes with 21 stereo pairs
per scene taken sequentially. We constructed the dataset from pairs of images
where one image is taken from the left camera and the second image from the
right camera, but now, the images are taken from different time steps, in our
case, 1 to 3 time steps apart. In this dataset, the images are taken up to ∼ 9
meters apart. As a result, objects between the two images can change scale,
position, or even not appear at all. This dataset is designed to simulate a much
more general case where images are only loosely co-located in space or time.

Evaluation criteria: Following [15,19,24,28] we evaluated our results by an
averaged rate-distortion curve using MS-SSIM [33], which is reported to correlate
better with human perception of distortion than mean squared error (MSE) and
variants such as PSNR especially in cases where distortion is large [22,14].

Training: We implemented our model in TensorFlow. For each dataset and bit
rate in the range of 0.02 to 0.2 bpp, we trained the baseline model (i.e., auto-
encoder only) according to the training details in [19], using L1 reconstruction
loss (we found that training using the MS-SSIM loss for the low bit rates, suffers
from instabilities and failed to reach the desired bit rates. In contrast, the L1

loss led to shorter training time and better stability of the algorithm). Then
we trained the full model with image size of 320 × 960 for 300K iterations
(which took around 24h per model on a single GPU), using the pre-trained
auto-encoder weights as initialization and L1 loss on both the auto-encoder and
the final output - X̂ with the trade-off weight α = 0.7 from (4). We used Adam
[16] optimizer with an initial learning rate of 1 · 10−4 and a batch size of 1 (i.e.,
each iteration included a pair of images X,Y). When training the full model,
the original image size was used to enable the SI-Finder module full freedom of
choice for locating the best patch possible for any given patch of Xdec. As for
the SI-Finder block, we used a patch size of 20× 24, and the similarity measure
between patches was chosen to be the Pearson correlation on color transformed
images according to [7]. We tested our models on 790 images for KITTI Stereo
and 556 for KITTI General with size of 320× 1224.

4.2 Results

We compared our baseline model without side information (i.e., auto-encoder
only) to the model trained with side information. In addition, we compare our-
selves to JPEG 2000 [26] and to BPG [6] (HEVC based image codec that sur-
passed all other codecs in the past). For BPG, we used the non-default 4:4:4

10 S. Ayzik and S. Avidan

KITTI Stereo KITTI General

Fig. 5: Rate-Distortion curve - MS-SSIM as a function of bit rate on both
datasets. We outperform the baseline model (without side information) as well
as BPG and JPEG 2000. Note the substantial amount of bits that can be ’saved’
by our method. For example, in KITTI Stereo, looking at the same value of 0.93
MS-SSIM, it can be seen that instead of sending 0.05 bpp (using the baseline
model), one can send 0.03 bpp, meaning 40% reduction.

chroma format following [24]. We also compared our results to JPEG [32] and
WebP [13], but they failed to reach our low bit rates and therefore are not shown
here. We focus on low bit rates because they demonstrate the power of DSC to
leverage the side information.

Following [19], and to perform a fair comparison, for each image in the test
set, we extracted the sets of matching bpps and MS-SSIM measurements. Since
each image has a different rate-distortion curve, we created for each image an

JPEG 2000 BPG Without SI With SI (ours)

0.04326 bpp 0.04841 bpp 0.04439 bpp 0.04310 bpp

0.05310 bpp 0.05594 bpp 0.05257 bpp 0.05210 bpp

Fig. 6: Exaamples for images compressed using the different codecs. Top row:
KITTI Stereo, bottom row: KITTI General.

Deep Image Compression using Decoder Side Information 11

Fig. 7: Correlation vs. Side-Information contribution on the KITTI General
dataset. x-axis is the Pearson score between X and Ysyn. y-axis is the improve-
ment percentage of MS-SSIM between with and without side information models.
Each curve represents a model trained to a different target bpp. As can be seen,
higher correlation leads to better reconstruction results.

interpolated curve and averaged the curves for all test images using a dense bpp
grid. We did the same for the baseline model, BPG and JPEG 2000.

We report the results in Figure 5. As can be seen, our method (using side in-
formation) outperformed all compared methods. The gains are quite substantial.
For example, In the KITTI Stereo dataset at MS-SSIM score of 0.94, the bpp
rate drops from about 0.08 bpp using no side information to about 0.065 bpp
using side information, a drop of nearly 20%. The drop is even larger compared
to other methods.

In addition, when comparing the two datasets, KITTI Stereo achieved greater
improvement than KITTI General when using side information. This is aligned
with the theory stating that the more correlated X and Y , a more significant
improvement can be achieved.

In Figure 6, we visually compare reconstructed images compressed using our
approach to the model without side information as well as to JPEG 2000 and
BPG. It can be seen that using side information improves the reconstruction -
new details that were lost due to the compression are recovered as well as the
color that was lost in the quantization process.

Correlation test: The DSC theorem implies that as the correlation between X
and Y increase, so does the contribution of Y in reconstructing X. We have seen
this indirectly when analyzing the results of KITTI Stereo and KITTI General.

To measure this connection directly, we examined the relationship between
the correlation of (X, Ysyn) and the improvement in MS-SSIM, between the
model with and model without side-information. For each test image, we calcu-
lated the average Pearson correlation between non-overlapping patches of size
(20× 24) in X and their corresponding patches in Ysyn. We then computed the

ratio of the MS-SSIM score of the reconstructed image X̂ using the model with
side-information to that without. We followed this procedure for three tested

12 S. Ayzik and S. Avidan

KITTI Stereo KITTI General

Fig. 8: Comparison between models trained with and without a 2D Gaussian
mask. It can be seen that the results of KITTI Stereo were improved the most,
as expected when using the mask.

bpp rates and report the results in Figure 7. As expected, there is a direct link
between correlation and reconstruction improvement. A higher correlation leads
to better reconstruction results. While all curves show positive relation, each
curve (i.e., different bpp) has a different exponential growth. Therefore, provid-
ing Ysyn with a similar Pearson score results in a more significant improvement
for the lower bpp models. We argue that this behavior relates to the fact that
Pearson score is biased towards structures, i.e., the higher frequencies, which
effected the most at low bpps. By using this metric to create Ysyn, we provide
the structural information that is more beneficial in the lower bpps.

Guided Search: A major challenge in our technique is the matching step in
which we attempt to find the correct patch in Y for every patch in X. The results
so far are based on pure visual search. However, in some cases, we might have
additional information that can be used. In particular, we assume that given a
patch in X, its corresponding patch in Y should be roughly in the same location
in the image plane. We enforce this assumption using a 2D Gaussian mask that
helps weight patch similarity in the SI-Finder block. The mean of the mask is
taken to be the position of the patch in the image plane, and the variance of
the mask is roughly half image size in both axis. This encourages the SI-Finder
block to pick patches in Y from roughly the same location, in the image plane,
as the patch in X.

To verify the impact of the mask on our system, we trained the full model
using the SI-Finder block with and without the use of the mask. See Figure 8.
The use of the mask improved results for most bpp (except for a single point). In
Figure 9, we present an example of creating Ysyn with and without a 2D Gaus-
sian mask. As can be seen, the mask helps the algorithm pick better patches,
especially in smooth regions where the Pearson correlation score fails. For com-
parison, we tested PatchMatch [5] to recover side information by comparing
Xdec to Ydec and taking the patches from Y . This scenario is not practical be-

Deep Image Compression using Decoder Side Information 13

Original X Patch Match Ysyn without mask Ysyn with mask

Fig. 9: Different approaches to creating Ysyn. Left to right: originalX, PathMatch
based side information, Ysyn without and with a 2D Gaussian mask. As can be
seen, using the 2D Gaussian mask as a prior improved the creation of Ysyn.

cause PatchMatch does not run in the network, but it serves as a possible upper
bound. As can be seen, the recovered side information using PatchMatch, in
this case, looks much better. But upon close inspection, it can be seen that
the high-frequency details are distorted. We tested using PatchMatch based side
information and got results worst than the once reported here. Nevertheless,
we leave the integration of PatchMatch into our network as a possible future
research direction. In Figure 10 we share additional reconstruction examples
trained using the Gaussian mask and compressed to very low bit rates (that
BPG failed to reach) on KITTI Stereo.

Without SI

0.02518 bpp 0.03095 bpp 0.02530 bpp 0.03319 bpp

With SI (ours)

0.02459 bpp 0.02926 bpp 0.02384 bpp 0.03075 bpp

Fig. 10: Reconstruction examples from KITTI Stereo compressed using very low
bpp with and without the use of side information. Complete objects, fine details
and color are restored.

14 S. Ayzik and S. Avidan

KITTI Stereo KITTI General

Fig. 11: Comparsion between models that use additional siNet layers without SI
image, original Y image as side information and Ysyn (with the Gaussian mask).

4.3 Ablation study

Impact of SI-Net layers: In order to prove that the improved reconstruction
quality is a result of the side information and not an effect of the additional
learnable layers, we train our network with the additional layers, i.e. the SI-Net
layers, but without any use of side information Y . As can be seen in Figure 11,
adding layers (SI-Net block) has no effect on the reconstruction abilities of the
model. Therefore, it is clear that the model gain in performance results from
exploiting the additional information of the side information image.

Y instead of Ysyn: To demonstrate the benefit of Ysyn, we trained new models
(for all the bit rates) using the image Y ’as is’. That is, we concatenated the
image Y directly with Xdec and skipped the entire block of the SI-Finder. As
can be seen in Figure 11, when comparing the results to the model trained with
Ysyn, using Y as side information yields inferior results.

5 Conclusions

We proposed a novel Deep Image Compression neural network with decoder-only
side information. The proposed algorithm relies on the fact that it is possible
to improve the compression of an image at the encoder, given that there is a
correlated image available only at the decoder. To the best of our knowledge, we
are the first to apply Deep Learning techniques to the problem of Distributed
Source Coding for image compression. This scenario is quite common in practice,
and we considered two such cases. The first is the case of a camera array, and the
second is the case of uploading an image to the cloud, where similar images from
the same location are already stored. Experiments that were designed to mimic
these scenarios show that we can reduce communication bandwidth anywhere
between 10% to 50%. This demonstrates the advantages of our approach.

Acknowledgments This work was partly funded by ISF grant number 1549/19.

Deep Image Compression using Decoder Side Information 15

References

1. Aaron, A., Rane, S., Zhang, R., Girod, B.: Wyner-ziv coding for video: applica-
tions to compression and error resilience. Data Compression Conference pp. 93–102
(2003)

2. Aaron, A., Zhang, R., Girod, B.: Wyner-ziv coding of motion video. Asilomar
Conference on Signals, Systems and Computers 1, 240–244 (2002)

3. Agustsson, E., Tschannen, M., Mentzer, F., andLuc Van Gool, R.T.: Generative
adversarial networks for extreme learned image compression. International Confer-
ence on Computer Vision (2019)

4. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression.
International Conference on Learning Representations (2017)

5. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a ran-
domized correspondence algorithm for structural image editing. ACM Transactions
on Graphics 28(3) (2009)

6. Bellard, F.: BPG image format. https://bellard.org/bpg/ (2014)
7. Chambon, S., Crouzil, A.: Colour correlation-based matching. International Jour-

nal of Robotics & Automation 20 (2005)
8. Chen, D., Varodayan, D., Flierl, M., Girod, B.: Wyner-ziv coding of multiview

images with unsupervised learning of disparity and gray code. IEEE International
Conference on Image Processing pp. 1112–1115 (2008)

9. Chen, Q., Xu, J., Koltun, V.: Fast image processing with fully-convolutional net-
works. International Conference on Computer Vision pp. 2516–2525 (2017)

10. Cover, T.M.: A proof of the data compression theorem of slepian and wolf for
ergodic sources. IEEE Transactions on Information Theory 21(2), 226–228 (1975)

11. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. Computer Vision and Pattern Recognition (2012)

12. Girod, B., Aaron, A.M., Rane, S., Rebollo-Moneddero, D.: Distributed video cod-
ing. Proceedings of the IEEE 93(1), 71–83 (2005)

13. Google: WebP image format. https://developers.google.com/speed/webp/
14. Goyal, M., Lather, Y., Lather, V.: Analytical relation & comparison of psnr and

ssim on babbon image and human eye perception using matlab. International
Journal of Advanced Research in Engineering and Applied Sciences 4(5), 108–119
(2015)

15. Johnston, N., Vincent, D., Minnen, D., Covell, M., Singh, S., Chinen, T., Hwang,
S.J., Shor, J., Toderici, G.: Improved lossy image compression with priming and
spatially adaptive bit rates for recurrent networks. Computer Vision and Pattern
Recognition (2018)

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv
abs/1412.6980 (2014)

17. Le Gall, D.: MPEG: a video compression standard for multimedia applications.
Communications of the ACM 34(4), 46–58 (1991)

18. Lu, G., Ouyang, W., Xu, D., Zhang, X., Gao, Z., Sun, M.: Deep kalman filtering
network for video compression artifact reduction. European Conference on Com-
puter Vision pp. 591–608 (2018)

19. Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., Gool, L.V.: Conditional
probability models for deep image compression. Computer Vision and Pattern
Recognition pp. 4394–4402 (2018)

20. Menze, M., Heipke, C., Geiger, A.: Joint 3D estimation of vehicles and scene flow.
ISPRS-Image Sequence Analysis (2015)

https://bellard.org/bpg/
https://developers.google.com/speed/webp/

16 S. Ayzik and S. Avidan

21. Menze, M., Heipke, C., Geiger, A.: Object scene flow. ISPRS - Photogrammetry
and Remote Sensing (2018)

22. Ndajah, P., Kikuchi, H., Yukawa, M., Watanabe, H., Muramatsu, S.: Ssim im-
age quality metric for denoised images. Int. Conf. on Visualization, Imaging and
Simulation pp. 53–58 (2010)

23. Pradhan, S.S., Ramchandran, K.: Distributed source coding using syndromes (dis-
cus): Design and construction. IEEE Transactions on Information Theory 49(3),
626–643 (2003)

24. Rippel, O., Bourdev, L.: Real-time adaptive image compression. International Con-
ference on Machine Learning 70, 2922–2930 (2017)

25. Slepian, D., Wolf, J.K.: Noiseless coding of correlated information sources. IEEE
Transactions on Information Theory 19(4), 471–480 (1973)

26. Taubman, D.S., Marcellin, M.W.: JPEG 2000: Image Compression Fundamentals,
Standards and Practice. Kluwer Academic Publishers (2001)

27. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with
compressive autoencoders. International Conference on Learning Representations
(2017)

28. Toderici, G., O’Malley, S.M., Hwang, S.J., Vincent, D., Minnen, D., Baluja, S.,
Covell, M., Sukthankar, R.: Variable rate image compression with recurrent neural
networks. International Conference on Learning Representations (2016)

29. Toderici, G., Vincent, D., Johnston, N., Hwang, S.J., Minnen, D., Shor, J., Covell,
M.: Full resolution image compression with recurrent neural networks. Computer
Vision and Pattern Recognition (2017)

30. Tsai, Y., Liu, M., Sun, D., Yang, M., Kautz, J.: Learning binary residual represen-
tations for domain-specific video streaming. Conference on Artificial Intelligence
pp. 7363–7370 (2018)

31. Varodayan, D., Lin, Y.C., Mavlankar, A., Flierl, M., Girod, B.: Wyner-ziv coding of
stereo images with unsupervised learning of disparity. Proc. Picture Coding Symp
pp. 1–4 (2007)

32. Wallace, G.K.: The JPEG still picture compression standard. Communications of
the ACM pp. 30–44 (1991)

33. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image
quality assessment. Asilomar Conference on Signals, Systems Computers 2, 1398–
1402 (2003)

34. Wu, C., Singhal, N., Krähenbühl, P.: Video compression through image interpola-
tion. European Conference on Computer Vision pp. 425–440 (2018)

35. Wyner, A.D., Ziv, J.: The rate-distortion function for source coding with side
information at the decoder. IEEE Transactions on Information Theory 22(1), 1–
10 (1976)

36. Xiong, Z., Liveri, A.D., Cheng, S.: Distributed source coding for sensor networks.
IEEE Signal Processing Magazine 21(5), 80–94 (2004)

Deep Image Compression using Decoder Side Information 17

Supplementary Material

Dataset examples: Examples for both datasets can be seen in Figure 12, where
the top pair is an example from KITTI Stereo, and bottom pair is an example
from KITTI General. In each pair, the top image is an example for X image,
and below it, its matching side information image Y . While KITTI stereo images
present the same scene from a slightly different angle, KITTI General images
contain the same objects but in different scales and angles as well as objects that
appear in one image but not on its matching pair.

2D Gaussian mask: As mentioned in the main paper’s ablation study, we
found it beneficial to add a 2D Gaussian mask as a prior in the process of creating
Ysyn. In Figure 13 we present an example for a correlation map created for a
certain patch of Xdec by following our method of patch selection as mentioned
in the main paper. Furthermore, we compare correlation maps created with and
without the use of a 2D Gaussian mask and show their selected matching patches
(i.e., patches that yield maximum correlation) marked in Y image. We can see
that the 2D Gaussian mask focuses the attention on the more relevant patches.

Reconstruction examples: In the next pages, we share additional visual ex-
amples for both datasets - KITTI Stereo and KITTI General compared to the
baseline model, BPG, and JPEG 2000. For the other codecs, we chose the re-
construction results with the smallest bpp above ours. When very low bpp is
applied, we compare ourselves only with the baseline model since BPG failed to
reach these bpps.
By observing the results, we can see that JPEG 2000 yields very blurry images,
while BPG restores coarse edges well but lacks in textures and fine details. Our
model succeeds in restoring edges as well as fine features and textures. When
comparing our model with the baseline model, our method does a better job in
restoring objects, textures, and colors.

18 S. Ayzik and S. Avidan

KITTI Stereo

KITTI General

Fig. 12: Examples from both datasets. Both examples present the same X (top
image in each pair), while the side information Y is taken according to the
dataset’s settings. Top pair - KITTI Stereo - the different angle between images
can be seen. Bottom pair - KITTI General - in addition to the two cameras
different angle, object can appear in different scale (such as the car) and some
of the object are missing in the matching pair image (such as the traffic sign).

Deep Image Compression using Decoder Side Information 19

Xdec Ydec

Correlation map without mask Correlation map with mask

Y with patch selection marked

Ysyn without mask Ysyn with mask

Fig. 13: Top to bottom left to right: Xdec image with target patch marked in
magenta that is compared to all possible patches in Ydec image (top right) and
the output, is the correlation map (second row) with and without 2D Gaussian
mask (yellow equals high correlation). Third row, Y image with maximum score
patches marked (green patch - when using the mask, red patch - without the
mask). Bottom, Ysyn image created with and without the use of the 2D Gaussian
mask (the matching patches marked - red patch selected without the mask, green
patch selected when using the 2D Gaussian mask).

20 S. Ayzik and S. Avidan

JPEG 2000 0.05225 bpp

BPG 0.05770 bpp

Without SI 0.05241 bpp

With SI 0.05119 bpp

Fig. 14: Reconstruction comparison to the baseline model, JPEG 2000 and BPG
over KITTI Stereo.

Deep Image Compression using Decoder Side Information 21

JPEG 2000 BPG Without SI With SI

0.05125 bpp 0.04998 bpp 0.05127 bpp 0.04743 bpp

0.06048 bpp 0.05790 bpp 0.05620 bpp 0.05585 bpp

0.05321 bpp 0.05341 bpp 0.04858 bpp 0.04762 bpp

0.05319 bpp 0.05335 bpp 0.05197 bpp 0.04793 bpp

0.05340 bpp 0.05435 bpp 0.05099 bpp 0.04765 bpp

Fig. 15: Our suggested method compared with the baseline model, JPEG 2000,
and BPG over KITTI Stereo.

22 S. Ayzik and S. Avidan

JPEG 2000 0.06319 bpp

BPG 0.06644 bpp

Without SI 0.06029 bpp

With SI 0.05881 bpp

Fig. 16: Reconstruction comparison to the baseline model, JPEG 2000 and BPG
over KITTI General.

Deep Image Compression using Decoder Side Information 23

JPEG 2000 BPG Without SI With SI

0.06227 bpp 0.06058 bpp 0.05812 bpp 0.05742 bpp

0.04861 bpp 0.04551 bpp 0.04507 bpp 0.04486 bpp

0.06150 bpp 0.06379 bpp 0.06037 bpp 0.05723 bpp

0.05370 bpp 0.05470 bpp 0.05109 bpp 0.04837 bpp

0.04567 bpp 0.04971 bpp 0.04564 bpp 0.04560 bpp

0.06215 bpp 0.06244 bpp 0.05613 bpp 0.05711 bpp

Fig. 17: Our suggested method compared with the baseline model, JPEG 2000,
and BPG over KITTI General.

24 S. Ayzik and S. Avidan

Without SI 0.03437 bpp

With SI 0.03082 bpp

Without SI 0.02608 bpp

With SI 0.02487 bpp

Fig. 18: Reconstruction comparison in low bit rates (that BPG failed to reach)
over KITTI Steereo with and without side information.

Deep Image Compression using Decoder Side Information 25

Without SI 0.03931 bpp

With SI 0.03693 bpp

Without SI 0.03105 bpp

With SI 0.02874 bpp

Fig. 19: Reconstruction comparison in low bit rates (that BPG failed to reach)
over KITTI General with and without side information.

26 S. Ayzik and S. Avidan

Without SI 0.02789 bpp With SI 0.02644 bpp

Without SI 0.03377 bpp With SI 0.03164 bpp

Without SI 0.02601 bpp With SI 0.02536 bpp

Fig. 20: Reconstruction comparison in low bit rates (that BPG failed to reach)
over KITTI General with and without side information.

Deep Image Compression using Decoder Side Information 27

Without SI 0.03133 bpp With SI 0.02981 bpp

Without SI 0.02786 bpp With SI 0.02760 bpp

Without SI 0.03461 bpp With SI 0.03228 bpp

Fig. 21: Additional reconstruction comparison in low bit rates (that BPG failed
to reach) over KITTI General with and without side information.

	Deep Image Compression using Decoder Side Information

