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Abstract. The attention-based encoder-decoder framework has recently
achieved impressive results for scene text recognition, and many vari-
ants have emerged with improvements in recognition quality. However, it
performs poorly on contextless texts (e.g., random character sequences)
which is unacceptable in most of real application scenarios. In this paper,
we first deeply investigate the decoding process of the decoder. We empir-
ically find that a representative character-level sequence decoder utilizes
not only context information but also positional information. Contex-
tual information, which the existing approaches heavily rely on, causes
the problem of attention drift. To suppress such side-effect, we propose
a novel position enhancement branch, and dynamically fuse its outputs
with those of the decoder attention module for scene text recognition.
Specifically, it contains a position aware module to enable the encoder
to output feature vectors encoding their own spatial positions, and an
attention module to estimate glimpses using the positional clue (i.e.,
the current decoding time step) only. The dynamic fusion is conducted
for more robust feature via an element-wise gate mechanism. Theoreti-
cally, our proposed method, dubbed RobustScanner, decodes individual
characters with dynamic ratio between context and positional clues, and
utilizes more positional ones when the decoding sequences with scarce
context, and thus is robust and practical. Empirically, it has achieved
new state-of-the-art results on popular regular and irregular text recog-
nition benchmarks while without much performance drop on contextless
benchmarks, validating its robustness in both contextual and contextless
application scenarios.

1 Introduction

Scene text recognition is crucial for visual understanding and reasoning in many
application scenarios [44,5]. Despite great progress recently, it remains a chal-
lenging task because the potential irregularity and diversity of text shapes and

? Zhanghui Kuang is the corresponding author.
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Fig. 1. Illustration of the decoding procedure of encoder-decoder with attention frame-
work and its failure cases.

layouts in the wild, which can be curved, oriented or distorted, make the mis-
alignment between the output character sequence and the two-dimensional input
image [29,57,50,25,42]. The prevalent approaches for scene text recognition are
inspired by machine translation [46,30,2] and image caption [54] following the
encoder-decoder framework with varied attention mechanisms [39,50,25,56,42].

Typically, the encoder-decoder with attention framework [25,56] consists of
one encoder, and one decoder. The decoder contains one character-level LSTM,
one attention module, and one prediction module. During decoding, at each
step, the LSTM takes the previously predicted character and the hidden state
as inputs, and outputs one query feature vector, which is fed into the attention
module to estimate attention map and compute one glimpse feature vector. The
glimpse vector is finally classified into one character category or the <EOS>
token in the prediction module as illustrated in Figure 1 (a). In spite of the
appealing effectiveness of the encoder-decoder with attention framework on aca-
demic benchmarks, it performs poorly on contextless text sequence images, which
hinders it from being widely used in real application scenarios. To demonstrate
it, we synthesize one benchmark of random character sequence images, dubbed
RandText, to evaluate existing encoder-decoder with attention based methods.
Surprisingly, the official released model of the state-of-the-art method SAR [25]
obtains a low accuracy of 59.6% on it. Figure 1 (b) shows some failure samples,
all of which are without background clutter, low resolutions, varied illumination
or distortions, and thus considered as easy cases by human.

To explore the underlying reasons of the failure recognition, in this work, we
deeply investigate the decoding process of encoder-decoder with attention based
methods. By computing the averaged cosine similarity between the query feature
vectors of the ith and jth time steps on ICDAR 2013 [20] test set, we observed
the high averaged similarity between those of the same time step (as shown in
Figure 2) although their corresponding characters are different. The observation
suggests that the query vectors encode not only context information but also the
positional information. We also observed that the averaged similarity between
the query vectors of neighborhood time steps increases as the time step increases,
which suggests that the positional information is drowned with the introduction
of others including context information at latter time steps. It can easily lead to
alignment drift and misrecognition of latter characters of contextless sequences,
which coincides with most of the failure samples in Figure 1 (b).
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To mitigate the above misrecognition, in this paper, we propose RobustScan-
ner for text recognition via dynamically enhancing the positional clues of the
decoder. Specifically, besides the conventional decoder, it consists of one posi-
tion enhancement branch and one dynamic fusion module. The former is tailored
for enhancing the conventional decoder in terms of positional encoding capabil-
ity via estimating the glimpses with positional clues (i.e., the current decoding
time step) only. The latter is designed to dynamically fuse the glimpses of the
position enhancement branch, and those of the conventional decoder via one
element-wise gate mechanism. In such a way, the fusion ratio between positional
and context information at each time step can be dynamically and adaptively
adjusted according to the their own importance.

Our contributions can be summarized as follows:

– We investigate the intrinsic mechanism of the decoding procedure of the
encoder-decoder with attention framework for the first time. We find out
that the query feature vectors of the LSTM encodes not only context but
also positional information, and the context information dominates the query
at latter decoding time steps, which can lead to misrecognition on contextless
text images.

– We propose RobustScanner to mitigate the issue of misrecogniton in con-
textless scenarios via introducing a novel position enhancement branch and
a dynamic fusion module.

– We extensively evaluate our proposed RobustScanner, which achieves new
state-of-the-art performances on popular regular and irregular text recog-
nition benchmarks while without much performance drop on contextless
RandText, validating its robustness in both context and contextless ap-
plication scenarios.

(a) l = 5 (b) l = 11

Fig. 2. Visualization of the averaged similarity matrix. The x-axis and the y-axis indi-
cate the position index in sequences, while the color indicate the averaged similarity.
The block at (i, j) indicates Sl(i, j). (a) visualizes the averaged similarity matrix when
l = 5 while (b) l = 11.
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2 Related Work

Most of traditional methods for scene text recognition [48,49,33,23,34] adopt the
bottom-up approach in which individual character is first detected by sliding
window, and then integrated for taking the dependence with its neighbors into
consideration. These methods might fail to detect small characters, and are easily
disturbed by background clutter, illumination, and low image quality, e.g., blur-
ring, noise, etc. Later, top-down methods [12,40,15,11,24,41,3,42,57,8,7,25,50,35,1,55,45,16]
were proposed, in which text sequences are end-to-end predicted without the
single character detection. Recently, approaches which target at challenging
arbitrary-shaped text recognition become dominant. These approaches can be
roughly categorized into rectification-based, segmentation-based and encoder-
decoder with attention-based.

Rectification-based approaches. They attempt to rectify irregular im-
ages to regular ones before recognition. STN [18] was first introduced into text
recognition network by Shi et al [41], which was extended by considering more
flexible Transformation Thin-Plate-Spline (TPS) in [42,55] and conducting rec-
tification iteratively in [57]. Rather than rectifying the whole text region, Liu
et al [27] detected individual characters first and then rectified them separately.
The shortness of this strategy is that, if some important information missed
during rectification process, it cannot be compensated in the latter part of the
network, which may be fatal at times.

Segmentation-based approaches. They segment each character individ-
ually to avoid the issue of irregular layout. Liao et al [26] employed fully con-
volutional network to detect and recognize individual characters followed by
character-combination in post-processing. However, they need character-level an-
notations which are unavailable in most public datasets. Xing et al [53] alleviated
this issue by an iterative character detection, which can transform the ability
of character detection learned from synthetic data to real-world images. All the
segmentation-based approaches cannot trivially extend to the text recognition
with huge character dictionary, such as Chinese recognition, as they maintain
one probability heat map for each character.

Encoder-decoder with attention-based approaches. Most of existing
state-of-the-art methods for irregular text recognition follow the encoder-decoder
framework with attention mechanisms [41,56,7,27,25,56,35,1,45,50]. The encoder-
decoder with attention framework was first proposed for NLP tasks such as ma-
chine translation [46,30,2]. Later, it was introduced into scene text recognition
to align the character in the output sequence with local image regions in [41].
Since then, many variants [7,25,56] were emerged with improvements in recogni-
tion quality. Cheng et al [7] introduced a focus network to suppress the attention
drift problem. SAR [25] employed a tailored 2D attention mechanism to recog-
nize irregular texts and achieved impressive results. Recently, [50,39] introduced
Transformer to replace RNN structure to capture long distance context. Wang
et al [51] proposed Decoupled Attention Network (DAN) to mitigate the align-
ment drift problem. Our approach falls into the encoder-decoder with attention
framework. Similar to DAN [51], we also target at suppressing the misrecogni-
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tion caused by alignment drift. Instead of decoupling attention from historical
decoding results as done in [51], we propose the position enhancement branch
and dynamically fusion module to adaptively adjust the ratio of positional and
context clues during decoding. Besides, we deeply investigate the intrinsic mech-
anism of the decoding procedure in the decoder for the first time.

Our approach is related to the positional encoding model [47,9,38]. We do
not target at enumerating all possible architectures and finding the optimal one
of positional encoding model. In contrast, we focus on enhancing positional clues
of the attention-based decoder.

3 Methodology

In this section, we first review the encoder-decoder with attention-based scene
text recognition, and then dissect the decoder and analyze what information
the query feature vectors contain. Finally, we introduce our proposed approach
RobustScanner.

3.1 Background

As [25,56], one representative encoder-decoder with attention-based scene text
recognition approach consists of one encoder and one decoder. The decoder has
one LSTM-based sequence module, one attention module and one prediction
module. Given one input image, the encoder extracts one feature map F ∈
RH×W×C . During decoding, at time step t, the LSTM-based sequence model
first generates one hidden feature vector ht. Formally,

ht = LSTM(xt,ht−1),xt =

{
yt−1 if t > 1

<start> if t = 1
, (1)

where <start> is a special start token, and yt−1 is the output of decoding
process at time step t − 1. ht is considered as the query feature vector of the
attention module to compute one attention map as follows:

αt
ij = softmax(ht

T fi,j), (2)

where ht
T indicates the transpose of the vector ht, and fi,j represents the feature

vector at the position (i, j) of F. The glimpse vector gt is then computed by the
weighted aggregation of the convolutional feature map F as follows:

gt =
∑
ij

αt
ijfi,j. (3)

Finally, the glimpse vector gt is classified into one character or the <EOS>
token. Formally,

yt = softmax(Wgt + b), (4)

where W and b indicate the linear transformation and the bias of the classifier
respectively.
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3.2 Decoder Dissection

From Equation (1), (2), (3), and (4), we conclude that given the feature map
F and learned network parameters, the recognized character yt depends on the
query vector ht only. What information does the query vector ht encode so
that its corresponding attention weight αt can highlight and the classifier can
correctly recognize the tth character on the input image? Obviously, the query
vector contains context information since it depends on previously-predicted
characters from Equation (1).

We observe that the query vector h1 keeps unchanged for different text se-
quences, and does not encode any context information. However, the first char-
acter can still be correctly recognized. This implies that the query vector ht

(including h1) contains the positional information. i.e., the character index in
one sequence.

To verify the above conjecture, we analyze the similarity of the query for
different text sequences at the same time step. We conduct experiments on test
set of ICDAR 2013 [20]. Let I denote the set of all text sequences, and Îl be the
subset of I with all text sequences of length l. We compute the average cosine
similarity Sl(i, j) between the query vectors at position i and j over Îl as follows:

Sl(i, j) =

∑|Îl|
m6=n cos(hm,l

i ,hn,l
j )∣∣∣Îl∣∣∣ (∣∣∣Îl∣∣∣− 1)

, (5)

where
∣∣∣Îl∣∣∣ denotes the cardinality of Il, and hm

i denotes the ith query vector for

the mth sequence in Il.
Figure 2 visualizes the averaged similarity matrixes when l = 5 and l = 11.

We have two observations:

– Averaged similarities between the query vectors of the same position are
obviously higher than those of different positions.

– As the time step increases, the contrast between the averaged similarities be-
tween the query vectors of the same position, and those of neighbor positions
become smaller.

Note that the ith character of sequences in Il varies from one sequence to an-
other. High value of Sl(i, i) suggests queries can be well separated into groups
corresponding to their steps using kernel methods. We further conduct the lin-
ear regression between queries (ht) and positions (t) via fitting t = Wrht + br
on the data with l = 5 (90% for training, 10% for test). We report the classic
R-squared R2 which indicates the proportion of the variance of the dependent
variable that is predictable. We get R2 = 0.994 and R2 = 0.956 on training and
test set. High R2 scores prove queries can reliably predict positions. Thus, queries
encode them. The second observation suggests that the positional information
is drowned with the introduction of others including the context information.
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Fig. 3. Architecture of RobustScanner. Given an input image, we first extract its fea-
ture map F by the CNN encoder. F is then fed into the hybrid branch, and the position
enhancement branch, obtaining the glimpses gt and g′

t, which are dynamically fused
by the dynamically-fusing module before predicting the tth character.

3.3 RobustScanner

Overview. As discussed in Section 3.2, the query vectors in the encoder-decoder
with attention based framework contain the hybrid information of context and
position. The positional clues become weaker while the contextual ones become
stronger as the time step increases during decoding, which may lead to align-
ment drift and misrecognition, especially on contextless text images. To enhance
the positional information, we propose one position enhancement branch and
dynamically fuse its outputs with those of the conventional decoder. As shown
in Figure 3, our RobustScanner consists of one encoder and one decoder. In the
encoder, we adapt one 31-layer ResNet [14] as backbone as done in [25]. The
decoder consists of one hybrid branch, one position enhancement branch, one
dynamically-fusing module, and one prediction module.

Hybrid Branch. The hybrid branch consists of one two-layer LSTM with
128 hidden state size and one attention module. The LSTM takes the previously-
predicted character and its hidden variable as input and generates the query
vector ht. Then the query vector is fed into the attention module to estimate
glimpse vector gt for the character prediction during decoding (see Equation (1)
and (3)). It utilizes both contextual and positional information simultaneously.

Position Enhancement Branch. The positional information becomes weak
while the contextual information becomes strong in the latter time steps during
decoding. It would lead to the alignment drift and serious misrecongition on
contextless text images where context cannot be used to reliably predict char-
acters. Our position enhancement branch is designed to mitigate this problem.
It consists one position embedding layer, one position aware module and one
attention module.
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t.

The position embedding layer encodes the decoding time step. It inputs one
hot vectors and outputs one specific embedding vector qt for each time step
t. Note that the embedding vector of each time step keeps unchanged across
different decoding sequences.

Position Aware Module. Although the position embedding layer encodes the
character index in sequences, precisely locating the tth character on the encoder
output feature map F, which requires the global information, is still challenging.
However, the width of input image might be beyond the receptive field size
of the CNN encoder. Moreover, counting the indexes of characters in images
needs to understand the shapes and directions of the text sequences. To this
end, we propose a position aware module to capture the global and high-level
information so that the encoder output feature map is position-aware. Figure 4
(a) shows the detailed architecture of the proposed position aware module. We
employ two-layer LSTM with 128 hidden state size for each row of the feature
map F to capture the global context. For all rows, the LSTMs share parameters
to overcome overfitting and reduce parameter amount. We then employ two 3×3
convolutional layers with one ReLU between them to generate the key vectors
F̂ of its following attention module. Formally,

f1i,j = LSTM(fi,j, f
1
i,j−1), (6)

f2i,j = LSTM(f1i,j, f
2
i,j−1), (7)

F̂ = f(F2), (8)
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where f1i,j and f2i,j are the first and the second LSTM hidden variables respectively.

F2 is the tensor consisting of f2i,j, and f(·) is the stack of 3× 3 conv, ReLU, and
3× 3 conv operations.

We feed the output vectors qt of the embedding layer into the attention
module as key vectors to estimate attention maps, which are used to compute
the final glimpse vectors g′t as done in Equation (2) and (3). Different from

conventional methods, we use the position aware feature map F̂ instead of F
when computing the attention maps.

Note that position aware module injects the global context so that it has the
capability to output position aware features. The query vectors in the position
enhancement branch explicitly encode the character order indexes (positions).
The end-to-end training enforces the position aware module to output feature
maps correlated with positions so that the attention module in the branch can
correctly output the feature glimpse at each decoding step (position) with the
position aware module output feature maps and position-specific query vector
as inputs (see Figure 3). Otherwise, texts cannot be correctly decoded.

Dynamically-Fusing Module. As shown in Figure 4 (b), we propose to
dynamically fuse the hybrid branch output gt and the position enhancement
branch output g′t at each time step t. We design one gate mechanism to predict
one attention weight for each dimension of their concatenation, which is used to
enhance or suppress their corresponding feature. Formally,

wt = sigmoid(Wa[gt; g
′
t]), (9)

gf
t = wt � (Wp[gt; g

′
t]), (10)

where Wa and Wp are two learned linear transformations. � indicates the
element-wise multiplication operation. gf

t is the final output of our dynamically-
fusion module, which is used to predict the character via the prediction module.

4 Experiments

4.1 Datasets

For fair comparison with previous state-of-the-art approaches, we follow their
settings to train the proposed network by using two public available synthetic
datasets, i.e. MJSynth [17] and SynthText [13]. We conduct extensively exper-
iments on 6 standard benchmarks including 3 regular text datasets (IIIT 5K-
words [32], Street View Text [48], ICDAR 2013 [20]), 3 irregular text datasets
(ICDAR 2015 [19], Street View Text Perspective [36], CUTE 80 [37]).

IIIT 5K-words (IIIT5K) [32] is a large dataset containing 5000 word patches
cropped from natural scene images collected from Google image search, in which
2000 images are used for training and 3000 for test. Text instances in these
patches are regular with the horizontal layout.
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Street View Text (SVT) [48] consists of 647 word patches cropped from
Google Street View for testing. Most images are horizontal, but severely cor-
rupted by noise and blur, or with low-resolution.

ICDAR 2013 [20] has 848 cropped word patches for training and 1095 for
test. For fair comparison with other reported results, we discard images that
contain non-alphanumeric characters, which results in 1015 test patches. Words
in this dataset are mostly regular.

ICDAR 2015 [19] contains word patches cropped from incidental scene im-
ages captured under arbitrary angles. Hence most word patches in this dataset
are irregular (oriented, perspective or curved). It contains 4468 patches for train-
ing and 2077 for test.

Street View Text Perspective (SVTP) [36] consists of 639 word patches,
which are cropped from side view snapshots in Google Street View and encounter
severe perspective distortions. All patches are used for test.

CUTE 80 [37] contains 288 cropped high resolution images for test and
many of them are curved irregular text images.

RandText contains 500 test images. We synthesize them by pasting black
random character sequences on white background images. The character set
contains small and capital letters, and numbers. Some examples can be found in
Figure 1 (b). We will publicly release RandText to facilitate the future research.

4.2 Implementation Details

The proposed framework is implemented by using PyTorch. All experiments are
conducted on servers with 4 NVIDIA Titan X GPUs with 12 GB memory.

Our RobustScanner is trained from scratch using Adam optimizer [21] with
the base learning rate 1 × 10−3. The whole training process contains 5 epochs,
while the learning rate decreases to 1×10−4 at the 3rd epoch and 1×10−5 at the
4th epoch. The batch size at training phase is set to 128. For both training and
test, heights of all image patches are set to 48, while widths are proportionally
scaled with heights, but no longer than 160 and no smaller than 48 pixels. Our
models recognizes 91 token classes, including 10 digits, 52 case sensitive letters,
28 punctuation characters and an <EOS> token.

To reduce the computation time of two attention module, the dimension of
the hybrid query vector ht and the position embedding qt is set to 128. Before
feeding F to the hybrid attention module and the position aware module, a
1×1 conv layer is added to reduce the channel dimension to 128. The maximum
number of position embeddings is set to 36.

In the test stage, for images with height larger than width, we will rotate the
image by 90 degree clockwise and anticlockwise respectively, and recognize them
together with the original image. For the recognition results of each 3-sibling
image group, the top-score one will be chosen as the final recognition result.
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Method Training Data
Regular Text Irregular Text

IIIT5K SVT ICDAR 2013 ICDAR 2015 SVTP CUTE 80

Cheng et al [7] MJ + ST 87.4 85.9 93.3 70.6 - -
Cheng et al [8] MJ + ST 87.0 82.8 - 68.2 73.0 76.8
Shi et al [42] MJ + ST 93.4 93.6 91.8 76.1 78.5 79.5

Zhan and Lu [57] MJ + ST 93.3 90.2 91.3 76.9 79.6 83.3
Gao et al [10] MJ + ST 94.0 88.6 93.2 77.1 80.6 88.5
Bai et al [3] MJ + ST 88.3 87.5 94.4 73.9 - -

Luo et al [29] MJ + ST 91.2 88.3 92.4 68.8 76.1 77.4
Wang et al [50] MJ + ST 93.3 88.1 91.3 74.0 80.2 85.1
Lyu et al [31] MJ + ST 94.0 90.1 92.7 76.3 82.3 86.8
Xie et al [52] MJ + ST 82.3 82.6 89.7 68.9 70.1 82.6

DAN [51] MJ + ST 94.3 89.2 93.9 74.5 80.0 84.4
Bartz et al [4] MJ + ST 94.6 89.2 93.1 74.2 83.1 89.6

Bleeker et al [6] MJ + ST 94.7 89.0 93.4 75.7 80.6 82.5
Long et al [28] MJ + ST 93.7 88.9 92.4 76.6 78.8 86.8
Baek et al [1] MJ + ST 87.9 87.5 92.3 71.8 79.2 74.0

RobustScanner MJ + ST 95.3 88.1 94.8 77.1 79.5 90.3

SAR [25] MJ + ST + R 95.0 91.2 94.0 78.8 86.4 89.6

RobustScanner MJ + ST + R 95.4 89.3 94.1 79.2 82.9 92.4

Table 1. Comparison with state-of-the-art methods. “MJ”, “ST” and “R” are the
training data of MJSynth [17], SynthText [13] and training splits of real datasets,
respectively.

4.3 Comparison with State-of-the-art Approaches

We compare our approach with previous state-of-the-art methods in Table 1.
It has been shown that our proposed RobustScanner achieves best results on
four datasets including IIIT5K, ICDAR 2013, ICDAR 2015 and CUTE 80 when
only synthetic training datasets are used. To demonstrate the potential of our
proposed method, we further train it on MJSynth, SynthText, and training sets
of real datasets in Section 4.1 following the training setting of SAR [25]. We have
observed that RobustScanner outperforms its competitor SAR on four out of six
benchmarks. Especially, it obtains the accuracy of 92.4%, and outperforms SAR
with impressive margins on the challenging irregular text dataset CUTE 80. It
can be noticed that our method performs worse than SAR [25] on two street
view text datasets, we attribute the performance gap to that SVT and SVTP
consist of contextual words and suffer from low resolution, blur and distortion,
where context is more important than positions when recognizing texts.

Method SAR [25] DAN [51] Wang et al [50] RobustScanner

Accuracy 59.6 76.4 78.8 81.2

Table 2. Comparison on RandText. All methods are trained on the training data of
MJSynth [17] and SynthText [13] for fair comparison.
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This paper targets at mitigating the misrecongition issue on contextless text
images of the encoder-decoder with attention based framework. Therefore, we
evaluate our proposed RobustScanner on RandText dataset. Table 2 compared
it with representative encoder-decoder with attention based approaches. Again,
our proposed RobustScanner obviously outperforms its counterparts including
LSTM based methods [25] and [51] and the Transformer based method [50].
Especially, DAN [51] decouples the historical decoded characters from the at-
tention estimation to suppress the alignment drift problem. However, it still
performs worse than our RobustScanner by absolute 4.8%. The effectiveness of
RobustScanner on both context and contextless benchmarks validate its robust-
ness in real application scenarios.

4.4 Ablation Study

The effectiveness of each branch. To show the effectiveness of each branch,
we evaluate our RobustScanner without the position enhancement branch or
the hybrid branch in Table 3. In these experiments, the glimpse vectors are fed
directly into the classifier to decode the character at each time step without
dynamic fusion. We have two observations. First, RobustScanner greatly out-
performs its counterpart without the hybrid branch on all academical regular
and irregular benchmarks, and performs slightly worse on RandText. Due to the
collection bias, all academical benchmarks have abundant context. It suggests
that the context clues introduced via the hybrid branch can boost the recogni-
tion performances on context text images, and causes side effect on contextless
text images. Second, the performance of RobustScanner drops drastically when
without applying the position enhancement branch on both context and context-
less text images. Particularly, RobustScanner without the position enhancement
branch obtains a low accuracy of 46.8% on RandText, which is lower than it with
both branches by absolutely 34.4%. We conclude that the capacity of encoding
positional clues in the decoder with attention should be enhanced, especially
when recognizing contextless text images.

IIIT5K SVT ICDAR 2013 ICDAR 2015 SVTP CUTE 80 RandText

w/o HB 92.5 84.4 91.4 70.7 74.4 83.3 83.4
w/o PEB 91.0 88.3 91.7 72.0 75.4 84.0 46.8

RobustScanner 95.3 88.1 94.8 77.1 79.5 90.3 81.2

Table 3. Evaluation of the effectiveness of each branch in RobustScanner. HB and
PEB indicate the hybrid branch and the position enhancement branch respectively.

The effectiveness of the position aware module. Enhancing position
encoding is nontrivial since it requires the global context of the input image
and the comprehension of the shapes and directions of text sequences. Our pro-
posed position aware module is the core component of the position enhancement
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branch. Table 4 evaluates its effect. if we take out the position aware module, our
RobustScanner decreases from 92.5%, 84.4%, 91.4%, 70.7%, 74.4%, 83.3% and
83.4% to 88.7%, 84.1%, 89.0%, 61.8%, 62.3%, 76.7% and 68.0% on IIIT5K, SVT,
ICDAR 2013, ICDAR 2015, SVTP, CUTE 80 and RandText respectively. We
also compare our position aware module with sine and cosine positional encod-
ing [47]. We compute the 128-dimensional sine and cosine positional encoding via
pe(pos, 2i) = sin(pos/10002i/128) and pe(pos, 2i+ 1) = cos(pos/10002i/128) with
pos being the horizontal coordinate of the current encoder output feature vector
in the spatial space, and 2i and 2i+ 1 being the encoding indexes. We pad the
sine and cosine positional encoding with F and obtain F̂, which is fed into the
attention module as key vectors. As shown in Table 4, sine and cosine positional
encoding leads to obvious performance drop. Arguably, it is because since and
cosine positional encoding contain absolute coordinate information only while
relative character indexes in sequences are required in the position enhancement
branch.

IIIT5K SVT ICDAR 2013 ICDAR 2015 SVTP CUTE 80 RandText

w/o PAM 88.7 84.1 89.0 61.8 62.3 76.7 68.0
sine&cosine 86.1 83.2 87.8 57.5 56.1 74.0 49.0

RobustScanner 92.5 84.4 91.4 70.7 74.4 83.3 83.4

Table 4. Evaluation of the effectiveness of the position aware module, and other posi-
tion encoding method. PAM indicates the position aware module. sine&cosine indicates
padding sine and cosine positional encoding with the encoder output feature maps.

The effectiveness of the dynamically-fusing module. Table 5 compares
our proposed dynamically-fusing module with other baseline fusion methods.
Namely, element-wise addition and concatenation. They element-wise addition
or concatenate the glimpse vectors gt and g′t from the hybrid branch and the
position enhancement branch before feeding them into the classifier at the tth

time step during decoding. Different from dynamically-fusing, they are static and
keep unchanged across different time steps and different decoding sequences. Our
proposed dynamically-fusing module achieves best results on all 6 academical
benchmarks and the second best result on RandText. Therefore, it is more robust
than its static competitors, and applicable in more general application scenarios
including those with or without context.

Performance on license plate recognition. To verify the effectiveness of
our RobustScanner on contextless data, we conduct experiments on the license
plate recognition task. We crop 97 license plate images from Cars dataset [22] as
the test set by using the character-level training annotations introduced in [43].
Noted that all methods are trained on the training data of MJSynth [17] and
SynthText [13]. Therefore, the training and test data are very different in terms
of background, font, and layout. All methods get relatively low accuracy on it.
However, our RobustScanner outperforms other encoder-decoder with attention
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Method IIIT5K SVT ICDAR 2013 ICDAR 2015 SVTP CUTE 80 RandText

Element-wise addition 94.8 87.9 94.3 75.5 78.6 89.2 82.4
Concatenation 95 88.1 94.2 75.2 78.6 88.2 80.4

Dynamically-fusing 95.3 88.1 94.8 77.1 79.5 90.3 81.2

Table 5. Comparison with different fusion methods.

Method SAR [25] DAN [51] Wang et al [50] RobustScanner

Accuracy 29.9 51.1 46.4 55.7

Table 6. Comparison on the license plate dataset.

based methods with impressive margins, as shown in Table 6. Figure 5 shows
some results of our method and SAR [25] on the license plate test set.

byjl580

byj580

emzi5966

emz5966

avyxxx1893

avyx189

cgwing3

cgw6383

sbpp535

sbp535

SAR

RobustScanner

Fig. 5. Samples of recognition results of our RobustScanner and SAR [25] on the license
plate dataset.

5 Conclusions

In this paper, we target at mitigating the misrecognition problem of the encoder-
decoder with attention framework on contextless text images. We have investi-
gated the decoding procedure and have found that the query vectors of attention
in the decoder contains both positional and context information, and positional
clues become weak while contextual ones become strong as the decoding time
step increases. Motivated by this finding, we have proposed RobustScanner for
scene text recognition, which contains one hybrid branch and one position en-
hancement branch, and dynamically fuses the two branches at each time step
during decoding. Moreover, we have proposed one novel position aware module,
which can strengthen the positional encoding capacity of the position enhance-
ment branch. We have conducted ablation studies to validate the effect of each
proposed component. We have extensively evaluated our proposed RobustScan-
ner on both academical benchmarks and our synthesized RandText. The experi-
mental results show that our approach has achieved new state-of-the-art results
on popular regular and irregular text benchmarks while without much perfor-
mance drop on contextless benchmarks. It has been validated that our proposed
RobustScanner is robust in both context and contextless application scenarios.
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