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Abstract. We present a method for projecting an input image into the
space of a class-conditional generative neural network. We propose a
method that optimizes for transformation to counteract the model bi-
ases in generative neural networks. Specifically, we demonstrate that one
can solve for image translation, scale, and global color transformation,
during the projection optimization to address the object-center bias and
color bias of a Generative Adversarial Network. This projection process
poses a difficult optimization problem, and purely gradient-based opti-
mizations fail to find good solutions. We describe a hybrid optimization
strategy that finds good projections by estimating transformations and
class parameters. We show the effectiveness of our method on real images
and further demonstrate how the corresponding projections lead to bet-
ter editability of these images. The project page and the code is available
at https://minyoungg.github.io/pix2latent.

1 Introduction

Deep generative models, particularly Generative Adversarial Networks (GANs)
[26], can create a diverse set of realistic images, with a number of controls for
transforming the output, e.g., [55, 9, 34, 37, 55, 7, 30]. However, most of these
methods apply only to synthetic images that are generated by GANs in the
first place. In many real-world cases, a user would like to edit their own image.
One approach is to train a network for each separate image transformation.
However, this would require a combinatorial explosion of training time and model
parameters.

Instead, a user could “project” their image to the manifold of images pro-
duced by the GAN, by searching for an appropriate latent code [70]. Then, any
transformations available within the GAN could be applied to the user’s im-
age. This could allow a powerful range of editing operations within a relatively
compact representation. However, projection is a challenging problem. Previ-
ous methods have focused on class-specific models, for example, for objects [70],
faces [53, 12], or specific scenes such as bedrooms and churches [8, 10]. With
the challenges in both optimization and generative model’s limited capacity, we
wish to find a generic method that can fit real images from diverse categories
into the same generative model.

*Work started during an internship at Adobe Research.
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Fig. 1. Given a pre-trained BigGAN [11] and a target image (left), our method uses
gradient-free BasinCMA to transform the image and find a latent vector to closely
reconstruct the image. Our method (top) can better fit the input image, compared to
the baseline (bottom), which does not model image transformation and uses gradient-
based ADAM optimization. Finding an accurate solution to the inversion problem
allows us to further fine-tune the model weights to match the target image without
losing downstream editing capabilities. For example, our method allows for changing
the class of the object (top row), compared to the baseline (bottom).

This paper proposes the first method for projecting images into class-conditional
models. In particular, we focus on BigGAN [11]. We address the main problems
with these tasks, mainly, the challenges of optimization, object alignment, and
class label estimation:

• To help avoid local minima during the optimization process, we systematically
study choices of both gradient-based and gradient-free optimizers and show
Covariance Matrix Adaptation (CMA) [28] to be more effective than stand-
alone gradient-based optimizers, such as L-BFGS [47] and Adam [39].

• To better fit a real image into the latent space, we account for the model’s
center bias by simultaneously estimating both spatial image transformation
(translation, scale, and color) and latent variable. Such a transformation can
then be inverted back to the input image frame. Our simultaneous transfor-
mation and projection method largely expands the scope and diversity of the
images that a GAN can reconstruct.

• Finally, we show that estimating and jointly optimizing the continuous embed-
ding of the class variable leads to better projections. This ultimately leads to
more expressive editing by harnessing the representation of the class-conditional
generative model.

We evaluate our method against various baselines on projecting real im-
ages from ImageNet. We quantitatively and qualitatively demonstrate that it
is crucial to simultaneously estimate the correct transformation during the pro-
jection step. Furthermore, we show that CMA, a non-parametric gradient-free
optimization technique, significantly improves the robustness of the optimiza-
tion and leads to better solutions. As shown in Figure 1, our method allows us
to fine-tune our model to recover the missing details without losing the editing
capabilities of the generative model.
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Fig. 2. Overview: Our method first searches for a transformation to apply to the input
target image. We then solve for the latent vector that closely resembles the object in the
target image, using our proposed optimization method, also referred to as “projection”.
The generative model can then be further fine-tuned to reconstruct the missing details
that the original model could not generate. Finally, we can edit the image by altering
the latent code or the class vector (e.g., changing the border collie to a west highland
white terrier), and invert and blend the edited image back into the original image.

2 Related Work

Image editing with generative models. Image editing tools allow a user to
manipulate a photograph according to their goal while producing realistic visual
content. Seminal work is often built on low-level visual properties, such as patch-
based texture synthesis [21, 32, 20, 6], gradient-domain image blending [54], and
image matting with locally affine color model [44]. Different from previous hand-
crafted low-level methods, several recent works [70, 12] proposed to build editing
tools based on a deep generative model, with the hope that a generative model
can capture high-level information about the image manifold.

For example, iGAN [70] proposes to reconstruct and edit a real image using
GANs. The method first projects a real photo onto a latent vector using a
hybrid method of encoder-based initialization and per-image optimization. It
then modifies the latent vector using various editing tools such as color, sketch,
and warping brushes and generates the final image accordingly. Later, Neural
Photo Editing [12] proposes to edit a face photo using VAE-GANs [43]. The same
image prior from deep generative models has also been used in face editing, image
inpainting, colorization, and deblurring [53, 66, 4, 27, 58]. Recently, GANPaint [8]
proposes to change the semantics of an input image by first projecting an image
into GANs, then fine-tuning the GANs to reproducing the details, and finally
modifying the intermediate activations based on user inputs [9]. However, all the
above systems focus on a single object category. Our work presents new ways of
embedding an image into a class-conditional generative model, which allows the
same GAN to be applied to many more in-the-wild scenarios.
Inverting networks. Our work is closely related to methods for inverting
pre-trained networks. Earlier work proposes to invert CNN classifiers and in-
termediate features for visualizing recognition networks [48, 18, 49, 50]. More
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recently, researchers adopted the above methods to invert generative models.
The common techniques include: (1) Optimization-based methods: they find the
latent vector that can closely reconstruct the input image using gradient-based
method (e.g., ADAM, LBFGS) [70, 12, 46, 66, 57, 3, 13] or MCMC [61], (2)
Encoder-based methods: they learn an encoder to directly predict the latent
vector given a real image [15, 19, 70, 53, 12, 16], (3) Hybrid methods [70, 8, 10]:
they use the encoder to initialize the latent vector and then solve the optimiza-
tion problem. By using the ground truth class label, Neural Collage [60] turn a
BigGAN into a single-class GAN and adopts single-class image projection [70].
Although the optimized latent vector roughly approximates the real input image,
many important visual details are missing in the reconstruction [8]. To address
the issue, GANPaint [8] gently fine-tunes the pre-trained GAN to adapt itself
to the individual image. Image2StyleGAN [1] optimizes StyleGAN’s intermedi-
ate representation rather than the input latent vector. Unfortunately, the above
techniques still cannot handle images in many scenarios due to the limited model
capacity [10], the lack of generalization ability [1], and their single-class assump-
tion. As noted by prior work [1], the reconstruction quality severely degrades
under simple image transformation, and translation has been found to cause
most of the damage. Compared to prior work, we consider two new aspects in
the reconstruction pipeline: image transformation and class vector. Together,
these two aspects significantly expand the diversity of the images that we can
reconstruct and edit.

3 Image projection methods

We aim to project an image into a class-conditional generative model (e.g.,
BigGAN [11]) for the purposes of downstream editing. We first introduce the
basic objective function that we slowly build upon. Next, since BigGAN is an
object-centric model for most classes, we infer an object mask from the input
image and focus on fitting the pixels inside the mask.

Furthermore, to better fit our desired image into the generative model, we
propose to optimize for various image transformation (scale, translation, and
color) to be applied to the target image. Lastly, we explain how we optimize the
aforementioned objective loss function.

3.1 Basic Loss Function

Class-conditional generative model A class-conditional generative network
can synthesize an image ŷ ∈ RH×W×3, given a latent code z ∈ RZ that models
intra-class variations and a one-hot class-conditioning vector c̃ ∈ ∆C to choose
over C classes. We focus on the 256×256 BigGAN model [11] specifically, where
Z = 128 and C = 1, 000 ImageNet classes.

The BigGAN architecture first maps the one-hot c̃ into a continuous vector
c ∈ R128 with a linear layer W ∈ R128×1000, before injecting into the main
network Gθ, with learned parameters θ.
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ŷ = Gθ(z, c) = Gθ(z,Wc̃). (1)

Here, a choice must be made whether to optimize over the discrete c̃ or contin-
uous c. As optimizing a discrete class vector is non-trivial, we optimize over the
continuous embedding.

Optimization setup. Given a target image y, we would like to find a z∗ and
c∗ that generates the image.

z∗, c∗ = arg min
z,c

L(Gθ(z, c),y) s.t. C(z) ≤ Cmax. (2)

During training, the latent code is sampled from a multivariate Gaussian
z ∼ N (0, I). Interestingly, recent methods [11, 40] find that restricting the dis-
tribution at test time produces higher-quality samples. We follow this and con-
strain our search space to match the sampling distribution from Brock et al. [11].
Specifically, we use C(z) = ||z||∞ and Cmax = 2. During optimization, elements
of z that fall outside the threshold are clamped to +2, if positive, or −2, if neg-
ative. Allowing larger values of z produces better fits but compromises editing
ability.

Loss function. The loss function L attempts to capture how close the approx-
imate solution is to the target. A loss function that perfectly corresponds to
human perceptual similarity is a longstanding open research problem [64], and
evaluating the difference solely on a per-pixel basis leads to blurry results [68].
Distances in the feature space of a pre-trained CNN correspond more closely with
human perception [35, 17, 23, 69]. We use the LPIPS metric [69], which cali-
brates a pre-trained model using human perceptual judgments. Here, we define
our basic loss function, which combines per-pixel `1 and LPIPS.

Lbasic(y, ŷ) =
1

HW
‖ŷ − y‖1 + βLLPIPS(ŷ,y). (3)

In preliminary experiments, we tried various loss combinations and found β = 10
to work well. We now expand upon this loss function by leveraging object mask
information.

3.2 Object Localization

Real images are often more complex than the ones generated by BigGAN. For
example, objects may be off-centered and partially occluded, or multiple objects
appear in an image. Moreover, it is possible that the object in the image can be
approximated by GANs but not the background.

Accordingly, we focus on fitting a single foreground object in an image and
develop a loss funciton to emphasize foreground pixels. We automatically pro-
duce a foreground rectangular mask m ∈ [0, 1]H×W×1 using the bounding box of
an object detector [31]. Here, we opt for bounding boxes for simplicity, but one
could consider using segmentation mask, saliency maps, user-provided masks,
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Fig. 3. Object center comparison: We
use an object detector to compute the his-
togram of object locations. Note that Im-
ageNet (left) is biased towards the center
but exhibits a long-tail. BigGAN (right)
is further biased towards center.
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Fig. 4. Object size comparison: We use
an object detector to compute the distri-
bution of object widths (left) and heights
(right). Note that ImageNet (black) has a
long-tail, whereas the BigGAN (blue) ac-
centuates the mode.

etc. The foreground and background values within mask m are set to 1 and 0.3,
respectively. We adjust the objective function to spatially weigh the loss:

Lmask(y, ŷ,m) =
1

M
‖m� (ŷ − y)‖1 + βLmLPIPS(ŷ,y,m), (4)

where normalization parameter M = ‖m‖1 and � represents element-wise multi-
plication across the spatial dimensions. Given a mask of all foreground (all ones),
the objective function is equivalent to Equation 3. We calculate the masked ver-
sion of the perceptual loss LmLPIPS(ŷ,y,m) by bilinearly downsampling the
mask at the resolution of the intermediate spatial feature maps within the per-
ceptual loss. The details are described in Appendix B.With the provided mask,
we now explore how one can optimize for image transformation to better fit the
object in the image.

3.3 Transformation Model and Loss

Generative models may exhibit biases for two reasons: (a) inherited biases from
the training distribution and (b) bias introduced by mode collapse [25], where
the generative model only captures a portion of the distribution. We mitigate
two types of biases, spatial and color during image reconstruction process. A
concurrent work [2] proposes that surrogate network with spatial transformers
could be used to partially alleviates this aforementioned distributional shift at
test-time.

Studying spatial biases. To study spatial bias, we first use a pre-trained
object detector, MaskRCNN [31], over 10,000 real and generated images to com-
pute the statistics of object locations. We show the statistics regarding the center
locations and object sizes in Figures 3 and 4, respectively.

Figure 3 (left) demonstrates that ImageNet images exhibit clear center bias
over the location of objects, albeit with a long tail. While the BigGAN learns to
mimic this distribution, it further accentuates the bias [10, 34], largely forgoing
the long tail to generate high-quality samples in the middle of the image. In Fig-
ure 4, we see similar trends with object height and width. Abdal et al. [1] noted
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that the quality of image reconstruction degrades given a simple translation in
the target image. Motivated by this, we propose to incorporate spatial alignment
in the inversion process.

Searching over spatial alignments. We propose to transform the generated
image using T spatial

ψ (·), which shifts and scales the image using parameters ψ =
[sx, sy, tx, ty]. The parameters ψ are used to generate a sampling grid which in
turn is used by a grid-sampler to construct a new transformed image [33]. The
corresponding inverse parameters are ψ−1 =

[
1
sx
, 1
sy
,− tx

sx
,− ty

sy

]
.

Transforming the generated image allows for more flexibility in the optimiza-
tion. For example, if G can perfectly generate the target image, but at different
scales or at off-centered locations, this framework allows it to do so.

Searching over color transformations. Furthermore, we show that the same
framework allows us to search over color transformations T color

γ (·). We exper-
imented with various color transformations such as hue, brightness, gamma,
saturation, contrast, and found brightness and contrast to work the best. Specif-
ically, we optimize for brightness, which is parameterized by scalar γ with inverse
value γ−1 = −γ. If the generator can perfectly generate the target image, but
slightly darker or brighter, this allows a learned brightness transformation to
compensate for the difference.

Final objective. Let transformation function Tφ = T spatial
ψ ◦ T color

γ be a com-
position of spatial and color transformation functions, where transformation pa-
rameters φ is a concatenation of spatial and color parameters ψ, γ, respectively.
The inverse function is Tφ−1 . Our final optimization objective function, with
consideration for (a) the foreground object and (b) spatial and color biases, is
to minimize the following loss:

arg min
z,c,φ

Lmask(Tφ−1(Gθ(z, c)),y,m) s.t. C(z) ≤ Cmax (5)

Our optimization algorithm, described next, has a mix of gradient-free and
gradient-based updates. Alternatively, instead of inverse transforming the gener-
ated image, we can transform the target and mask images during gradient-based
updates and compute the following loss: Lmask(Gθ(z, c), Tφ(y), Tφ(m)). We will
discuss when to use each variant in the next section.

3.4 Optimization Algorithms

Unfortunately, the objective function is highly non-convex. Gradient-based op-
timization, as used in previous inversion methods, frequently fall into poor local
minima. Bau et al. [10] note that recent large-scale GAN models [36, 37] are sig-
nificantly harder to invert due to a large number of layers, compared to earlier
models [55]. Thus, formulating an optimizer that reliably finds good solutions
is a significant challenge. We evaluate our method against various baselines and
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Random initialization Encoder initialization BasinCMA initializationTarget image Encoder + BasinCMA initialization

Fig. 5. Initialization from various methods: We show samples drawn from different
methods, before the final gradient descent optimization. In “random initialization”,
seeds are drawn from the normal distribution; the results show higher variation. For
the “encoder initialization”, we use a trained encoder network to predict the latent
vector and apply a minor perturbation. Our method uses CMA to find a good starting
distribution. For “Encoder+BasinCMA”, we initialize CMA with the output of the
encoder. The results are more consistent and better reconstruct the target image.

ablations in Section 4. Given the input image y and foreground rectangular mask
m (which is automatically computed), we present the following algorithm.

Class and transform initialization We first predict the class of the image
with a pre-trained ResNeXt101 classifier [65] and multiply it by W to obtain
our initial class vector c0.

Next, we initialize the spatial transformation vector ψ0 = [sx0 , sy0 , ty0 , tx0 ]
such that the foreground object is well-aligned with the statistics of the Big-
GAN model. As visualized in Figures 3 and 4, (h̄, w̄) = (137, 127) is the center
of BigGAN-generated objects and (ȳ, x̄) = (213, 210) is the mode of object sizes.
We define (hm, wm) to be the height and width and (ym, xm) to be center of
the masked region. We initialize scale factors as sy0 = sx0 = max

(
hm

h̄
, wm

w̄

)
and

translations as (ty0 , tx0
) =

(
ȳ−ym

2 , x̄−xm

2

)
. Finally, initial brightness transforma-

tion parameter is initialized as γ0 = 1.

Choice of optimizer. We find the choice of optimizer critical and that Bas-
inCMA [10] provides better results than previously used optimizers for the GAN
inversion problem. Previous work [70, 1] has exclusively used gradient-based op-
timization, such as LBFGS [47] and ADAM [39]. However, such methods are
prone to obtaining poor results due to local minima, requiring the use of multiple
random initial seeds. Covariance Matrix Adaptation (CMA) [28], a gradient-free
optimizer, finds better solutions than gradient-based methods. CMA maintains
a Gaussian distribution in parameter space z ∼ N (µ,Σ). At each iteration, N
samples are drawn, and the Gaussian is updated using the loss. The details of
this update are described in Hansen and Ostermeier [28]. A weakness of CMA is
that when it nears a solution, it is slow to refine results, as it does not use gradi-
ents. To address this, we use a variant, BasinCMA [63], that alternates between
CMA updates and ADAM optimization, where CMA distribution is updated
after taking M gradient steps.

Next, we describe the optimization procedure between the transformation
parameters φ and latent variables z, c.
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Algorithm 1 Transformation-aware projection algorithm

Input: Image y, initial class vector c0, mask m
Output: Transformation parameter φ∗, latent variable z∗, class vector c∗

1: # Optimize for transformation φ
2: Initialize (µφ, Σφ)← (φ0, 0.1 · I) . φ0 precomputed in Section 3.3
3: for n iterations do
4: φ1:N ∼ SampleCMA(µφ, Σφ) . Draw N samples of φ
5: z1:N ∼ N (0, I), reset c1:N ← c0 . Reinitialize z and c
6: for m iterations do
7: for i← 1 to N do . This loop is batched
8: gi ← Lmask(Gθ(zi, ci), Tφi(y), Tφi(m))
9: (zi, ci)← (zi, ci)− η · ∇z,c gi . Update each sample z, c

10: ginv1:N ← Lmask(T
φ−1
1:N

(Gθ(z1:N , c1:N )),y,m) . Recompute loss with inverse

11: µφ, φ1:N ← UpdateCMA(φ1:N , g
inv
1:N , µφ, Σφ) . Section 3.4

12: Set φ∗ ← µφ
13: # Optimize for latent variables z, c
14: Initialize (µz, Σz)← (0, I)
15: for p iterations do
16: z1:M ∼ SampleCMA(µz, Σz), reset c1:M ← c0 . Draw M samples of z
17: for q iterations do
18: for i← 1 to M do . This loop is batched
19: gi ← Lmask(Gθ(zi, ci), Tφ∗(y), Tφ∗(m))
20: (zi, ci)← (zi, ci)−∇z,c gi

21: ginv1:N ← Lmask(T
φ−1
1:N

(Gθ(z1:N , c1:N )),y,m) . Recompute loss with inverse

22: µz, Σz ← UpdateCMAz(z1:M , g
inv
1:M , µz, Σz) . Section 3.4

23: Set z∗, c∗ ← arg minz,c(g1:M ) . Choose the best z, c

Choice of Loss function In Equation 5, we described two variants of our
optimization objective. Ideally, we would like to optimize the former variant
Lmask(Tφ−1(Gθ(z, c)),y,m) such that the target image y is consistent through-
out optimization; and we do so for all CMA updates. However for gradient
optimization, we found that back-propagating through a grid-sampler to hurt
performance, especially for small objects. A potential reason is that when
shrinking a generated image, the grid-sampling operation sparsely samples
the image. Without low-pass filtering, this produces a noisy and aliased re-
sult [24, 51]. Therefore, for gradient-based optimization, we optimize the latter
version Lmask(Gθ(z, c), Tφ(y), Tφ(m)).

Two-stage approach. Historically, searching over spatial transformations with
reconstruction loss as guidance has proven to be a difficult task in computer
vision [5]. We find this to be the case in our application as well, and that joint
optimization over the transformation φ, and variables z, c is unstable. We use a
two-stage approach, as shown in Algorithm 1, where we first search for φ∗ and
use φ∗ to optimize for z∗ and c∗. In both stages, a gradient-free CMA outer loop
maintains a distribution over the variable of interest in that stage. In the inner
loop, ADAM is used to quickly find the local optimum over latent variables z, c.

To optimize for the transformation parameter, we initialize CMA distribution
for φ. The mean µφ is initialized with pre-computed statistics φ0, and Σφ is set
to 0.1 · I (Alg. 1, line 2). A set of transformations φ1:N is drawn from CMA, and
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Target Mask Transformed Projected Inverted Blended

Exp

Exp 

ADAM BasinCMA

Projected without TransformProjected with Transform

Fig. 6. Transformation search: Our method optimizes for a geometric and color
transformation, such that the transformed image is more easily projected into the
latent space. Transforming the image causes some pixels to be missing. To address
this, we invert the results back to the original coordinates and poisson blend with the
background after optimization. Results are not-finetuned.

latent variables z1:N are randomly initialized (Alg. 1, line 4–5). To evaluate the
sampled transformation, we take gradient updates w.r.t. z1:N , c1:N for m = 30
iterations (Alg. 1, line 6–9). This inner loop can be interpreted as quickly assess-
ing the viability of a given spatial transform. The final samples of z1:N , c1:N , φ1:N

are used to compute the loss for the CMA update (Alg. 1, line 10–11). This pro-
cedure is repeated for n = 30 iterations, and the final transformation φ∗ is set
to the mean of the current estimate of CMA (Alg. 1, line 12).

After solving for the transformation φ∗, a similar procedure is used to opti-
mize for z. We initialize CMA distribution for z with µz = 0 and Σz = I (Alg. 1,
line 14). M samples of z1:M are drawn from the CMA distribution and c1:M

is set to the initial predicted class vector (Alg. 1, line 16). The drawn samples
are evaluated by taking q = 30 gradient updates w.r.t z1:M and c1:M (Alg. 1,
line 17–20). The optimized samples are used to compute the loss for the CMA
update (Alg. 1, line 21–22). This procedure is repeated for p = 30 iterations.
On the final iteration, we take 300 gradient updates instead to obtain the final
solution z, c (Alg. 1, line 23).

3.5 Fine-tuning

So far, we have located an approximate match within a generative model. We
hypothesize that if a high-quality match is found, fine-tuning to fit the image
will preserve the editability of the generative model. On the contrary, if a poor
match is found, the fine-tuning will corrupt the network and result in low-quality
images after editing. Next, we describe this fine-tuning process.

To synthesize the missing details that the generator could not produce, we
wish to fine-tune our model after solving for the latent vector z, the class vector
c, and transformation parameters φ. Unlike previous work [8], which proposed
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Target           Mask           ADAM          L-BFGS          CMA         BasinCMA
ADAM +
Transform

BasinCMA +
Transform

Fig. 7. ImageNet comparisons: Comparison across various methods on inverting
ImageNet images without fine-tuning. A rectangular mask centered around the object
of interest is provided for all methods using MaskRCNN [31]. The losses are weighted
by the mask. BasinCMA+Transform is our full method.

to produce the residual features using a small, auxiliary network, we update
the weights of the original GAN directly. This allows us to perform edits that
spatially deform the image. After obtaining the values for φ, z, c in our projection
step, we fine-tune the weights of the generative model. During fine-tuning, the
full objective function is:

arg min
z,c,φ,θ

Lmask(Tφ−1(Gθ(z, c)),y,m) + λ‖θ − θ0‖2 s.t. C(z) ≤ Cmax (6)

We put an `2-regularization on the weights, such that the fine-tuned weights
do not deviate too much from the original weights θ0. In doing so, we can prevent
overfitting and preserve the generative model’s ability to edit the final image.
We use λ = 103 for our results with fine-tuning.

4 Results

We demonstrate results on images from ImageNet [14], compare against baselines
and ablations, examine cases that BigGAN cannot generate, and show failure
cases. We further demonstrate the validity of our method on out-of-distribution
data such as COCO and conduct perceptual studies on the edited images.

The ImageNet dataset consists of 1.3 million images with 1, 000 classes. We
construct a test set by using PASCAL [22] classes as super-classes. There are a
total of 229 classes from ImageNet that map to 16 out of 20 classes in PASCAL.
We select 10 images at random from each super-class to construct a dataset of 160
images. We run off-the-shelf Mask-RCNN [31] and take the highest activating
class to generate the detection boxes. We use the same bounding box for all
baselines, and the optimization hyper-parameters are tuned on a separate set of
ImageNet images.
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Target BaselineMask Ours Blended Target BaselineMask Ours Blended

Fig. 8. ImageNet results: Results using our final method without fine-tuning. The
final method uses BasinCMA as well as spatial and color transformation. Our generated
results are inverted back for visualization. We also provide the ADAM baseline along
with the blended result using Poisson blending [54].

Experimental details. We use a learning rate of 0.05 for z and 0.0001 for c.
We use AlexNet-LPIPS [42, 69] as our perceptual loss for all our methods. We
did observe an improvement using VGG-LPIPS [59, 69] but found it to be 1.5
times slower. In our experiments, we use a total of 18 seeds for each method.
After we project and edit the object, we blend the newly edited object with the
original background using Poisson blending [54].

For all of our baselines, we optimize both the latent vector z and class em-
bedding c. We use the same mask m, and the same loss function throughout all
of our experiments. The algorithms we compare against are:

• ADAM [39]: z ∼ N (0, I) and optimized with ADAM. This method is used in
Image2StyleGAN [1].

• L-BFGS [47]: z ∼ N (0, I), and optimized using L-BFGS with Wolfe line-search.
This method is used in iGAN [70].

• CMA [28]: z is optimized using CMA.

• ADAM + CMA [28]: z is drawn from the optimized distribution of CMA. The
seeds are further optimized with ADAM.
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Method Average of 18 seeds Best of 18 seeds

Optimizer
Spatial

Transform
Color

Transform Encoder
Per-pixel LPIPS Per-pixel LPIPS

L1 L2 Alex VGG L1 L2 Alex VGG

ADAM 0.98 0.62 0.41 0.58 0.83 0.47 0.33 0.51
L-BFGS 1.04 0.68 0.45 0.61 0.85 0.49 0.35 0.53

CMA 0.96 0.61 0.39 0.55 0.91 0.54 0.37 0.54
None X 1.61 1.39 0.62 0.68 1.35 1.00 0.55 0.64

ADAM X 0.96 0.60 0.39 0.56 0.82 0.46 0.32 0.51
ADAM X 0.98 0.62 0.42 0.58 0.83 0.47 0.33 0.51
ADAM X 0.90 0.54 0.44 0.57 0.76 0.41 0.36 0.50
ADAM X X X 0.88 0.52 0.42 0.55 0.76 0.40 0.36 0.49

CMA+ADAM 0.93 0.57 0.37 0.55 0.83 0.47 0.32 0.51
BasinCMA 0.82 0.48 0.29 0.51 0.78 0.43 0.26 0.49
BasinCMA X 0.82 0.47 0.29 0.50 0.78 0.43 0.26 0.49
BasinCMA X 0.81 0.46 0.29 0.50 0.77 0.42 0.25 0.49
BasinCMA X 0.72 0.38 0.33 0.48 0.69 0.35 0.31 0.46
BasinCMA X X X 0.71 0.37 0.32 0.47 0.68 0.34 0.31 0.46

Table 1. ImageNet: We compare various methods for inverting images from ImageNet
(lower is better). The last row is our full method. The model is optimized using L1 and
AlexNet-LPIPS perceptual loss. The mask and ground-truth class vector is provided for
each method. We show the error using different metrics: per-pixel and perceptual [69].
We show the average and the best score among 18 random seeds. Methods that opti-
mized for transformation are inverted to the original location and the loss is computed
on the masked region for a fair comparison. All the results here are not fine-tuned.

• ADAM + BasinCMA [63]: z is optimized by alternating CMA and ADAM up-
dates (Section 3.4).

• + Encoder [70, 10]: z is initialized with the output of the encoder. To gen-
erate variations in seeds, we add a Gaussian noise with a variance of 0.5. For
BasinCMA, the mean of the CMA distribution is initialized with the output
of the encoder.

• + Transform: Transformation parameter φ is optimized by alternating CMA
updates on φ and ADAM updates on z (Section 3.3).

Further optimization details are in the Appendix A.

Experiments. We show qualitative comparisons of various optimization meth-
ods for ImageNet images in Figure 7. We show results of our final method with
blending in Figure 8. We then quantify these results by comparing against each
method using various metrics in Table 1. For all methods, we do not fine-tune our
results and we only compute the loss inside the mask for a fair comparison. For
methods optimized with transformation, the projected images are inverted back
before computing the loss. We further evaluate on COCO dataset [45] in Table 3,
and observed our findings to hold true on out-of-distribution dataset. The suc-
cess of hybrid optimization over purely gradient-based optimization techniques
may indicate that the generative model latent space is locally smooth but not
globally.

In Figure 6, we visualize how optimizing for spatial transformation allows us
to better fit the target image. Without transforming the object, we observed that
the optimization often fails to find an approximate solution, specifically when
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Best of 18 seeds

Class search
Per-pixel LPIPS

L1 L2 Alex VGG

Random Gaussian 1.26 0.88 0.69 0.86
Random Class 0.88 0.51 0.40 0.59
Predicted 0.84 0.47 0.33 0.52
Ground Truth 0.83 0.47 0.33 0.51

Table 2. Class search: Given a fixed op-
timization method (ADAM), we compare
different methods for initializing the class
vector (lower is better). Baselines are: ini-
tialized from N (0, I), a random class, and
the ground truth class.

Best of 18 seeds

Method
Per-pixel LPIPS

L1 L2 Alex VGG

ADAM 0.96 0.57 0.32 0.56
ADAM + Transform 0.81 0.45 0.39 0.52
BasinCMA 0.93 0.18 0.81 0.53
BasinCMA + Transform 0.78 0.42 0.36 0.49

Table 3. Out-of-distribution: We com-
pare different methods on the COCO-
dataset (lower is better). BigGAN was not
trained on COCO images. The class labels
are predicted using ResNext-101 and the
masks are predicted using MaskRCNN.

Difficult

Rotated

Unique

Occluded

Fig. 9. Failure cases: Our method fails to
invert images that are not well represented
by BigGAN. The mask is overlayed on the
target image in blue.
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Fig. 10. Projection error by class: The
average VGG-perceptual loss with stan-
dard error. The ImageNet images are sam-
pled from the PASCAL super-class.

the objects are off-centered or contain multiple objects. We observed that opti-
mizing over color transformation does not lead to drastic improvements. Possibly
because BigGAN can closely match the color gamut statistics of ImageNet im-
ages. Nonetheless, we found that optimizing for color transformation can slightly
improve visual aesthetics. Out of the experimented color transformations, opti-
mizing for brightness gave us the best result, and we use this for color transfor-
mation throughout our experiments. We further experimented with composing
multiple color transformations but did not observe additional improvements.

We found that using CMA/BasinCMA is robust to initialization and is a
better optimization technique regardless of whether the transform was applied.
Note that we did not observe any benefits of optimizing the class vectors c with
CMA compared to gradient-based methods, perhaps because the embedding
between the continuous class vectors is not necessarily meaningful. Qualitatively,
we often found the class embeddings to be meaningful when it is either in the
close vicinity of original class embeddings or between the interpolation of 2
similar classes and not more. As a result, we use gradient descent to search
within the local neighborhood of the initial class embedding space.
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Fig. 11. Fine-tuned edits: Inversion results on various datasets. We use BasinCMA
and transformation to optimize for the latent variables. After obtaining the projections,
we fine-tune the model weights and perform edits in the latent and class vector space.

We also provide ablation study on how the number of CMA and ADAM up-
dates for BasinCMA affects performance, and how other gradient-free optimizers
compare against CMA in Appendix D. We further provide additional qualitative
results for our final method in Appendix C.

Class initialization. In downstream editing application, the user may not
know the exact ImageNet class the image belongs to. In Table 2, we compare
different strategies for initializing the class vector. Here the classifier makes an
incorrect prediction 20% of the time. We found that using the predicted class of
an ImageNet classifier performs almost as well as the ground truth class. Since
we optimize the class vector, we can potentially recover from a wrong initial
guess if the predicted class is sufficiently close to the ground-truth.

Failure cases. Figure 9 shows some typical failure cases. We observed that our
method fails to embed images that are not well modeled by BigGAN – outlier
modes that may have been dropped. For example, we failed to project images
that are unique, complicated, rotated, or heavily occluded. More sophisticated
transformations such as rotations and perspective transformation could address
many of these failure cases and are left for future work.

Which classes does BigGAN struggle to generate? Given our method,
we analyze which classes BigGAN, or our method has difficulty generating. In
Figure 10, we plot the mean and the standard error for each class. The plot is
from the output of the method optimized with ADAM + CMA + Transform.
We observed a general tendency for the model to struggle in generating objects
with delicate structures or with large inter-class variance.

Image Edits. A good approximate solution allows us to fine-tune the gen-
erative model and recover the details easily. Good approximations require less
fine-tuning and therefore preserve the original generative model editing capabili-
ties. In Figure 11, we embed images from various datasets including CIFAR [41],



16 Huh, Zhang, Zhu, Paris, Hertzmann

Original Ours (best) Samples using BasinCMA Samples using ADAM

Original Ours (best) Samples using BasinCMA Samples using ADAM

Fig. 12. Inverting StyleGAN2 in z space. We show results of projecting real images
into StyleGAN2 using our BasinCMA method without transformation and fine-tuning.
The images are inverted into the original input latent code z ∈ R512. The top results
are from a model trained on 512× 512 LSUN cars, and the results on the bottom are
from a model trained on 1024 × 1024 FFHQ face dataset. We show results from the
top 9 seeds for both BasinCMA and ADAM.

LSUN [67], and images in-the-wild. We then fine-tune and edit the results by
changing the latent vector or class vector. Prior works [55, 34] have found that
certain latent vectors can consistently control the appearance change of GANs-
generated images such as shifting an image horizontally or zooming an image
in and out. We used the “shift” and “zoom” vectors [34] to modify our images.
Additionally, we also varied the class vector to a similar class and observed the
editability to stay consistent. Even for images like CIFAR, our method was able
to find good solutions that allowed us to edit the image. In cases like LSUN,
where there is no corresponding class for the scene, we observed that the edits
ended up being meaningless.



17

Perceptual Study. We verify the quality of the projected results with a
perceptual study on edited projections. We fine-tune each projection to the same
reconstruction quality across methods and apply edits to the latent variable z.
We show each image to an Amazon Mechanical Turker for 1 second and ask
whether the edited image is real or fake, similar to [68]. Our method (BasinCMA
+ Transform) achieves 26% marked as real, while the baselines achieve 22% for
ADAM, 23% for ADAM + Transform, and 25% for BasinCMA. This indicates
that our design choices, adding transforms and choice of optimization algorithm,
produces inversions that better enable downstream editing.

Inverting unconditional generative model: StyleGAN2. StyleGAN [37]
and StyleGAN2 [38] are other popular choices of generative models for their abil-
ity to produce high fidelity images. Although these models can generate high-
resolution images, they are restricted to generating images from a single class.
Additionally, Abdal et al. [1] have demonstrated that it is difficult to project
images into the original latent space z ∈ R512 using gradient-descent methods.
Henceforth, Image2StyleGAN [1] and StyleGAN2 [38] has relied on inverting
images into its intermediate representation, also known as the w+ space. The
w+ space is R699536 for generative model that outputs images of size 512× 512.
Due to the large dimensionality of the intermediate representation, it is much
easier to fit any real image into the generative model. Embedding the image into
this intermediate representation drastically limits the ability to use the genera-
tive model to edit the projected images. On the contrary, we show in Figure 12
that CMA-based methods can invert the images all the way back to the original
latent code z ∈ R512. We observed that models trained on well-aligned images
such as FFHQ face dataset [37] can often be inverted using gradient-descent
methods; however, models trained on more challenging datasets such as LSUN
cars [67] can often only be solved using BasinCMA.

5 Discussion

Projecting an image into the “space” of a generative model is a crucial step
for editing applications. We have systematically explored methods for this pro-
jection. We show that using a gradient-free optimizer, CMA, produces higher
quality matches. We account for biases in the generative model by enabling
spatial and color transformations in the search, and the combination of these
techniques finds a closer match and better serves downstream editing pipelines.
Future work includes exploring more transformations, such as local geometric
changes and global appearance changes, as well as modeling generation of mul-
tiple objects or foreground/background.

Acknowledgements. We thank David Bau, Phillip Isola, Lucy Chai, and Erik
Härkönen for discussions, and David Bau for encoder training code.
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A Training and run-time details

The experiments in the appendix were computed on a smaller subset of ImageNet
images and are consistent within each other.

For computation, we use a single NVIDIA 2080 TI GPU. The run-time below
is with respect to a single GPU. We use a total of 18 seeds in our main paper.
The run-time is an over-estimate as we divide 18-seeds into 3 smaller batches to
fit it into the GPU memory.

• ADAM: z ∼ N (0, I) and optimized with ADAM. We optimize the latent
vector for 500 iterations, roughly taking 5 minutes to invert a single image.
We observed sharing momentum across random seeds can hurt performance,
and we disentangle them in our runs. Furthermore, increasing the number of
iterations does not significantly improve performance. This is the optimizer
used in Image2StyleGAN [1].

• L-BFGS: z ∼ N (0, I), and optimized using L-BFGS with Wolfe line-search.
We use the PyTorch implementation [52] to optimize our latent vector for 500
iterations. We use the Wolfe line search with an initial learning rate set to 0.1.
L-BFGS has an average run time of 5 minutes. This is the optimizer used in
iGAN [70].

• Encoder: We follow the encoder-based initialization methods [70, 10] to train
our encoder network on 10 million generated images, which took roughly 5 days
to train. The encoder network was trained in a class-conditional manner, where
the class information was fed into the network through the normalization lay-
ers [62]. We tried using the ImageNet pre-trained model to initialize the weights
but found it to perform worse. It takes less than 1 second to run the encoder
but requires additional gradient descent optimization steps for a reasonable re-
sult. We observed using an encoder still suffers the same problem as gradient-
based methods and slightly improves the results. For our baseline (Encoder +
ADAM), we still run ADAM for 500 iterations.

• CMA: z is optimized using CMA. We use the python implementation
of CMA [29]. For CMA-only optimization, we use 300 iterations. For
CMA+ADAM, we use 100 CMA iterations and 500 ADAM updates. It takes
roughly 0.2 seconds per CMA update.

• BasinCMA: z is optimized by alternating CMA and ADAM updates. We
use the same CMA implementation discussed above with 30 updates. For each
update iteration, we evaluate after taking 30 gradient steps. The run-time is
roughly 10 minutes per image. Increasing the number of updates and gradient
descent steps does improve performance, see Figure 17.

• Transformation: Transformation parameter φ is optimized by alternating
CMA updates on φ and ADAM updates on z. We initialize the mean of the
CMA using the statistics of generative images, as discussed in Section 3.4. We
optimize for 30 iterations, where CMA is updated after 30 gradient updates
on z, c. Optimizing for transformation adds an additional 5 minutes.
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Fig. 13. Additional results: Comparison between ADAM and our final method. Our
method is optimized using BasinCMA, and spatial and color transformation. The re-
sults shown above are not fine-tuned.

• Encoder: z is initialized with the output of the encoder. To generate variations
in seeds, we add a Gaussian noise with a variance of 0.5. For BasinCMA, the
mean of the CMA distribution is initialized with the output of the encoder.

• Fine-tuning: We fine-tune the generative model using ADAM with a learning
rate of 10−4 until the reconstruction loss falls below 0.1. We use the regular-
ization weight of 103, and we fix the batch-norm statistics during fine-tuning.
The whole process takes roughly 1 minute.

B Weighted Perceptual Loss

We formulate the weighted LPIPS loss discussed in Section 3.4. Given an input
image y, a generated image ŷ, we extract the image features from a pre-trained
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Fig. 14. Gradient-free optimizers: Ex-
periments with various gradient-free opti-
mizers. We use the implementations from
Rapin and Teytaud [56]. The legend and
the color are sorted by performance.
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Fig. 15. Basin-CMA variants: Hybrid
optimization with different CMA variants.
We extended upon the implementations
from Rapin and Teytaud [56]. All the CMA
variants lead to similar results.

model to compute the loss. The features are extracted from pre-specified L con-
volutional layers [69]. We denote the intermediate feature extractor for layer
l ∈ L as F l(·). The features extracted from a real image y can be written as
F l(y) ∈ RHl×Wl×Cl and similarly for ŷ. A feature vector at a particular position
is written as F lhw(·) ∈ RCl . LPIPS also provides a per-layer linear weighting

wl ∈ RCl
+ to accentuate channels that are more “perceptual”. To weight the fea-

tures spatially, we bilinearly resize the mask to match the spatial dimensions of
each layer ml ∈ [0, 1]Hl×Wl . Then the spatially weighted loss for LPIPS can be
written as:

LmLPIPS(y, ŷ,m) =
∑
l∈L

1

M l

∑
h,w

ml
hw‖wl � (F lhw(y)− F̂ lhw(ŷ))‖22 (7)

Here � indicates elementwise multiplication in the channel direction and M l

is the sum of all elements in the mask.

C Additional results

We provide additional results for our method without fine-tuning in Figure 13.
Our method is optimized using BasinCMA with spatial and color transformation.
We provide the ADAM baseline along with our blended result using Poisson
blending [54].

D Additional Analysis

Inner-outer optimization steps. Our optimization method maintains a CMA
distribution of z in the outer loop and is sampled to be optimized in the inner
loop with gradient descent. Here the outer loop is the number of CMA updates,
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Fig. 16. Class vector t-SNE: The t-
SNE embedding of the optimized class
vector after optimization. The color rep-
resents the class and the circles with black
border are the original classes.
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Fig. 17. BasinCMA update ablation:
We plot the VGG L-PIPS score when we
vary the number of CMA updates (x-axis)
and the number of ADAM updates (y-
axis). Lower is better.

and the inner loop is the number of gradient descent updates to be applied before
applying the CMA update. In Figure 17 we ablate the number of optimization
steps and observed having the right balance of 1 : 1 ratio between CMA and gra-
dient updates leads to the best result. The performance in the figure is mapped
by color, with blue indicating the best and red indicating the worst. Although
using 50 CMA update with 50 ADAM update performs the best, it requires
more than 20-minutes to project a single image. We found 30 CMA updates and
30 gradient updates to be a sweet spot for run-time and image quality and is
used in all our experiments. We observed the same trend when optimizing for
the transformation.

Speeding up transformation search. Optimizing for transformation requires
the model to quickly search over z and c given the sampled transformation F .
Here z and c are reinitialized at the beginning of the CMA iteration. We observed
that initializing z by re-using the statistics from the previous iteration can speed
up optimization by requiring fewer gradient updates. We found this to be quite
important to have the algorithm run efficiently. After thorough testing, we found
that sampling from a mutlivariate normal distribution with the mean centered
around an exponential moving average of the best performing seeds to work the
best. With the decay rate for the exponential moving average set to 0.5.

Encoder networks. Bau et al. [8] proposed an approach to efficiently train a
model-specific encoder E to predict z given a generated image y, E(y) = ẑ. The
encoder network is trained only on generated images, and therefore projecting
real images often lead to incorrect predictions and require further optimization.
Although initializing the optimization with the encoder does not lead to better
results, we found that the optimization can converge 20% faster for gradient
optimization and 40% faster for hybrid-optimization when z ∼ N (E(z), 0.5 · I).
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Fig. 18. How fine-tuning affects editing: We demonstrate how varying the regular-
ization weight effects the edit-ability of the projected image. Images on the top are the
original fine-tuned images with varying regularization weight, and the corresponding
images below are class edited results. Decreasing the regularization weight allows us to
fit the original image better, but introduces more editing artifacts.

Class-vector embedding. Optimizing for the class embedding allows the
model to better fit the image into the generative model. We provide visual-
ization of optimized class embedding using t-SNE in Figure 16. The classes are
mapped by color and the original classes have black border. We observed that
similar classes are embedded closer and class cross-overs are more common dur-
ing optimization.

Gradient-free methods. We experimented with various gradient-free opti-
mization methods using the Nevergrad library [56] in Figure 14. With the de-
fault optimization hyper-parameters, we found that CMA and its variants to
perform the best. In Figure 15, we also experimented with hybrid optimization
using various CMA variants but did not see a clear winner.

How fine-tuning effects editing. In Figures 1, 2, 11, we demonstrated having
good projection allows us to fine-tune the weights to better fit the image without
losing the editing capabilities of the generative model. In Figure 18, we visualize
how such editing capability is affected by the fine-tuning process. We vary the
regularization weight of the fine-tuning objective function that limits the devia-
tion from the original weight. We observed that getting a better initial fit of the
image requires us to relax the regularization weight, which in turn introduces
additional editing artifacts. Therefore, we found it is crucial to approximate a
good initial fit for real image editing.
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E Changelog

v1 Initial preprint release.

v2 ECCV 2020 camera-ready version. (1) Add related work. (2) Add StyleGAN2
experiments.


