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Abstract. Prior research has shown that Winograd algorithm can re-
duce the computational complexity of convolutional neural networks
(CNN) with weights and activations represented in floating point. How-
ever it is difficult to apply the scheme to the inference of low-precision
quantized (e.g. INT8) networks. Our work extends the Winograd al-
gorithm to Residue Number System (RNS). The minimal complexity
convolution is computed precisely over large transformation tile (e.g.
10× 10 to 16× 16) of filters and activation patches using the Winograd
transformation and low cost (e.g. 8-bit) arithmetic without degrading
the prediction accuracy of the networks during inference. The arithmetic
complexity reduction is up to 7.03× while the performance improvement
is up to 2.30× to 4.69× for 3× 3 and 5× 5 filters respectively.

1 Introduction

Machine learning has achieved great success in the past decade on a variety
of applications including computer vision, natural language processing, and au-
tomatic speech recognition. In particular, deep convolutional neural networks
(CNNs) have achieved better than human-level accuracy on image classification.
The learning capability of CNNs improves with increasing depth and number
of channels in the network layers. However this improvement comes at the ex-
pense of growing computation cost, particularly the expensive matrix or tensor
multiplication and convolution. Thus reducing the computational complexity,
especially the cost of the convolution operations, is critical for the deployment
of these models on mobile and embedded devices with limited processing power.

Most recent CNN architectures [6] for image classification use low dimen-
sional filters, typically 3×3, 5×5 or 7×7. The conventional Fast Fourier Trans-
form (FFT) based convolution in the complex domain is inefficient with small
filter dimensions. Faster algorithms for CNN inference based on Winograd mini-
mal filters [14] can speed up the convolution by a factor of 2 to 4. The downside
of the Winograd approach is that numerical problems and accuracy loss can
occur unless high precision floating-point values are used.

Research on the quantization of neural network [2] [9] has shown that using
reduced-precision representation (e.g. INT8) for the storage and computation
of CNNs has significant benefits such as decreased memory bandwidth, lower
memory foot-print, lower power consumption and higher throughput, while only
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having a negligible prediction accuracy degradation. The predominant numerical
format used for training neural networks is IEEE floating-point format (FP32).
There is a potential 4× reduction in memory bandwidth and storage achieved
by quantizing FP32 weights and activations to INT8 values. The corresponding
energy and area saving are 13.5× and 27.3× [3] respectively. But, both Winograd
and FFT methods [7] [10] require high precision arithmetic to avoid prediction
accuracy degradation and are therefore non-ideal for improving low-precision
integer e.g. INT8 convolution efficiently.

In this paper, we extend the Winograd minimal convolution [14] to Residue
Number System (RNS) [12] targeting the inference of low-precision e.g. INT8
quantized convolutional neural networks. The key contributions are summarized
here:

– We formulate the Winograd minimal complexity integer convolution over
Residue Number System (RNS). The use of the RNS enables our algorithm
to operate on quantized, low-precision e.g. INT8 CNNs with low cost, low
precision integer arithmetic, without computational instability issues and
without impacting the accuracy of the networks.

– Our RNS-based formulation enables the use of much larger Winograd trans-
formation tiles, e.g. from 8x8 to 16x16. The theoretical arithmetic reduction
is up to 2.3× and 4.69× for 3× 3 and 5× 5 filters respectively over 3-residue
power efficient 8-bit RNS; 3.45× and 7.03× for 2-residue 16-bit RNS.

– We analyzed the performance with 8-bit quantized VGG16 models and show
2.02× to 2.2× improvement of inference latency on Arm Cortex-A73 CPU.

2 Related Work

Earlier work applied the classical FFT to speedup convolutional layers by re-
ducing the arithmetic complexity [10]. This approach requires float arithmetic
in the complex number C, and multiplication involves the real and imaginary
parts of complex value. A product of two complex values needs 3 or 4 floating
multiplications, which is inefficient, especially for the small size filters commonly
defined in popular CNNs.

The Winograd minimal filtering algorithm [14], first applied to CNNs by
Lavin and Gray [7], can reduce arithmetic complexity from 2.25× to 4× for typ-
ical 3× 3 CNN filters. However, the algorithm requires high precision arithmetic
and hits computational instability issues when applied to large transform tile
sizes [1]. An efficient sparse implementation of Winograd convolution have also
been proposed [8]. The conventional Winograd convolution algorithm, including
the latest enhancements, requires high precision floating point arithmetic.

Meanwhile, some researchers have tried to extend the Winograd algorithm to
reduced-precision integer arithmetic by choosing complex interpolation points [11]
with a 17.37% throughput improvement claimed, however it depends on a lossy
precision scaling scheme, which would cause predication accuracy drop.
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3 Residue Number System (RNS)

A Residue Number System, RNS(m0,m1, ..,mn−1) [12], is number system to
represent an integer by its value modulo n pairwise coprime moduli m0,m1, ..,

and mn−1.

x0 = x (mod m0)

x1 = x (mod m1)

...

xn−1 = x (mod mn−1)

For example, to represent x = 48 in RNS(m0 = 7,m1 = 9)

{x (mod m0), x (mod m1)} = {6, 3}

We can construct the value of x from its RNS representation as long as

x < M , where M =

n−1
∏

i=1

mi is the dynamic range of the RNS(m0,m1, ..,mn−1).

For example, to convert {6, 3} from RNS(7,9) back to standard form using Mixed
Radix Conversion(MRC) [13] or Chinese Remainder Theorem (CRT) [5].

x =
[

6 + 7 ∗ [
3− 6

7
(mod 9)]

]

(mod 7 ∗ 9) = 6 + 7 ∗ 6 = 48

For addition(+), subtraction(−) and multiplication(∗) of two RNS values
x = {x0, x1, .., xn−1} and y = {y0, y1, .., yn−1}, it’s sufficient to perform the op-
eration on corresponding pair of residues. For example, x = {6, 3}, y = {5, 10} ∈
RNS(7,9)

x+ y = {6 + 5 (mod 7), 3 + 10 (mod 9)} = {4, 4}

x− y = {6− 5 (mod 7), 3− 10 (mod 9)} = {1, 2}

x ∗ y = {6 ∗ 5 (mod 7), 3 ∗ 10 (mod 9)} = {2, 3}

3.1 Convolution in RNS

Equivalently, we could calculate the convolution y of N -element vector d =
(d0, d1, d2, .., dN−1) and R-element filter g = (g0, g1, g2, .., gR−1) over RNS(m0,

m1, ..,mn−1).

y = (y0, y1, y2, .., yN−R) = d ⊛ g

and yk = {y
(0)
k , y

(1)
k , .., y

(n−1)
k } ∈ RNS(m0,m1, ..,mn−1), where

y
(i)
k = (

R−1
∑

j=0

dk+j ∗ gj) (mod mi)
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4 Winograd Convolution

The Winograd convolution [14] is an optimal algorithm to compute short convo-
lution over real numbers, outperforming conventional Discrete Fourier Transform
(DFT). F (M,R) denotes the convolution computation of M -tuple output y of
a R-tuple filter g and N -tuple input d where N = M + R − 1. The Winograd
algorithm calculates the F (M,R) in a bilinear form as

y = AT
[

(Gg)⊙ (BT d)
]

where ⊙ acts as element-wise production and BT , G and AT are N ×N , N ×R

and M ×N transform matrices respectively.
Specifically, AT , G and BT are derived from the Vandermonde matrix 1

V generated from N distinct Lagrange interpolation points S0, S1, S2, ..SN−1

(Note: Require a special handling if SN−1 = ∞).

V =













1 S0 S2
0 ... SN−1

0

1 S1 S2
1 ... SN−1

1

1 S2 S2
2 ... SN−1

2

.. .. .. ... ..

1 SN−1 S2
N−1 ... SN−1

N−1













N×N

(1)

and

AT = V T
[0:M−1;0:N−1]

G = V [0:N−1;0:R−1]

BT = V −T

For 2-D convolution, similar fast algorithm F (M×M,R×R) can be represented
as

y = AT
[

(GgGT )⊙ (BT dB)
]

A (2)

We call GgGT and BTdB the forward transform and AT [·]A the backward transform.
Assuming the computation cost of transformation GgGT and BTdB was

amortized completely due to reuse, the fast algorithm requires N2 = (M +
R − 1)2 multiplications while the standard method uses M2R2. The arithmetic

complexity reduction is M2R2

(M+R−1)2
. For example:

F (2× 2, 3× 3) with interpolation points {0,±1,∞}. The fractions in BT are
arranged into matrix G. The arithmetic complexity reduction is 2.25×.

A
T =

(

1 1 1 0
0 1 −1 1

)

; B
T =







1 0 −1 0
0 1 1 0
0 −1 1 0
0 −1 0 1






; G =











1 0 0
1
2

1
2

1
2

1
2

−1
2

1
2

0 0 1











=
1

2
G

′
; G

′
=







2 0 0
1 1 1
1 −1 1
0 0 2







1 https://en.wikipedia.org/wiki/Vandermonde_matrix

https://en.wikipedia.org/wiki/Vandermonde_matrix
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Table 1. The required data width of transformation and the corresponding arithmetic
reduction for integer (INT8) Wingograd convolution algorithms. DW is transformation
data width in bit. Arithmetic Reduction is the reduction of operation in DW bits.

Algorithm DW (bit) Arithmetic Reduction

F (2 × 2, 3 × 3) 12 2.25×
F (4 × 4, 3 × 3) 18 4.00×
F (6 × 6, 3 × 3) 24 5.06×
F (8 × 8, 3 × 3) 36 5.76×
F (8 × 8, 5 × 5) 43 11.1×
F (10 × 10, 3 × 3) 50 6.26×
F (10 × 10, 5 × 5) 60 12.7×

F (4×4, 3×3) with interpolation points {0,±1,±2,∞}. The arithmetic com-
plexity reduction is 4×.

A
T

=









1 1 1 1 1 0

0 1 −1 2 −2 0

0 1 1 4 4 0

0 1 −1 8 −8 1









; B
T

=















4 0 −5 0 1 0

0 4 4 −1 −1 0

0 −4 4 1 −1 0

0 −2 −1 2 1 0

0 2 −1 −2 1 0

0 4 0 −5 0 1















; G=



























1
4

0 0

1
6

1
6

1
6

1
6

−1
6

1
6

1
24

1
12

1
6

1
24

−1
12

1
6

0 0 1



























=
1

24
G

′
; G

′
=















6 0 0

4 4 4

4 −4 4

1 2 4

1 −2 4

0 0 24















where matrices AT , G and BT are derived from Vandermonde matrix of the roots
to construct the transform.

F (2 × 2, 3 × 3) and F (4 × 4, 3 × 3) have theoretical arithmetic complexity
reduction of 2.25× and 4× respectively. We can achieve the expected speedup
using floating-point operation i.e. FP32. However, it’s a challenge to implement
the Winograd convolution using low-precision integral arithmetic for quantized
CNN. To calculate exact convolution using integer arithmetic, we can obtain
matrix G

′

by factoring out the common fraction α, e.g. α = 1
2 for F (2× 2, 3× 3)

and α = 1
24 for F (4×4, 3×3), from corresponding matrix G. Then eq. 2 becomes

y = α2AT
[

(G
′

gG
′T
)⊙ (BTdB)

]

.

The magnitude of element in transformation G
′

gG
′T

and BT dB would be
trace(G

′
G

′T
)

N
and trace(BTB)

N
times as large as the quantity of filter g and input

d on average. Particularly, the magnification are 3.5× and 2× for F (2 × 2, 3 ×
3) and 125× and 28.7× for F (4 × 4, 3 × 3). Moreover, the magnifications we
calculated correspond to the standard deviation statistically, the outliers could
have much larger magnitudes. Practically, we need 12 bits to hold each element of
transformation and INT16 arithmetic for element-wise multiply for F (2× 2, 3×
3). F (4 × 4, 4 × 3) demands 18 bits for transformation and INT32 arithmetic
operations. We summarized the data width of transformation and arithmetic
reduction of integer Winograd algorithms in table 1. Although the Winograd
algorithms enable complexity reduction, they require higher precision arithmetic
than INT8. Considering INT8 multipliers cost about 1

4 power and area of INT16
case; 1

15 and 1
12 of INT32; 1

18 and 1
27 of FP32 respectively [3], there will be

advantage in implementing the Winograd algorithm using INT8 arithmetic. For
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this reason, a lossy precision scaling scheme was proposed [11], which scales down
the transformation in the range of the desired low-precision arithmetic operation.
However the scaling method introduces errors to the convolution output and
would cause predication accuracy degradation.

The fundamental difficulty with performing the standard Winograd algo-
rithm using low cost integral arithmetic is due to the ill-conditioned Vander-
monde (and its inverse) matrix V in eq. 1 with real interpolation points espe-
cially for large transformation (e.g. M > 6). We propose a different approach
to implement the Winograd algorithm over Residue Number System (RNS) via
low-precision integer arithmetic (e.g. INT8 or INT16) in the next section.

5 Winograd Convolution over Residue Number System

We extend the Winograd convolution algorithm described in section 4 to Residue
Number System (RNS) in section 3 to formulate a new implementation. This
new approach solves the numerical stability issue of the conventional Winograd
algorithm for large transformation, i.e. M ∈ [8, 16], moreover the new method is
compatible with low precision 8-bit multiply and accumulation.

To simplify the description, without loss of generality, we take F (10×10, 3×3)
with interpolation points {0,±1,±2,±3,±4,±5,∞} as a running example with
the following transform matrices AT , BT and G.

A
T

=































1 1 1 1 1 1 1 1 1 1 1 0

0 1 −1 2 −2 3 −3 4 −4 5 −5 0

0 1 1 4 4 9 9 16 16 25 25 0

0 1 −1 8 −8 27 −27 64 −64 125 −125 0

0 1 1 16 16 81 81 256 256 625 625 0

0 1 −1 32 −32 243 −243 1024 −1024 3125 −3125 0

0 1 1 64 64 729 729 4096 4096 15625 15625 0

0 1 −1 128 −128 2187 −2187 16384 −16384 78125 −78125 0

0 1 1 256 256 6561 6561 65536 65536 390625 390625 0

0 1 −1 512 −512 19683 −19683 262144 −262144 1953125 −1953125 1































B
T

=







































14400 0 −21076 0 7645 0 −1023 0 55 0 −1 0

0 14400 14400 −6676 −6676 969 969 −54 −54 1 1 0

0 −14400 14400 6676 −6676 −969 969 54 −54 −1 1 0

0 −7200 −3600 8738 4369 −1638 −819 102 51 −2 −1 0

0 7200 −3600 −8738 4369 1638 −819 −102 51 2 −1 0

0 4800 1600 −6492 −2164 1827 609 −138 −46 3 1 0

0 −4800 1600 6492 −2164 −1827 609 138 −46 −3 1 0

0 −3600 −900 5044 1261 −1596 −399 156 39 −4 −1 0

0 3600 −900 −5044 1261 1596 −399 −156 39 4 −1 0

0 2880 576 −4100 −820 1365 273 −150 −30 5 1 0

0 −2880 576 4100 −820 −1365 273 150 −30 −5 1 0

0 −14400 0 21076 0 −7645 0 1023 0 −55 0 1







































G =













































































1
14400

0 0

1
17280

1
17280

1
17280

1
17280

−1
17280

1
17280

1
30240

1
15120

1
7560

1
30240

−1
15120

1
7560

1
80640

1
26880

1
8960

1
80640

−1
26880

1
8960

1
362880

1
90720

1
22680

1
362880

−1
90720

1
22680

1
3628800

1
725760

1
145152

1
3628800

−1
725760

1
145152

0 0 1













































































=
1

3628800
G

′
; G

′
=







































252 0 0

210 210 210

210 −210 210

120 240 480

120 −240 480

45 135 405

45 −135 405

10 40 160

10 −40 160

1 5 25

1 −5 25

0 0 3628800






































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These transforms are derived from the 12× 12 Vandermonde matrix and its
inverse matrix 2, which are not computationally friendly in standard number sys-
tems, including FP32 due to its numerical instability. However, we could mitigate
the instability by carrying out the computation of eq. 2 over RNS(m0,m1, ..,mn−1).

To represent the transform matrix G in RNS, the modulus m0,m1, .., and
mn−1 need be coprime to 1

α
, e.g. 1

α
= 3628800 = 28 · 34 · 52 · 7 for the F (10 ×

10, 3× 3) example.

Generically, the inverse of N × N Vandermonde matrix V in eq. 1 2 [4],
V −1 = {V −1

i,j }, and i, j ∈ [0, N − 1] and V −1
i,j is given in eq. 3.

V −1
i,j =



































1
N−1
∏

m=0, m 6=j

(Sj−Sm)

for j = N − 1

(−1)N−1−i ∑

0≤j0<j1<...<j
N−1−i

<N, jk 6=j

Sj0
Sj1

...Sj
N−1−i

N−1
∏

m=0,m 6=j

(Sj−Sm)

otherwise

(3)
where S0, S1, S2, ..., SN−1 are the interpolation points we choose to construct
the Winograd transform. To obtain the multiplicative inverse of the denomi-
nator of V −1

i,j in eq. 3, each modulus mi need be coprime to the denominator
N−1
∏

m=0, m 6=j

(Sj − Sm).

For our example, the denominators in G are 14400 = 26 ·32 ·52, 17280 = 27 ·33 ·
5, 30240 = 25 ·35 ·5·7, 80640 = 28 ·32 ·5·7, 362880 = 27 ·34 ·5·7 and 3628800 = 28 ·
34 ·52 ·7. We chose moduli m0 = 11×23 = 253, m1 = 251 and m2 = 13×19 = 247,
which are all coprime to the denominators in G. Therefore the fractions in matrix
G are all well-defined for modular division, for instance 1

14400 (mod 253) = 12 as
a result of multiplicative inverse of denominator, e.g. 14400×12 (mod 253) = 1.
Similarly, 1

14400 (mod 251) = 27 and 1
14400 (mod 247) = −10. Moreover, moduli

(253, 251, 247) are the largest suitable 8-bit values for the interpolation points
we chose. Given that we can convert matrix AT , G and BT to corresponding
modular format, e.g. AT

mi
= AT (mod mi), Gmi

= G (mod mi) and BT
mi

= BT

(mod mi), where mi ∈ (253, 251, 247). The RNS representation of eq. 2 is

y = (AT
253

[

[G
253

gGT
253

]⊙ [BT
253

dB
253

]
]

A
253

,

AT
251

[

[G
251

gGT
251

]⊙ [BT
251

dB
251

]
]

A
251

,

AT
247

[

[G
247

gGT
247

]⊙ [BT
247

dB
247

]
]

A
247

) (4)

2 https://proofwiki.org/wiki/Inverse_of_Vandermonde_Matrix

 https://proofwiki.org/wiki/Inverse_of_Vandermonde_Matrix
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For modulo 253, the corresponding transform matrices are

A
T

253
=































1 1 1 1 1 1 1 1 1 1 1 0

0 1 −1 2 −2 3 −3 4 −4 5 −5 0

0 1 1 4 4 9 9 16 16 25 25 0

0 1 −1 8 −8 27 −27 64 −64 125 −125 0

0 1 1 16 16 81 81 3 3 119 119 0

0 1 −1 32 −32 −10 10 12 −12 89 −89 0

0 1 1 64 64 −30 −30 48 48 −61 −61 0

0 1 −1 −125 125 −90 90 −61 61 −52 52 0

0 1 1 3 3 −17 −17 9 9 −7 −7 0

0 1 −1 6 −6 −51 51 36 −36 −35 35 1































; G
253

=







































12 0 0

10 10 10

10 −10 10

78 −97 59

78 97 59

−34 −102 −53

−34 102 −53

−120 26 104

−120 −26 104

−12 −60 −47

−12 60 −47

0 0 1







































B
T

253
=







































−21 0 −77 0 55 0 −11 0 55 0 −1 0

0 −21 −21 −98 −98 −43 −43 −54 −54 1 1 0

0 21 −21 98 −98 43 −43 54 −54 −1 1 0

0 −116 −58 −117 68 −120 −60 102 51 −2 −1 0

0 116 −58 117 68 120 −60 −102 51 2 −1 0

0 −7 82 86 113 56 103 115 −46 3 1 0

0 7 82 −86 113 −56 103 −115 −46 −3 1 0

0 −58 112 −16 −4 −78 107 −97 39 −4 −1 0

0 58 112 16 −4 78 107 97 39 4 −1 0

0 97 70 −52 −61 100 20 103 −30 5 1 0

0 −97 70 52 −61 −100 20 −103 −30 −5 1 0

0 21 0 77 0 −55 0 11 0 −55 0 1







































All elements in these matrices are in the range of [− 253−1
2 , 253−1

2 ]. The compu-
tation of the fast convolution over (mod 253) can be performed with 8-bit low
cost arithmetic operation without numerical concerns. Similarly, we can get the
transforms for 251 and 247.

A
T

251
=































1 1 1 1 1 1 1 1 1 1 1 0

0 1 −1 2 −2 3 −3 4 −4 5 −5 0

0 1 1 4 4 9 9 16 16 25 25 0

0 1 −1 8 −8 27 −27 64 −64 125 −125 0

0 1 1 16 16 81 81 5 5 123 123 0

0 1 −1 32 −32 −8 8 20 −20 113 −113 0

0 1 1 64 64 −24 −24 80 80 63 63 0

0 1 −1 −123 123 −72 72 69 −69 64 −64 0

0 1 1 5 5 35 35 25 25 69 69 0

0 1 −1 10 −10 105 −105 100 −100 94 −94 1































; G
251

=







































27 0 0

−103 −103 −103

−103 103 −103

−23 −46 −92

−23 46 −92

−40 −120 −109

−40 120 −109

19 76 53

19 −76 53

27 −116 −78

27 116 −78

0 0 1







































B
T

251
=







































93 0 8 0 115 0 −19 0 55 0 −1 0

0 93 93 101 101 −35 −35 −54 −54 1 1 0

0 −93 93 −101 101 35 −35 54 −54 −1 1 0

0 79 −86 −47 102 119 −66 102 51 −2 −1 0

0 −79 −86 47 102 −119 −66 −102 51 2 −1 0

0 31 94 34 95 70 107 113 −46 3 1 0

0 −31 94 −34 95 −70 107 −113 −46 −3 1 0

0 −86 104 24 6 −90 103 −95 39 −4 −1 0

0 86 104 −24 6 90 103 95 39 4 −1 0

0 119 74 −84 −67 110 22 101 −30 5 1 0

0 −119 74 84 −67 −110 22 −101 −30 −5 1 0

0 −93 0 −8 0 −115 0 19 0 −55 0 1







































A
T

247
=































1 1 1 1 1 1 1 1 1 1 1 0

0 1 −1 2 −2 3 −3 4 −4 5 −5 0

0 1 1 4 4 9 9 16 16 25 25 0

0 1 −1 8 −8 27 −27 64 −64 −122 122 0

0 1 1 16 16 81 81 9 9 −116 −116 0

0 1 −1 32 −32 −4 4 36 −36 −86 86 0

0 1 1 64 64 −12 −12 −103 −103 64 64 0

0 1 −1 −119 119 −36 36 82 −82 73 −73 0

0 1 1 9 9 −108 −108 81 81 118 118 0

0 1 −1 18 −18 −77 77 77 −77 96 −96 1































; G
247

=







































−10 0 0

74 74 74

74 −74 74

7 14 28

7 −14 28

−90 −23 −69

−90 23 −69

−20 −80 −73

−20 80 −73

−2 −10 −50

−2 10 −50

0 0 1







































B
T

247
=







































74 0 −81 0 −12 0 −35 0 55 0 −1 0

0 74 74 −7 −7 −19 −19 −54 −54 1 1 0

0 −74 74 7 −7 19 −19 54 −54 −1 1 0

0 −37 105 93 −77 91 −78 102 51 −2 −1 0

0 37 105 −93 −77 −91 −78 −102 51 2 −1 0

0 107 118 −70 59 98 115 109 −46 3 1 0

0 −107 118 70 59 −98 115 −109 −46 −3 1 0

0 105 88 104 26 −114 95 −91 39 −4 −1 0

0 −105 88 −104 26 114 95 91 39 4 −1 0

0 −84 82 99 −79 −117 26 97 −30 5 1 0

0 84 82 −99 −79 117 26 −97 −30 −5 1 0

0 −74 0 81 0 12 0 35 0 −55 0 1







































RNS(253, 251, 247) has the dynamic range of [-7842620, +7842620] being
large enough for 8-bit quantized CNN models. The algorithm F (10× 10, 3× 3)
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over RNS(253, 251, 247) need 3 element-wise multiplications in 8-bit (accumula-
tion is 32-bit). The implementation can yield up to 2.08× throughput improve-
ment (or Speed-up).

Alternatively, we can compute the Winograd convolution F (10 × 10, 3 × 3)
over 16-bit RNS(4001, 4331) for instance.

g ⊛ d = (AT
4001

[

[G
4001

gGT
4001

]⊙ [BT
4001

dB
4001

]
]

A
4001

,

AT
4331

[

[G
4331

gGT
4331

]⊙ [BT
4331

dB
4331

]
]

A
4331

) (5)

where the transform matrices are

A
T

4001
=































1 1 1 1 1 1 1 1 1 1 1 0

0 1 −1 2 −2 3 −3 4 −4 5 −5 0

0 1 1 4 4 9 9 16 16 25 25 0

0 1 −1 8 −8 27 −27 64 −64 125 −125 0

0 1 1 16 16 81 81 256 256 625 625 0

0 1 −1 32 −32 243 −243 1024 −1024 −876 876 0

0 1 1 64 64 729 729 95 95 −379 −379 0

0 1 −1 128 −128 −1814 1814 380 −380 −1895 1895 0

0 1 1 256 256 −1441 −1441 1520 1520 −1473 −1473 0

0 1 −1 512 −512 −322 322 −1922 1922 637 −637 1































; G
4001

=







































222 0 0

185 185 185

185 −185 185

−1609 783 1566

−1609 −783 1566

897 −1310 71

897 1310 71

1533 −1870 522

1533 1870 522

−1047 −1234 1832

−1047 1234 1832

0 0 1







































B
T

4001
=







































−1604 0 −1071 0 −357 0 −1023 0 55 0 −1 0

0 −1604 −1604 1326 1326 969 969 −54 −54 1 1 0

0 1604 −1604 −1326 1326 −969 969 54 −54 −1 1 0

0 802 401 736 368 −1638 −819 102 51 −2 −1 0

0 −802 401 −736 368 1638 −819 −102 51 2 −1 0

0 799 1600 1510 1837 1827 609 −138 −46 3 1 0

0 −799 1600 −1510 1837 −1827 609 138 −46 −3 1 0

0 401 −900 1043 1261 −1596 −399 156 39 −4 −1 0

0 −401 −900 −1043 1261 1596 −399 −156 39 4 −1 0

0 −1121 576 −99 −820 1365 273 −150 −30 5 1 0

0 1121 576 99 −820 −1365 273 150 −30 −5 1 0

0 1604 0 1071 0 357 0 1023 0 −55 0 1







































A
T

4331
=































1 1 1 1 1 1 1 1 1 1 1 0

0 1 −1 2 −2 3 −3 4 −4 5 −5 0

0 1 1 4 4 9 9 16 16 25 25 0

0 1 −1 8 −8 27 −27 64 −64 125 −125 0

0 1 1 16 16 81 81 256 256 625 625 0

0 1 −1 32 −32 243 −243 1024 −1024 −1206 1206 0

0 1 1 64 64 729 729 −235 −235 −1699 −1699 0

0 1 −1 128 −128 −2144 2144 −940 940 167 −167 0

0 1 1 256 256 −2101 −2101 571 571 835 835 0

0 1 −1 512 −512 −1972 1972 −2047 2047 −156 156 1































; G
4331

=







































1693 0 0

689 689 689

689 −689 689

−225 −450 −900

−225 450 −900

457 1371 −218

457 −1371 −218

1064 −75 −300

1064 75 −300

−1626 532 −1671

−1626 −532 −1671

0 0 1







































B
T

4331
=







































1407 0 579 0 −1017 0 −1023 0 55 0 −1 0

0 1407 1407 1986 1986 969 969 −54 −54 1 1 0

0 −1407 1407 −1986 1986 −969 969 54 −54 −1 1 0

0 1462 731 76 38 −1638 −819 102 51 −2 −1 0

0 −1462 731 −76 38 1638 −819 −102 51 2 −1 0

0 469 1600 −2161 −2164 1827 609 −138 −46 3 1 0

0 −469 1600 2161 −2164 −1827 609 138 −46 −3 1 0

0 731 −900 713 1261 −1596 −399 156 39 −4 −1 0

0 −731 −900 −713 1261 1596 −399 −156 39 4 −1 0

0 −1451 576 231 −820 1365 273 −150 −30 5 1 0

0 1451 576 −231 −820 −1365 273 150 −30 −5 1 0

0 −1407 0 −579 0 1017 0 1023 0 −55 0 1







































The modulus 4001 and 4331 are both coprime to 1
α
= 3628800. The 16-bit

RNS has dynamic range 4001× 4331 = 17328331, which allows the convolution
output having the maximum magnitude of 17328331−1

2 = 8664165. The 16-bit
RNS(4001,4331) requires two element-wise multiply, therefore it has arithmetic
reduction 3.13×, which is better than the 2.08× of 8-bit RNS(253,251,247). But,
each element-wise multiplication is of 16-bit op.
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6 Fast Convolution via integral arithmetic for
Convolutional Neural Networks(CNN)

Unlike the conventional Winograd algorithm, which could benefit to CNN for
both network training and inference, the integer version can only apply to in-
ference of the low-precision (e.g. INT8) quantized CNN models. For a quna-
tized CNN layer, its major computation is the 2D convolution, g ⊛ x, between
(R×R×C ×K) weight tensor g and (B ×W ×H × C) input feature maps x,
where R × R is the filter size, C is the depth, K is the filter count (or output
channels), B is the batch number and W ×H is the dimension of the 2D input
plane. All elements of g and x are signed integers, e.g. from -128 to 127. Then
we can utilize the complexity reduced algorithm, equation 4 or 5 described in
section 5 to compute the integer convolution.

We can decompose input x into M × M patches {di} i.e. x =
⊕

i

di, and

apply Winograd algorithm F (M × M,R × R) over RNS(m0,m1, ..,mn−1) to
each corresponding weight g and patch di to compute g ⊛ x with the reduced
arithmetic as equation 6.

g ⊛ x =
⊕

B,K,i

{
∑

C

AT
m0

((Gm0
g(C)(K)GT

m0
)⊙ (BT

m0
d
(C)(B)
i Bm0

))Am0
, (6)

∑

C

AT
m1

((Gm1
g(C)(K)GT

m1
)⊙ (BT

m1
d
(C)(B)
i Bm1

))Am1
, ..,

∑

C

AT
mn−1

((Gmn−1
g(C)(K)GT

mn−1
)⊙ (BT

mn−1
d
(C)(B)
i Bmn−1

))Amn−1
}

= {AT
m0

(
⊕

B,K,i

(
∑

C

((Gm0
g(C)(K)GT

m0
)⊙ (BT

m0
d
(C)(B)
i Bm0

))))Am0
, (7)

AT
m1

(
⊕

B,K,i

(
∑

C

((Gm1
g(C)(K)GT

m1
)⊙ (BT

m1
d
(C)(B)
i Bm1

))))Am1
,

... ,

AT
mn−1

(
⊕

B,K,i

(
∑

C

((Gmn−1
g(C)(K)GT

mn−1
)⊙ (BT

mn−1
d
(C)(B)
i Bmn−1

))))Amn−1
}

In eq. 7, the forward Winograd Transform of filter e.g. Gm0
w(C)(K)GT

m0
can

be pre-calculated. The forward transform of input e.g. BT
m0

x
(C)(B)
i Bm0

is shared
or reused across K filters, therefore their computation cost got amortized by
factor K. The backward transform was performed after the reduction across
depth C due to linearity of transform, so the backward transform was amortized
by factor of C.

The point-wise multiply terms in eq. 7, for instance,
⊕

B,K,i

(
∑

C

((Gm0
g(C)(K)GT

m0
)⊙ (BT

m0
d
(C)(B)
i Bm0

))) (mod m0) (8)

(eq. 8) is a matrix multiply (GEMM) function essentially followed by a modulo
operation, which can be executed by existing highly optimized GEMM library,
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such as gemmlowp 3 or accelerator. Notably, we can perform the modulo opera-
tion after the GEMM to reduce its overhead. In the final step after the backward
transform, we convert the g⊛ x from the RNS presentation to the standard for-
mat using MRC or CRT.

7 Performance Analysis

The performance of RNS based Winograd convolution depends on the transfor-
mation and filter size i.e. N = M+R−1 and R respectively. When computation
is carried out in RNS and the cost of Winograd transformation and MRC are
amortized due to reuse, the theoretical arithmetic reduction is given by

M2R2

N2
×

1

n

where n is the modulus number of the RNS. Table 2 contains the complex-
ity reduction for different algorithms, F (M × M,R × R). The Winograd al-
gorithm has better complexity reduction for large values of M and achieves
more benefit for 5 × 5 filters than the 3 × 3. Moreover, 2-residue RNS, such
as RNS(4001,4331), has more arithmetic reduction than 3-residue case. For ex-
ample, F (12 × 12, 5 × 5) over RNS(4001,4331) generates 7.03× reduction vs
4.69× over RNS(251,241,239). However, 2-residue RNS(4001,4331) requires 16-
bit GEMM operation, which will be less efficient than the 8-bit case regarding
throughput and power consumption.

Table 2. Complexity reduction of Winograd convolution in RNS.

Algorithms Arithmetic Complexity Reduction

F (M × M ,R × R) RNS(4001,4331) RNS(251,241,239)

F (2 × 2, 3 × 3) 1.125× 0.75×
F (4 × 4, 3 × 3) 2.00× 1.33×
F (6 × 6, 3 × 3) 2.53× 1.69×
F (8 × 8, 3 × 3) 2.88× 1.92×
F (8 × 8, 5 × 5) 5.56× 3.70×
F (9 × 9, 3 × 3) 3.01× 2.01×
F (9 × 9, 5 × 5) 5.99× 3.99×
F (10 × 10, 3 × 3) 3.13× 2.08×
F (10 × 10, 5 × 5) 6.38× 4.25×
F (11 × 11, 3 × 3) 3.22× 2.14×
F (11 × 11, 5 × 5) 6.72× 4.48×
F (12 × 12, 3 × 3) 3.31× 2.20×
F (12 × 12, 5 × 5) 7.03× 4.69×
F (14 × 14, 3 × 3) 3.45× 2.30×

Our RNS approach is in favor of large transformation, such as 10 × 10 to
16 × 16 etc. since the numerical issue is mitigated by using RNS. However, the

3 https://github.com/google/gemmlowp

https://github.com/google/gemmlowp
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Table 3. Throughput (GOPS) of 8-bit, 16-bit and 32-bit GEMM (32-bit output) on 1
CPU of Arm Cortex-A73. e.g. 1024× 64× 1024 GEMM indicates the matrix multiply
of 1024 × 64 by 64× 1024.

GEMM 8-bit GOPS 16-bit GOPS

1024×64×1024 11.1 8.46
1024×128×1024 13.3 10.1
1024×256×1024 14.8 10.9
256×256×256 14.5 11.1
512×512×512 15.4 11.2

1024×1024×1024 14.6 9.58
2048×2048×2048 14.2 11.2
4096×4906×4096 14.5 9.83

computation cost of Winograd transform, both forward and backward ones, will
be higher than using small transformation.

The critical path of the computation is the element-wise multiplication,
which is low-precision GEMM operations. Table 3 shows the throughput in
GOPS(Giga (109) Operations Per-Second) of 8-bit and 16-bit GEMM measured
on a single core of Arm Cortex-A73 CPU for variety of size and shape.

For a given hardware e.g. CPU, GPU or accelerator we can determine the
optimal implementation based on table 2 and the corresponding GEMM perfor-
mance. For example, targeting Arm Cortex-A73 CPU used in the benchmark, if
we choose RNS(4001,4331) to compute the convolution using F (12 × 12, 5× 5)
with 1024 × 1024 × 1024 GEMM, it will have a theoretical speed-up up to
7.03×9.58

14.6 = 4.6× to the Im2col+INT16GEMM baseline, while the improvement
of RNS(253,251,247) is about 4.69×14.6

14.6 = 4.69× over Im2col+INT8GEMM. So,
RNS(251,241,239) and RNS(4001,4331) happen to deliver roughly the same im-
provement with the benchmark program on the Cortex-A73 CPU specifically,
but in general 8-bit implementation RNS(251, 241, 239) will consume less power
since it uses 8-bit arithmetic. Other hardware, for example Nvidia’s RTX2020Ti
GPU with up to 215 TOPS of INT8 ops 4, could potentially gain up to a factor
of 2.30× or 4.69× performance boost for 3×3 or 5×5 filters respectively through
16× 16 RNS-Winograd transformation.

8 Experiments

To validate the proposal, the RNS based Winograd convolution algorithm was
implemented in a highly optimized kernel in C on Ubuntu Linux. The program
takes advantage of ILP (vector units) to boost the throughput of Winograd
transforms, MRC and GEMM functions.

The 2D convolution of 8-bit quantized (for both weight and activation)
VGG16 network was benchmarked using the RNS based Winograd algorithm im-
plemented on Arm Cortex-A73 CPU. The convolution output of all CNN layers
are within the range of [−3.0×105, 3.0×105] measured from validation images of

4 https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
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Table 4. Inference performance of 8-bit activation and 8-bit weight quantized CNN
layers of VGG16 with Winograd algorithm F (14 × 14, 3 × 3) over RNS(251,241,239)
and RNS(4001,4331) on Arm Cortex-A73, having 71.4% top-1 prediction accuracy with
ImageNet dataset. The corresponding transforms are in the supplementary materials.
The speed-up of RNS(251,241,239) and RNS(4001,4331) are the runtime improvement
relative to the standard INT8 and INT16 Im2col+GEMM convolution baselines re-
spectively.

VGG16 conv2d op Winograd Speed-up
model (int8) x (int8) Algorithm RNS(251,241,239) RNS(4001,4331)

conv1_1 (224, 224, 3) × (3, 3, 3, 64) -† 1× 1×
conv1_2 (224, 224, 3) × (3, 3, 3, 64) F (14 × 14, 3 × 3) 1.86× 2.05×
conv2_1 (112, 224, 64) × (3, 3, 64, 64) F (14 × 14, 3 × 3) 1.97× 2.13×
conv2_2 (112, 112, 64) × (3, 3, 64, 128) F (14 × 14, 3 × 3) 2.07× 2.25×
conv3_1 (56, 56, 128) × (3, 3, 128, 128) F (14 × 14, 3 × 3) 2.14× 2.33×
conv3_2 (56, 56, 128) × (3, 3, 128, 256) F (14 × 14, 3 × 3) 2.15× 2.37×
conv3_3 (56, 56, 256) × (3, 3, 256, 256) F (14 × 14, 3 × 3) 2.16× 2.35×
conv4_1 (28, 28, 256) × (3, 3, 256, 512) F (14 × 14, 3 × 3) 2.21× 2.40×
conv4_2 (28, 28, 512) × (3, 3, 512, 512) F (14 × 14, 3 × 3) 2.25× 2.37×
conv4_3 (28, 28, 512) × (3, 3, 512, 512) F (14 × 14, 3 × 3) 2.27× 2.39×
conv5_1 (14, 14, 512) × (3, 3, 512, 512) F (14 × 14, 3 × 3) 2.21× 2.44×
conv5_2 (14, 14, 512) × (3, 3, 512, 512) F (14 × 14, 3 × 3) 2.24× 2.39×
conv5_3 (14, 14, 512) × (3, 3, 512, 512) F (14 × 14, 3 × 3) 2.22× 2.43×

average 2.02× 2.20×

† Fallback to the baseline.

ImageNet dataset. We used RNS(251,241,239) and RNS(4001,4331), which have
the large enough dynamic ranges, [−7228674, 7228674] and [−8664165, 8664165]
respectively to guarantee the correctness of the computation.

Using algorithm F (14×14, 3×3), the performance improvement or speed-up
over the Im2col+INT8/16 GEMM baselines for both 8-bit and 16-bit RNS are
listed in table 4. The overall convolution computation latency reduction is 2.02×
for 8-bit RNS(251,241,239) or 2.20× for 16-bit RNS(4001,4331). On average,
the execution overheads, measured in time, of the 8-bit RNS(251, 241, 239) are
7.9% for the forward Winograd Transform of input feature maps, 9.2% for the
backward Winograd transform of output, and 1.1% for MRC while for the 16-
bit RNS(4001, 4331), the corresponding overheads are 9.4%, 10.2%, and 1.3%
respectively. Table 5 provides extra experimental results for 8-bit ResNet50-
v1 and Inception v1 and v3 models using INT8 arithmetic ops. Notably, the
Inception-v3 contains three 5× 5 convolutional layers, (1) Mixed_5/Branch_1/
Conv2d_0b_5x5, (2) Mixed_5c/Branch_1/Conv_1_0c_5x5 and (3) Mixed_
5d/Branch_1/Conv2d_0b_5x5 with (5 × 5 × 48 × 64) kernels. The average
speed-up for the 5× 5 layers are 2.31× with 8-bit 3-residue RNS.

9 Conclusions

We proposed a Residue Number System (RNS) based fast integral Winograd
convolution that overcomes the computational instability of the conventional
Winograd algorithm. The method enables the execution of the Winograd al-
gorithm using low cost, low precision arithmetic operations (e.g. INT8 MAC)
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Table 5. Inference performance improvement over the Im2col+INT8GEMM baseline
of CNN layers for 8-bit quantized ResNet50-v1, Inception v1 and v3 models with Im-
ageNet dataset, using 8-bit RNS(251,241,239).

Models Bits of weight/input Top-1 Acc.(%) Speed-up of CNN layers†

ResNet50-v1 8/8 75.1 1.76×
Inception-v1 8/8 70.1 1.82×
Inception-v3 8/8 77.5 1.35×

† Not include the CNN layers with the stride ≥ 2.

for inference of existing quantized CNN networks. The convolution outputs are
precise, which means there is no prediction accuracy degradation with the RNS-
based Winograd convolution scheme we have presented.

Our RNS-based approach can benefit the common hardware platforms, in-
cluding CPU, GPU, and hardware accelerators, which can deliver high through-
put, low cost integer MAC operations. The theoretical performance improvement
of 8-bit quantized CNN layers can be up to 2.3× and 4.6× over 8-bit 3-residue
RNS for 3 × 3 and 5 × 5 CNN layers respectively using up to 16× 16 transfor-
mation.

The experiment showed, on average, the new proposal improved the runtime
performance of 3 × 3 INT8 CNN layers by 2.02× using power efficient 8-bit
arithmetic and 2.20× for 16-bit arithmetic over the standard Im2col + INT8
and INT16 GEMM baseline performances respectively measured on an Arm
Cortex-A73 mobile CPU using the 8-bit quantized VGG16 model, including the
computation overheads such as Winograd transforms over RNS, modulo, and
MRC operations etc. The new proposal achieved higher improvement e.g. 2.31×
for the CNN layers with larger filter size i.e. 5× 5 in Inception-v3.

Although it is possible to increase the transformation size (i.e. > 16 × 16),
to further boost arithmetic reduction, the transformation cost increases roughly
linearly, therefore it is a reasonable trade-off to choose transformation size from
8 to 16.
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