Skip to main content

On Transferability of Histological Tissue Labels in Computational Pathology

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Deep learning tools in computational pathology, unlike natural vision tasks, face with limited histological tissue labels for classification. This is due to expensive procedure of annotation done by expert pathologist. As a result, the current models are limited to particular diagnostic task in mind where the training workflow is repeated for different organ sites and diseases. In this paper, we explore the possibility of transferring diagnostically-relevant histology labels from a source-domain into multiple target-domains to classify similar tissue structures and cancer grades. We achieve this by training a Convolutional Neural Network (CNN) model on a source-domain of diverse histological tissue labels for classification and then transfer them to different target domains for diagnosis without re-training/fine-tuning (zero-shot). We expedite this by an efficient color augmentation to account for color disparity across different tissue scans and conduct thorough experiments for evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/mahdihosseini/HistoLabelTransfer/.

References

  1. Araújo, T., et al.: Classification of breast cancer histology images using convolutional neural networks. PloS ONE 12(6), e0177544 (2017)

    Article  Google Scholar 

  2. Aresta, G., et al.: Bach: grand challenge on breast cancer histology images. Med. Image Anal. 56, 122–139 (2019)

    Article  Google Scholar 

  3. Arvidsson, I., Overgaard, N.C., Åström, K., Heyden, A.: Comparison of different augmentation techniques for improved generalization performance for gleason grading. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 923–927. IEEE (2019)

    Google Scholar 

  4. Bandi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2018)

    Article  Google Scholar 

  5. Bejnordi, B.E., et al.: Stain specific standardization of whole-slide histopathological images. IEEE Trans. Med. Imaging 35(2), 404–415 (2015)

    Article  Google Scholar 

  6. Bejnordi, B.E., Veta, M., Van Diest, P.J., Van Ginneken, B., Karssemeijer, N., Litjens, G., Van Der Laak, J.A., Hermsen, M., Manson, Q.F., Balkenhol, M., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. Jama 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  7. Brieu, N., et al.: Domain adaptation-based augmentation for weakly supervised nuclei detection. In: MICCAI 2019 Computational Pathology Workshop COMPAY (2019)

    Google Scholar 

  8. Bug, D., et al.: Context-based normalization of histological stains using deep convolutional features. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 135–142. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_16

    Chapter  Google Scholar 

  9. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)

    Article  Google Scholar 

  10. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  11. Coudray, N., et al.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24(10), 1559 (2018)

    Article  Google Scholar 

  12. Djuric, U., Zadeh, G., Aldape, K., Diamandis, P.: Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care. NPJ Precision Oncol. 1(1), 22 (2017)

    Article  Google Scholar 

  13. Faust, K., et al.: Intelligent feature engineering and ontological mapping of brain tumour histomorphologies by deep learning. Nat. Mach. Intell. 1(7), 316–321 (2019)

    Article  Google Scholar 

  14. Faust, K., et al.: Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction. BMC Bioinformatics 19(1), 173 (2018)

    Article  Google Scholar 

  15. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Hosseini, M.S., et al.: Atlas of digital pathology: a generalized hierarchical histological tissue type-annotated database for deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11747–11756 (2019)

    Google Scholar 

  19. Hou, L., Agarwal, A., Samaras, D., Kurc, T.M., Gupta, R.R., Saltz, J.H.: Robust histopathology image analysis: to label or to synthesize? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8533–8542 (2019)

    Google Scholar 

  20. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  21. Karimi, D., Nir, G., Fazli, L., Black, P.C., Goldenberg, L., Salcudean, S.E.: Deep learning-based gleason grading of prostate cancer from histopathology images-role of multiscale decision aggregation and data augmentation. IEEE J. Biomed. Health Inform. 24(5), 1413–1426 (2019)

    Article  Google Scholar 

  22. Kather, J.N., et al.: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 16(1), e1002730 (2019)

    Article  Google Scholar 

  23. Kather, J.N., et al.: Multi-class texture analysis in colorectal cancer histology. Sci. rep. 6, 27988 (2016)

    Article  Google Scholar 

  24. Kaukonen, R., et al.: Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1A-mediated transcription. Nat. Commun. 7(1), 1–15 (2016)

    Article  Google Scholar 

  25. Lafarge, M., Pluim, J., Eppenhof, K., Veta, M.: Learning domain-invariant representations of histological images. Front. Med. 6, 162 (2019)

    Article  Google Scholar 

  26. Li, J., et al.: Signet ring cell detection with a semi-supervised learning framework. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 842–854. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_66

    Chapter  Google Scholar 

  27. Litjens, G., et al.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. rep. 6, 26286 (2016)

    Article  Google Scholar 

  28. Mahmood, F., et al.: Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE Trans. Med. Imaging, 1 (2019)

    Google Scholar 

  29. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Nat. Acad. Sci. 115(13), E2970–E2979 (2018)

    Article  Google Scholar 

  30. Niazi, M.K.K., Parwani, A.V., Gurcan, M.N.: Digital pathology and artificial intelligence. Lancet Oncol. 20(5), e253–e261 (2019)

    Article  Google Scholar 

  31. Otálora, S., Atzori, M., Andrearczyk, V., Khan, A., Müller, H.: Staining invariant features for improving generalization of deep convolutional neural networks in computational pathology. Front. Bioeng. Biotechnol. 7, 198 (2019)

    Article  Google Scholar 

  32. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  33. Pantanowitz, L., et al.: Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American pathologists pathology and laboratory quality center. Arch. Pathol. Lab. Med. 137(12), 1710–1722 (2013)

    Article  Google Scholar 

  34. Ren, J., Hacihaliloglu, I., Singer, E.A., Foran, D.J., Qi, X.: Unsupervised domain adaptation for classification of histopathology whole-slide images. Front. Bioeng. Biotechnol. 7, 102 (2019)

    Article  Google Scholar 

  35. Riordan, D.P., Varma, S., West, R.B., Brown, P.O.: Automated analysis and classification of histological tissue features by multi-dimensional microscopic molecular profiling. PloS ONE 10(7), e0128975 (2015)

    Article  Google Scholar 

  36. Rolls, G., et al.: 101 Steps to Better Histology. Leica Microsystems 7, Melbourne (2008)

    Google Scholar 

  37. Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the GLaS challenge contest. Med. Image Anal. 35, 489–502 (2017)

    Article  Google Scholar 

  38. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE (2017)

    Google Scholar 

  39. Stacke, K., Eilertsen, G., Unger, J., Lundström, C.: A closer look at domain shift for deep learning in histopathology. In: MICCAI 2019 Computational Pathology Workshop COMPAY (2019)

    Google Scholar 

  40. Takahama, S., et al.: Multi-stage pathological image classification using semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10702–10711 (2019)

    Google Scholar 

  41. Tellez, D., Balkenhol, M., Karssemeijer, N., Litjens, G., van der Laak, J., Ciompi, F.: H and E stain augmentation improves generalization of convolutional networks for histopathological mitosis detection. In: Medical Imaging 2018: Digital Pathology, vol. 10581, p. 105810Z. International Society for Optics and Photonics (2018)

    Google Scholar 

  42. Tellez, D., et al.: Whole-slide mitosis detection in H&E breast histology using PHH3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 37(9), 2126–2136 (2018)

    Article  Google Scholar 

  43. Tellez, D., et al.: Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019)

    Article  Google Scholar 

  44. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_24

    Chapter  Google Scholar 

  45. Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adaptation. arXiv preprint arXiv:1812.02849 (2019)

  46. Wu, B., et al.: P3SGD: patient privacy preserving SGD for regularizing deep CNNS in pathological image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2099–2108 (2019)

    Google Scholar 

  47. Zhang, Y., Barzilay, R., Jaakkola, T.: Aspect-augmented adversarial networks for domain adaptation. Trans. Assoc. Comput. Linguist. 5, 515–528 (2017)

    Article  Google Scholar 

  48. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: International Conference on Learning Representations (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi S. Hosseini .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 19787 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hosseini, M.S. et al. (2020). On Transferability of Histological Tissue Labels in Computational Pathology. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12374. Springer, Cham. https://doi.org/10.1007/978-3-030-58526-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58526-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58525-9

  • Online ISBN: 978-3-030-58526-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics