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Abstract. We discuss a general formulation for the Continual Learning
(CL) problem for classification—a learning task where a stream provides
samples to a learner and the goal of the learner, depending on the samples
it receives, is to continually upgrade its knowledge about the old classes
and learn new ones. Our formulation takes inspiration from the open-set
recognition problem where test scenarios do not necessarily belong to
the training distribution. We also discuss various quirks and assump-
tions encoded in recently proposed approaches for CL. We argue that
some oversimplify the problem to an extent that leaves it with very little
practical importance, and makes it extremely easy to perform well on.
To validate this, we propose GDumb that (1) greedily stores samples in
memory as they come and; (2) at test time, trains a model from scratch
using samples only in the memory. We show that even though GDumb
is not specifically designed for CL problems, it obtains state-of-the-art
accuracies (often with large margins) in almost all the experiments when
compared to a multitude of recently proposed algorithms. Surprisingly, it
outperforms approaches in CL formulations for which they were specifi-
cally designed. This, we believe, raises concerns regarding our progress in
CL for classification. Overall, we hope our formulation, characterizations
and discussions will help in designing realistically useful CL algorithms,
and GDumb will serve as a strong contender for the same.

1 Introduction

A fundamental characteristic of natural intelligence is its ability to continually
learn new concepts while updating information about the old ones. Realizing
that very objective in machines is precisely the motivation behind continual
learning (CL). While current machine learning (ML) algorithms can achieve
excellent performance given any single task, learning new (or even related) tasks
continually is extremely difficult for them as, in such scenarios, they are prone
to the phenomenon called catastrophic forgetting [1,2]. Significant attention has
been paid recently to this problem [3,4,5,6,7,8] and a diverse set of approaches
have been proposed in the literature (refer [9] for an overview). However, these
approaches impose different sets of simplifying constraints to the CL problem and
propose tailored algorithms for the same. Sometimes these constraints are so rigid
that they even break the notion of learning continually, for example, one such
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constraint would be knowing a priori the subset of labels a given input might take.
In addition, these approaches are never tested exhaustively on useful scenarios.
Keeping this observation in mind, we suggest that it is of paramount importance
to understand the caveats in these simplifying assumptions, understand why
these simplified forms are of little practical usability, and shift our focus on a
more general and practically useful form of continual learning formulation to
help progress the field.

To this end, we first provide a general formulation of CL for classification.
Then, we investigate popular variants of existing CL algorithms, and categorize
them based on the simplifying assumptions they impose over the said general
formulation. We discuss how each of them impose constraints either over the
growing nature of the label space, the size of the label space, or over the resources
available. One of the primary drawbacks of these restricted settings is that
algorithms tailored towards them fail miserably when exposed to a slightly
different variant of CL, making them extremely specific to a particular situation.
We would also like to emphasize that there is no explicit consensus among
researchers regarding which formulation of CL is the most appropriate, leading
to a diverse experimental scenarios, none of which actually mimic the general
form of CL problem one would face when exposed to the real-world.

Then, we take a step back and design an extremely simple algorithm with
almost no simplifying assumptions compared to the recent approaches. We call
this approach GDumb (Greedy Sampler and Dumb Learner). As the name
suggest, the two core components of our approach are a greedy sampler and a
dumb learner. Given a memory budget, the sampler greedily stores samples from
a data-stream while making sure that the classes are balanced, and, at inference,
the learner (neural network) is trained from scratch (hence dumb) using all the
samples stored in the memory. When tested on a variety of scenarios on which
various recent works have proposed highly tuned algorithms, GDumb surprisingly
provides state-of-the-art results with large margins in almost all the cases.

The fact that GDumb, even though not designed to handle the intricacies in
the challenging CL problems, outperforms recently proposed algorithms in their
own experimental set-ups, is alarming. It raises concerns relating to the popular
and widely used assumptions, evaluation metrics, and also questions the efficacy
of various recently proposed algorithms for continual learning.

2 Problem Formulation, Assumptions, and Trends

To provide a general and practically useful view of CL problem, we begin with
the following example. Imagine a robot walking in a living room solving a task
that requires it to identify all the objects it encounters. In this setting, the robot
will be identifying known objects that it has learned in the past, will be learning
about a few unknown objects by asking an oracle to provide labels for them, and,
at the same time, will be updating its information about the known objects if
the new instances of them provided extra cues useful for the task. In a nutshell,
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the robot begins with some partial information about the world and keeps on
improving its knowledge about it as it explores new parts of the world.

Inspired by this example, a realistic formulation of continual learning for
classification would be where there is a stream of training samples or data
accessible to a learner, each sample comprising a two-tuple (xt, yt), where t
represents the timestamp or the sample index. Let Yt = ∪ti=1yi be the set of
labels seen until time t, then it is trivial to note that Yt−1 ⊆ Yt. This formulation
implies that the stream might give us a sample that either belongs to a new
class or to the old ones. Under this setting, at any given t, the objective is to
provide a mapping fθt : x→ y that can accurately map a sample x to a label
y ∈ Yt ∪ ȳ, where ȳ indicates that the sample does not belong to any of the
learned classes. Notice, addition of this extra label ȳ assumes that while training,
there is incomplete knowledge about the world and a test sample might come
from outside the training distribution. Interestingly, it connects an instance of CL
very well with the well known open-set classification problem [10]. However, in
CL, the learner, with the help of an oracle (e.g., active learning), could improve
its knowledge about the world by learning the semantics of samples inferred as ȳ.

2.1 Simplifying Assumptions in Continual Learning

The above discussed formulation is general in the sense that it does not put any
constraints whatsoever on the growing nature of the label space, nature of test
samples, and size of the output space | limt→∞ Yt|. It does not put any restrictions
on the resources (compute and storage) one might pick to get a reliable mapping
fθt(.) either, however, the lack of information about the nature and the size of
the output space makes the problem extremely hard. This has compelled almost
all the work in this direction to impose additional simplifying constraints or
assumptions. These assumptions are so varied that it is difficult to compare
one CL algorithm with another as a slight variation in the assumption might
change the complexity of the problem dramatically. For better understanding,
below we discuss all the popular assumptions, highlight their drawbacks, and
categorize various recently proposed CL algorithms depending on the simplifying
assumptions they make. One assumption common to all is that the test samples
always belong to the training distribution.

Disjoint task formulation: This formulation is being used in almost all the
recent works [4,5,6,7,8] whereby the assumption made is that at a particular
duration in time, the data-stream will provide samples specific to a task, in a
pre-defined order of tasks, and the aim is to learn the mapping by learning each
task at a time sequentially. In particular, let Y = limt→∞ Yt be the set of labels
that the stream might present until it runs out of samples. Recall, in the general
CL formulation, the size of Y is unknown and the samples can be presented
in any order. This label space Y is then divided into different disjoint subsets
(could be a random or an informed split), where each label subset Yi represents
a task and the sharp transition between these sets is called task boundaries. Let
there be m splits (typically the split is balanced with nearly equal number of
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classes) then Y = ∪mi Yi, and Yi ∩ Yj = ∅,∀i 6= j. An easy and widely used
example is to divide ten digits of MNIST into 5 disjoint tasks where each task
comprises of the samples from two consecutive digits and the stream is controlled
to provide samples for each task in a pre-defined order, say {0, 1}, · · · , {8, 9}.
This formulation simplifies the general CL problem to a great extent as the
unknown growing nature of the label space is now being restricted and is known.
It provides a very strong prior to the learner and helps in deciding both the space
budget and the family of functions fθ(.) to learn.

Task-incremental v/s Class-incremental: To further make the training and
the inference easier, a popular choice of CL formulation is the task-incremental
continual learning (TI-CL) [7] where, along with the disjoint task assumption,
the task information (or id) is also passed by an oracle during training and
inference. Thus, instead of a two-tuple, a three-tuple (x,y, α) is given where
α ∈ N represents the task identifier. This formulation is also known as multi-head
and is an extremely simplified form of the continual learning problem [8]. For
instance, in the above mentioned MNIST example, at inference, if the input is
(x, α = 3), it implies that the sample either belongs to class 4, or to 5. Knowing
this subset of labels a-prior dramatically reduces the label space during training
and inference, and is relatively impractical to know in real-world scenarios.
Whereas, in a class-incremental formulation (CI-CL) [4,8], also known as the
single-head, we do not have any such information about the task id.

Online CL v/s Offline CL: Note, the disjoint task formulation placed a
restriction on the growing nature of the label space and inherently restricted the
size of it, however, it did not put any constraints on the learner itself. Therefore,
the learning paradigm may store task-specific samples coming from the stream
depending on the space budget and then use them to update the parameters.
Under this setting, in the online CL formulation, even though the learner is
allowed to store samples as they come, they are not allowed to use a sample
more than once for parameter update. Thus, the learner can not use the same
sample (unless it is in the memory) multiple times at different iterations of the
learning process. In contrast, offline CL allows unrestricted access to the entire
dataset corresponding to a particular task (not to the previous ones) and one
can use this dataset to learn the mapping by revisiting the samples again and
again while performing multiple passes over the data [4].

Memory based CL: As mentioned earlier, we only have access to all/subset of
samples corresponding to the current task. This restriction makes it extremely
hard for the model to perform well, in particular, on CI-CL setting as the absence
of samples from the previous tasks makes it difficult to learn to distinguish
samples from the current and the previous tasks due to catastrophic forgetting.
Very little forgetting is normally observed in TI-CL as the given task identifier
works as the indicator of task boundary, thus the model does not have to learn
to differentiate labels among tasks. To reduce forgetting, a common practice,
inspired by the complementary learning systems theory [38,39], is to store a subset
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Form. CI-CL Online Disjoint Papers Regularize Memory Distill Param iso

A X X X MIR[11], GMED[12] × X × ×

B X × X

LwM[13], DMC[14] × × X ×
SDC [15] X × × ×
BiC[16], iCARL[4]

× X X ×
UCIR[17], EEIL[18]

IL2M[19], WA[20]

PODNet[21], MCIL[22]

RPS-Net[23], iTAML[24] × X X X

CGATE[25] × X × X

RWALK[8] X X × ×

C × × X

PNN[26], DEN[27] × × × X

DGR [28] × X × ×
LwF[3] × × X ×
P&C[29] × × X X

APD[30] X × × X

VCL[31] X X × ×
MAS[32], IMM[33]

X × × ×SI[5], Online-EWC[29]

EWC[6]

D × X X
TinyER[34], HAL[35] × X × ×
GEM[7], AGEM[36] X X × ×

E X X × GSS[37] × X × ×

Table 1. Here we categorize various recently proposed CL approaches depending on
the underlying simplifying assumptions they impose.

of samples from each task and use them while training on the current task. There
primarily are two components under this setting: a learner and a memorizer (or
sampler). The learner has the goal of obtaining representations which generalize
beyond current task. The memorizer, on the other hand, deals with remembering
(storing) a collection of episode-like memories from the previous tasks. In recent
approaches [4,7,8], the learner is modeled by a neural network and the memorizer
is modeled by memory slots which store samples previously encountered.

2.2 Recent Trends in Continual Learning

Typically, continual learning approaches are categorized by ways they tackle
forgetting such as (1) regularization-based, (2) replay (or memory)-based, (3)
distillation-based, and (4) parameter-isolation based (for details refer [9]). How-
ever, they do vary in terms of simplifying assumptions they encode, and we argue
that keeping track of these assumptions is extremely important for fair compar-
isons, and also to understand the limitations of each of them. Since all these
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Algorithm 1 Greedy Balancing Sampler

1: Init: counter C0={}, D0={} with capacity k. Online samples arrive from t=1
2:
3: function Sample(xt, yt, Dt−1,Yt−1) . Input: New sample and past state
4: kc = k

|Yt−1|
5: if yt /∈ Yt−1 or Ct−1[yt] < kc then
6: if

∑
i Ci >= k then . If memory is full, replace

7: yr = argmax(Ct−1) . Select largest class, break ties randomly
8: (xi, yi) = Dt−1.random(yr) . Select random sample from class yr
9: Dt = (Dt−1 − (xi, yi)) ∪ (xt, yt)

10: Ct[yr] = Ct−1[yr]− 1
11: else . If memory has space, add
12: Dt = Dt−1 ∪ (xt, yt)
13: end if
14: Yt = Yt−1 ∪ yt
15: Ct[yt] = Ct−1[yt] + 1
16: end if
17: return Dt

18: end function

algorithms in some sense use combinations of the above discussed simplifying
assumptions, to give a bird’s eye view over all the recently proposed approaches,
we categorize them in Table 1 depending on the simplifying assumptions they
make. For example, Table 1 indicates that RWalk [8] is an approach designed
for a CL formulation that is offline, class-incremental, and assumes sharp task
boundaries. Algorithmically, it is regularization based and uses memory. Note,
one can potentially modify these approaches to apply to other settings as well. For
example, the same RWalk can also be used without memory, or can be applied on
task-incremental offline formulation. However, we focus on the formulation these
methods were originally designed for. We now discuss some high-level problems
associated with the simplifying assumptions these approaches make.

Most models, metrics, classifiers, and samplers for CL inherently encode
disjoint task (or sharp task boundary) assumption into their design, hence fail to
generalize even with slight deviation from the this formulation. Similarly, popular
metrics like forgetting and intransigence [7,8] are designed with this specific
formulation encoded in their formal definition, and break with simple modifica-
tions like blurry boundaries (class-based, instead of sample-based, definitions of
forgetting would appear as classes mix because of blurred boundaries).

Moving to TI-CL v/s CI-CL, these are two extreme cases where CI-CL (single-
head) faces scaling issues as there is no restriction on the size of | limt→∞ Yt|,
and TI-CL (multi-head) imposes a fixed, coherent two-level hierarchy among
classes with oracle labels. This formulation is unrealistic in the sense that it does
not allow dynamic contexts [40].

Lastly, Offline CL v/s Online CL is normally defined depending on whether
an algorithm is allowed to revisit a sample repeatedly (unless it is in the memory)
during the training process or not. The intention here is to make the continual
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Fig. 1. Our approach (GDumb): The sampler greedily stores samples while balancing the
classes. When asked, the learner trains a network from scratch on memory Dt provided
by the sampler. If a mask m is given at inference, GDumb classifies on the subset of
labels provided by the mask. Depending on the mask, GDumb’s inference can vary
between two extremes: CI (class-incremental) and TI (task-incremental) formulations.

learning algorithm fast enough so that it can learn quickly from a single (or few)
sample without having the need of revisiting it. This distinction makes sense if we
imagine a data stream spitting samples very fast, then the learner has to adapt
itself very quickly. Therefore, the algorithm must provide an acceptable trade-
off between space (number of samples to store) and time (training complexity)
budgets. However, because of the lack of proper definition and evaluation schemes,
there are algorithms doing very well on one end (use a sample only once), however,
performing very poorly on the other end (very expensive learning process). For
example, GEM [7], a widely known online CL algorithm, uses a sample only once,
however, solves a quadratic program for parameter updates which is very time
consuming. Therefore, without proper metrics or procedures to quantify how well
various CL algorithms balance both space and time complexities, categorizing
them into offline vs online might lead to wrong conclusions.

3 Greedy Sampler and Dumb Learner (GDumb)

We now propose a simple approach that does not put any restrictions, as discussed
above, over the growing nature of the label space, task boundaries, online vs
offline, and the ordering of the samples in which the data-stream provides them.
Thus, can easily be applied to all the CL formulations discussed in Table 1.
The only requirement is to be allowed to store some episodic memories. We
emphasize that we do not claim that our approach solves the general CL problem.
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Form. Designed in Model (Dataset) memory (k) Metric CI-CL Online Disjoint

A1 [11] MLP-400 (MNIST);
ResNet18 (CIFAR10)

300, 500;
200, 500, 1000

Acc. (at end)

X X XA2 [12] MLP-400 (MNIST);
ResNet18 (CIFAR10)

500;
500

Acc. (at end)

A3 [41] MLP-400 (MNIST);
ResNet18 (CIFAR10)

500;
1000

Acc. (at end)

B1 [42];
[23]

MLP-400 (MNIST);
ResNet18 (SVHN)

4400 Acc. (at end)

X × XB2 [4] ResNet32 (CIFAR100) 2000 Acc. (avg in t)

B3 [21] ResNet32 (CIFAR100);
ResNet18 (ImageNet100)

1000-2000
(+20) x50

Acc. (avg in t)

C1 [42] MLP-400 (MNIST) 4400 Acc. (at end)
× × X

C2 [9] Many (TinyImageNet) 4500,9000 Acc. (at end)

D [36] ResNet-18-S (CIFAR10) 0-1105
(+65) x17

Acc. (at end) × X X

E [37] MLP-100 (MNIST);
ResNet-18 (CIFAR10)

300;
500

Acc. (at end) X X ×

Table 2. Various CL formulations we considered in this work to evaluate GDumb.
These formulations differ in terms of simplifying assumptions (refer Table 1) and also
in terms of resources used. We ensure that selected benchmarks are diverse, covering
all popular categorizations. Note, in B3 and D, memory is not constant– it increases
over tasks uniformly by (+size) for xtasks times.

Rather, we experimentally show that our simple approach, that does not encode
anything specific to the challenging CL problem at hand, is surprisingly effective
compared to other approaches over all the formulations discussed previously, and
also exposes important shortcomings with recent formulations and algorithms.

As illustrated in Figure 1, our approach comprises of two key components: a
greedy balancing sampler and a learner. Given a memory budget, say k samples,
the sampler greedily stores samples from the data-stream (max k samples) with
the constraint to asymptotically balance class distribution (Algorithm 1). It is
greedy in the sense that whenever it encounters a new class, the sampler simply
creates a new bucket for that class and starts removing samples from the old
ones, in particular, from the one with a maximum number of samples. Any tie is
broken randomly, and a sample is also removed randomly assuming that each
sample is equally important. Note, this sampler does not rely on task boundaries
or any information about the number of samples in each class.

Let the set of samples greedily stored by the sampler in the memory at any
instant in time be Dt (a dataset with ≤ k samples). Then, the objective of
the learner, a deep neural network in our experiments, is to learn a mapping
fθt : x→ y, where (x,y) ∈ Dt. This way, using a small dataset that the sampler
has stored, the learner learns to classify all the labels seen until time t. Let
Yt represents the set of labels in Dt. Then, at inference, given a sample x, the



A Simple Approach that Questions Our Progress in Continual Learning 9

Method MNIST

k (300) (500)

MLP-100

FSS-Clust [37] 75.8 ± 1.7 83.4 ± 2.6

GSS-Clust [37] 75.7 ± 2.2 83.9 ± 1.6

GSS-IQP [37] 75.9 ± 2.5 84.1 ± 2.4

GSS-Greedy [37] 82.6 ± 2.9 84.8 ± 1.8

GDumb (Ours) 88.9 ± 0.6 90.0 ± 0.4

MLP-400

GEN [43] - 75.5 ± 1.3

GEN-MIR [11] - 81.6 ± 0.9

ER [44] - 82.1 ± 1.5

GEM [7] - 86.3 ± 1.4

ER-MIR [11] - 87.6 ± 0.7

GDumb (Ours) - 91.9 ± 0.5

(A1)

Method CIFAR10

k (200) (500) (1000)

GEM [7] 16.8 ± 1.1 17.1 ± 1.0 17.5 ± 1.6

iCARL [4] 28.6 ± 1.2 33.7 ± 1.6 32.4 ± 2.1

ER [44] 27.5 ± 1.2 33.1 ± 1.7 41.3 ± 1.9

ER-MIR [11] 29.8 ± 1.1 40.0 ± 1.1 47.6 ± 1.1

ER5 [11] - - 42.4 ± 1.1

ER-MIR5 [11] - - 49.3 ± 0.1

GDumb (Ours) 35.0 ± 0.6 45.8 ± 0.9 61.3 ± 1.7

(A1)

Table 3. (CI-Online-Disjoint) Performance on formulation A1.

prediction is made as

ŷ = arg max p�m, (1)

where, p is the softmax probabilities over all the classes in Yt, m ∈ {0, 1}|Yt| is a
user-defined mask, and � denotes the Hadamard product. Note, our prediction
procedure allows us to mask any combination of labels at inference. When m
consists of all ones, the inference is exactly the same as that of single-head or class-
incremental, and when the masking is done depending on the subset of classes in
a particular task, it is exactly the same as multi-head or task-incremental. Since
our sampler does not put any restrictions on the flow of the samples from the
data-stream, and our learner does not require any task-boundaries, our overall
approach puts minimal restrictions on the general continual learning problem.
We would also like to emphasize that we do not use the class ȳ as discussed in
our general formulation in Section 2, we leave that for future work. However,
our objective does encapsulate all the recently proposed CL formulations with
minimal possible assumptions, allowing us to provide a fair comparison.

4 Experiments

We now compare GDumb with various existing algorithms for several recently
proposed CL formulations. As shown in Table 1, there broadly are five such
formulations {A,B, · · · ,E}. Since even within a formulation there can be sub-
categories depending on the resources used, we further enumerate them and
present a more detailed categorization, keeping fair comparisons in mind, in
Table 2. For example, B1 and B2 belong to the same formulation B, however,
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they differ in terms of architectures, datsets, and memory sizes used in their
respective papers. Therefore, in total, we pick 10 different formulations, most of
them having multiple architectures and datasets (refer Appendix B for details).

Implementation details: GDumb uses the same fixed training settings, with
no hyperparameter tuning whatsoever, in all the CL formulations. This is possible
because of the fact that GDumb does not impose any simplifying assumptions. All
results measure accuracy (fraction of correctly classifications) evaluated on the
held-out test set. For all the formulations, GDumb uses an SGD optimizer, fixed
batch size of 16, learning rates [0.05, 0.0005], an SGDR [45] schedule with T0= 1,
Tmult= 2 and warm start of 1 epoch. Early stopping with patience of 1 cycle of
SGDR, along with standard data augmentation is used. GDumb uses cutmix [46]
with p=0.5 and α=1.0 for regularization on all datasets except MNIST. The
training set-up comprises of an Intel i7 4790, 32GB RAM and a single GTX
1070 GPU. All results are averaged over 3 random seeds, each with different
class-to-task assignments. In formulations B2 and B3, we strictly follow class
order specified in iCARL [4] and PODNet [21]. Our pytorch implementation is
publicly available at: https://github.com/drimpossible/GDumb.

4.1 Results and Discussions

Class Incremental Online CL with Disjoint Tasks (Form. A): The first
sub-category under this formulation is A1, which follows exactly the same setting,
on Split-MNIST and Split-CIFAR10, as presented in MIR [11]. Results are shown
in Table 3. We observe that on both MNIST and CIFAR10 for all choices of k,
GDumb outperforms all the approaches by a large margin. For example, in the
case of MNIST with memory size k = 500, GDumb outperforms ER-MIR [11]
by around 4.3%. Similarly, on CIFAR10 with memory sizes of 200, 500, and
1K, our approach outperforms current approaches by nearly 5%, 6% and 11%,
respectively, convincingly achieving state-of-the-art results. Note, increasing the
memory size from 200 to 1K in CIFAR10 increases the performance of GDumb by
26.3% (expected as GDumb is trained only on memory), whereas, this increase is
only 18% in the case of ER-MIR [11]. Similar or even much worst improvements
are noticed in other recent approaches, suggesting they might not be utilizing
the memory samples efficiently.

We now benchmark our approach on Split-MNIST and Split-CIFAR10 as
detailed by parallel works GMED [12] (sub-category A2) and ARM [41] (sub-
category A3). We present results in Table 4 and show that GDumb outperforms
parallel works like HAL [35], QMED [12], ARM [41] in addition to outperforming
recent works GSS [37], MIR [11], and ADI [47], consistently across datasets. It
outperforms the best alternatives in QMED [12] by over 4% and 10% on MNIST
and CIFAR10, respectively, and in ARM [41] by over 5% and 13% on MNIST and
CIFAR10 datasets, respectively. Results from ARM [41] indicate—(i) GDumb
consistently outperforms other experience replay approaches and (ii) experience
replay methods obtain much better performance than generative replay with
much smaller memory footprint.

https://github.com/drimpossible/GDumb
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Method MNIST CIFAR-10

k (500) (500)

Fine tuning 18.8± 0.6 18.5± 0.2

AGEM [36] 29.0± 5.3 18.5± 0.6

BGD [48] 13.5± 5.1 18.2± 0.5

GEM [7] 87.2± 1.3 20.1± 1.4

GSS-Greedy [37] 84.2± 2.6 28.0± 1.3

HAL [35] 77.9± 4.2 32.1± 1.5

ER [44] 81.0± 2.3 33.3± 1.5

MIR [11] 84.9± 1.7 34.5± 2.0

GMED (ER) [12] 82.7± 2.1 35.0± 1.5

GMED (MIR) [12] 87.9± 1.1 35.5± 1.9

GDumb (Ours) 91.9 ± 0.5 45.8 ± 0.9

(A2)

Method MNIST CIFAR10

Memory Accuracy Memory Accuracy

Finetune 0 18.8 ± 0.5 0 15.0 ± 3.1

GEN [28] 4.58 79.3 ± 0.6 34.5 15.3 ± 0.5

GEN-MIR [11] 4.31 82.1 ± 0.3 38.0 15.3 ± 1.2

LwF [3] 1.91 33.3 ± 2.5 4.38 19.2 ± 0.3

ADI [47] 1.91 55.4 ± 2.6 4.38 24.8 ± 0.9

ARM [41] 1.91 56.2 ± 3.5 4.38 26.4 ± 1.2

ER [44] 0.39 83.2 ± 1.9 3.07 41.3 ± 1.9

ER-MIR [11] 0.39 85.6 ± 2.0 3.07 47.6 ± 1.1

iCarl [4] (5 iter) - - 3.07 32.4 ± 2.1

GEM [7] 0.39 86.3 ± 0.1 3.07 17.5 ± 1.6

GDumb (ours) 0.39 91.9 ± 0.5 3.07 61.3 ± 1.7

(A3)

Table 4. (CI-Online-Disjoint) Performance on formulations A2 (left) and A3 (right).

Class Incremental Offline CL with Disjoint Tasks (Form. B): We pro-
ceed next to offline CI-CL formulations. We first compare our proposed approach
with 12 popular methods on sub-category B1. Results are presented in Table
5 (left). Our approach outperforms all memory-based methods like GEM, RtF,
DGR by over 5% on MNIST. We outperform the recent RPS-Net [23] and OvA-
INN [49] by over 1%, and are as good as iTAML [24], on MNIST. On SVHN, we
outperform recently proposed methods like RPS-Net by 4.5% and far exceeding
methods like GEM. Note, we achieve the same accuracy as the best offline CL
method iTAML [24] despite using an extremely simple approach in online fashion.

We now discuss two very interesting sub-categories B2 (as in iCARL [4]) and
B3 (from a very recent work PODNet [21]). The primary difference between B2
and B3 merely lies in the number of classes per task. However, as will be seen,
this minor difference changes the complexity of the problem dramatically. In the
case of B2, CIFAR100 is divided into 20 tasks, whereas, B3 starts with a network
trained on 50 classes and then learns one class per task incrementally (leading to
50 new tasks). Performance of GDumb on B2 and B3 formulations are shown in
Table 5 (center) and Table 5 (right), respectively. An interesting observation here
is that GDumb which performed nearly 20% worse than BiC and iCARL in B2,
performs over 10-15% better than BiC, UCIR and iCARL in B3. This drastic
shift against previous results might suggest that having higher number of classes
per task and less number of tasks might give added advantage to scaling/bias
correction type approaches, which otherwise would quickly deteriorate over greater
timesteps. Furthermore, we note that our simple baseline narrowly outperforms
PODNet (CNN) on both CIFAR100 and ImageNet100 datasets.

Task Incremental Offline CL with Disjoint Tasks (Form. C): We now
proceed to compare the performance of GDumb in task incremental formulation.
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Method MNIST SVHN

No memory

MAS [32] 19.5 ± 0.3 17.3

SI [5] 19.7 ± 0.1 17.3

EWC [6] 19.8 ± 0.1 18.2

Online EWC [29] 19.8 ± 0.04 18.5

LwF [3] 24.2 ± 0.3 -

k=4400

DGR [28] 91.2 ± 0.3 -

DGR+Distill 91.8 ± 0.3 -

GEM [7] 92.2 ± 0.1 75.6

RtF [50] 92.6 ± 0.2 -

RPS-Net [23] 96.2 88.9

OvA-INN [49] 96.4 -

iTAML [24] 97.9 94.0

GDumb (Ours) 97.8 ± 0.2 93.4 ± 0.4

(B1)

Method CIFAR100

Acc. (Avg) Acc. (last)

No memory

Finetune 17.8 ± 0.72 5.9 ± 0.15

SI [5] 23.6 ± 1.90 13.3 ± 1.14

MAS [32] 24.7 ± 1.76 10.4 ± 0.80

EWC [6] 25.4 ± 1.99 9.5 ± 0.83

RWALK [8] 25.6 ± 1.92 11.1 ± 2.14

LwF [3] 32.3 ± 1.92 14.1 ± 0.87

DMC [14] 45.0 ± 1.96 23.8 ± 1.90

k=2000

GDumb (Ours) 45.2 ± 1.70 24.1 ± 0.97

DMC++ [14] 56.8 ± 0.86 -

iCARL [4] 58.8 ± 1.90 42.9 ± 0.79

EEIL [18] 63.4 ± 1.6 -

BiC [16] 63.8 46.9

(B2)

Method CIFAR100 ImageNet100

iCaRL [4] 44.2 ± 1.0 54.97

BiC [16] 47.1 ± 1.5 46.49

UCIR (NME) [17] 48.6 ± 0.4 55.44

UCIR (CNN) [17] 49.3 ± 0.3 57.25

PODNet (CNN) [21] 58.0 ± 0.5 62.08

GDumb (CNN) 58.4 ± 0.8 62.86

PODNet (NME) [21] 61.4 ± 0.7 -

(B3)

Table 5. (CI-Offline-Disjoint) Performance on B1, B2, and B3.

Recall, GDumb does not put any restrictions such as task vs class incremental, or
online vs offline. However, in the case of GDumb, we use masking (subset of labels
in a task) over softmax probabilities at test time to mimic TI-CL formulation.

Table 6 (left) shows the results on C1, a very widely used and most popular
offline TI-CL (or multi-head) formulation for CL on Split-MNIST. We now move
to C2 on Split-TinyImagenet (offline TI-CL formulation as in [9]). Note, in
this particular formulation we used a different architecture called DenseNet-100-
BC [54]. Results are presented in Table 6 (middle). We observe that for k = 9000,
we outperform all 10 approaches including GEM and iCARL by margins of atleast
7%. When the memory is halved to k = 4500, we perform slightly better than
GEM and nearly 3% worse than iCARL. Since we used different architecture, we
do not claim that we would notice similar improvements had we trained GDumb
using the networks used in respective papers. However, these results are still
encouraging as the approaches we compare against are trained in TI-CL manner
and GDumb is always trained in CI-CL manner (much more difficult).

Task Incremental Online CL with Disjoint Tasks (Form. D): We now
compare GDumb with 12 TI-CL tuned online approaches with small memory (not
a favourable setting for GDumb as it relies totally on the samples in the memory)
and detail the results in Table 6 (right). We observe that GDumb outperforms 8
out of 11 approaches even though it is trained in CI-CL manner.

Class Incremental Online CL with Joint Tasks (Form. E): We now
measure impact of imbalanced data stream with blurry task boundaries [37].
Results are presented in Table 7 (left). We outperform competing models by over
10% and 16%, overwhelming surpassing complicated methods attuned to this
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Method MNIST

(k) (4400)

GEM [7] 98.42 ± 0.10

EWC [6] 98.64 ± 0.22

SI [5] 99.09 ± 0.15

Online EWC [29] 99.12 ± 0.11

MAS [32] 99.22 ± 0.21

DGR [28] 99.50 ± 0.03

LwF [3] 99.60 ± 0.03

DGR+Distil [28] 99.61 ± 0.02

RtF 99.66 ± 0.03

GDumb 99.77 ± 0.03

(C1)

Method Parameters Regularization Accuracy

No stored samples

mean-IMM [33] 3.5M none 32.42

mode-IMM [33] 9.0M dropout 42.41

SI [5] 3.5M/9.0M L2/dropout 43.74

HAT [51] 3.5M/9.0M L2 44.19

EWC [6] 613K none 45.13

LwF [3] 9.0M L2 48.11

EBLL [52] 9.0M L2 48.17

MAS [32] 3.5M/9.0M none 48.98

PackNet [53] 613K/3.5M L2/dropout 55.96

k=4500

GEM [7] 613K/3.5M none/dropout 44.23

GDumb 834K cutmix 45.50

iCARL [4] 613K/3.5M dropout 48.55

k=9000

GEM [7] 613K/3.5M none/dropout 45.27

iCARL [4] 613K/3.5M dropout 49.94

GDumb 834K cutmix 57.27

(C2)

Method CIFAR100

(k) (1105)

RWalk [8] 40.9 ± 3.97

EWC [6] 42.4 ± 3.02

Base 42.9 ± 2.07

MAS [32] 44.2 ± 2.39

SI [5] 47.1 ± 4.41

iCARL [4] 50.1

S-GEM [36] 56.2

PNN [26] 59.2 ± 0.85

GEM [7] 61.2 ± 0.78

A-GEM [36] 63.1 ± 1.24

TinyER [34] 68.5 ± 0.65

GDumb 60.3 ± 0.85

(D)

Table 6. (TI-Offline-Disjoint) Performance on C1 (left) and C2 (middle). (TI-Onlione-
Disjoint) Performance on D (right).

benchmark. This demonstrates that GDumb works well even when almost all
simplifying assumptions are removed.

4.2 Resources Needed

It is important that our approach is in the ballpark of online continual learning
constraints of memory and compute usage to achieve its performance. We bench-
mark our resource consumption against the efficient CL algorithms in Table 7
(right) benchmarked with a V100 GPU on formulation E [36]. We observe that
we require only 60s on a slower GTX 1070 GPU (and 350s on a 4790 i7 CPU),
performing several times efficient than various recently proposed algorithm. Note
that sampling time is negligible, while testing time is not included in the above.

4.3 Potential Future Extensions

Active Sampling: Given an importance value vt ∈ R+ (by active learner) along
with sample (xt, yt) at time t, we can extend our sampler by having the objective

of storing most important samples (maximizing
∑|Dc|
i=1 vi) for any given class c in

its storage of size k. This will allow an algorithm to reject less important samples.
Of course, it is not clear how to learn to quantify importance of a sample.

Dynamic Probabilistic Masking: It is possible to extend masking in
GDumb beyond CI-CL and TI-CL to dynamic task hierarchies across video/scene
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Method MNIST CIFAR10

Reservoir [43] 69.12 -

GSS-Clust [37] - 25.0

FSS-Clust [37] - 26.0

GSS-IQP [37] 76.49 29.6

GSS-Greedy [37] 77.96 29.6

GDumb (Ours) 88.93 45.8

(E)

Method Train time Memory (Train) Memory (Test)

Base 105s P + B*H P + B*H

EWC 250s 4*P + B*H P + B*H

PNN 409s 2*P*T + B*H*T 2*P*T + B*H*T

GEM 5238s P*T + (B+M)*H P + B*H

A-GEM 449s 2*P + (B+M)*H P + B*H

GDumb 60s P + M*H P + B*H

(Resources)

Table 7. (CI-Online-Joint) Performance on E (left). Note, this is particularly challenging
as the tasks here are non-disjoint (blurry task boundary) with class-imbalance. On the
(right), we benchmark resource consumption in terms of training time and memory
usage. Memory cost is provided in terms of the total parameters P, the size of the
minibatch B, the total size of the network hidden state H (assuming all methods use
the same architecture), the size of the episodic memory M per task. GDumb, at the
very least, is 7.5x times faster than the existing efficient CL formulations.

types useful in recently proposed settings [40]. Since GDumb applies a mask
(given a context) only at inference, we can dynamically adapt to the context to
generate a mask. Similarly, we can extend GDumb beyond deterministic oracles
(mi ∈ {0, 1}) to probabilistic one (mi ∈ [0, 1]). This delivers a lot of flexibility for
diverse extensions like cost-sensitive classification, class-imbalance among others.

5 Conclusion

In this work, we provided a general view of a continual image classification problem.
We then proposed a simple and general approach with minimal restrictions and
empirically showed that it outperforms almost all the complicated state-of-the-art
approaches in their own formulations for which they were specifically designed.
We hope that our approach serves the purpose of a strong baseline to benchmark
the effectiveness of any newly proposed CL algorithm. Our solution also raises
various concerns to be investigated: (1) Even though there are plenty of research
articles focused on specific scenarios relating CL problem, are we really progressing
in the right direction? (2) Which formulation to focus on? and (3) Do we need
different experimental formulations, more complex than the current ones, so that
the effectiveness of recent CL models, if they are, is pronounced?
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Form. Dataset Model #Params k Acc

B1 MNIST

MLP-400 479K 4400 97.8

NIN 260K 250 97.2

Improv 1.8x 17.6x -0.6%

B1 SVHN

ResNet18 11.2M 4400 93.4

NIN 968K 2000 89.3

Improv 11.6x 2.2x -4.1%

A1/A2 CIFAR10

ResNet18 11.2M 500 45.8

DenseNet100 769K 500 47.5

Improv 14.6x - 1.7%

D CIFAR100-Task

ResNet18-S 1108K 1105 60.3

DenseNet100 794K 1105 62.1

Improv 1.4x - 1.8%

B2 CIFAR100-Class

ResNet18 11.2M 2000 24.1

DenseNet100 800K 2000 27.5

Improv 14.6x - 3.4%

Table 1. Minimizing the resource consumption (storage size and parameters).

A Additional Experiments

We perform additional experiments to study variance of performance across
memory sizes, models, training timesteps on each dataset. We first study the
variation across models and different values of k and tabulate these results in
Table 2. For MNIST and SVHN, we could reduce the replay buffer size by over
17x and 2x respectively with small impact on performance, a good tradeoff.
For CIFAR10 and CIFAR100, we substitute the bulky ResNet18 model with a
DenseNetBC-100-12 [54] which gives us a major decrease of over 14x in parameters.
In CIFAR10 and CIFAR100 (Task-IL and Class-IL), we additionally improve
accuracy by 1.7%, 1.8% and 3.4% respectively after compressing the models. On
MNIST and SVHN, we could compress the size of stored dataset k , showing
existing formulations use too much memory. But as dataset complexity increases,
larger memory size is required. We could also compress the parameter storage
by large margins while increasing accuracy by substituting popular but efficient
models, showing the scope for using more efficient models for CL formulations.

We further study the trade-off between accuracy and training time of our
improved models on the improved k values by varying the passes on memory.
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Passes/Form. B1-MNIST B1-SVHN A1-CIFAR10 D B2 C2

k 250 2000 500 1105 2000 9000

NIN NIN DenseNet100 DenseNet100 DenseNet100 DenseNet100

8 91.7 (96.0) 72.5 (81.4) 28.4 (28.4) 49.5 (50.8) 7.3 (8.8) 32.3 (33.9)

16 95.9 (96.3) 85.1 (85.6) 32.3 (33.5) 52.6 (53.0) 10.0 (11.4) 39.4 (41.9)

32 96.9 (97.2) 88.8 (87.3) 37.8 (36.7) 56.2 (58.3) 15.0 (18.1) 47.2 (48.4)

64 97.4 (97.2) 89.2 (87.5) 39.9 (40.1) 60.6 (61.2) 21.9 (22.5) 54.0 (54.3)

128 97.4 (97.2) 89.2 (88.9) 43.9 (42.9) 62.1 (61.9) 26.5 (24.1) 56.9 (56.3)

256 96.6 (97.5) 88.4 (89.7) 46.4 (43.9) 62.0 (62.4) 27.6 (25.7) 54.1 (54.8)

512 96.1 (97.7) 86.9 (88.4) 47.5 (45.9) 62.3 (61.5) 27.6 (25.8) 54.0 (54.7)

Table 2. Accuracy of tweaked (NIN/DenseNet) GDumb models with number of passes.
The bolded accuracies represent the reported results in previous experiments, while
accuracies in (brackets) are obtained without cutmix regularization. We can halve the
training time with slight tradeoff of upto 1% accuracy.

We present the results in Table 2, with bold being the selected models, along
with (brackets) representing accuracies obtained by an ablation without cutmix
regularization. We show that we can further reduce our training time by half
with a minor (approx 1%) tradeoff in accuracy. We also observe that cutmix
regularization improves performance by 0.2% to 1.5% margins. We strongly
recommend regularization in GDumb since it only has access to the few samples
in memory.

B Experiment formulations

We first detail each of the seven selected formulation and then present results on
each of them.

Formulation A1 ([11]): We benchmark on two datasets: MNIST and CI-
FAR10 from this setting. They randomly divided MNIST and CIFAR10 into
5 disjoint tasks of 2 classes each. The architectures used for MNIST is a MLP
with 2 hidden layers of 400 nodes and ResNet18 for CIFAR10. They use a small
limit (k) of 300 and 500 stored samples for MNIST and 200, 500 and 1000 stored
samples for CIFAR10. In MNIST, they select 1000 samples per task, while in
CIFAR10 they utilize 9,750 samples per task in the online stream. On MNIST,
we additionally compare with GSS [37] who use the same setup except they have
an MLP with 100 hidden size. We compare accuracy on the hold-out test set
after all tasks are done.

Formulation A2 ([12]): They split MNIST and CIFAR10 into 5 disjoint
subsets by their labels as different tasks. Each task consists of 1,000 online
training examples in MNIST and 10,000 training examples in CIFAR10 similar
to the above setup. The goal is to classify over all 10 classes on a held-out test
set when the training ends. The architectures used for MNIST is a MLP with 2
hidden layers of 100 nodes and ResNet18 for CIFAR10, identical to the above
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setup. However, since the accuracies obtained for ER, GEM and ER-MIR are very
different, we list them as a different formulation and compare our performance
against them.

Formulation A3 ([41]): They split MNIST and CIFAR10 into 5 disjoint
subsets. Each task consists of 1,000 online training examples in MNIST and 9,750
training examples in CIFAR10 similar to the A1. The goal is to classify over
all 10 classes on a held-out test set when the training ends. The architectures
used for MNIST is a MLP with 2 hidden layers of 100 nodes and ResNet18 for
CIFAR10, identical to the above setup. However, since the accuracies obtained
for ER, GEM and ER-MIR are very different (for MNIST), we list them as a
different formulation as merging tables is not possible.

Formulation B1 ([42,23]): It consists of two datasets: MNIST and SVHN,
randomly divided into 5 disjoint tasks of 2 classes each. The architecture used
is a MLP with 2 hidden layers of 400 nodes for MNIST and ResNet18 for
SVHN. The formulation controls the total static memory overhead among all
proposed approaches, resulting in storage capacity of 4400 for memory-based
approaches [42].

Formulation B2 ([4]): The formulation use CIFAR100, split into 20 tasks
of 5 classes each. They use a ResNet-32 model and a limit of 2000 stored samples
(k). We additionally report the average of accuracy after each task as described in
[4] referred to as accuracy (avg in t), along with accuracy after all tasks referred
to as accuracy.

Formulation B3 ([21]): This formulation tests small-task increments on
CIFAR100 and Imagenet100. Given a class-order, they use the first 50 tasks for
pretraining and then subsequent 50 tasks with 1 class each in a CI-CL fashion
including the initial 50 classes. Hence, they have a CI-CL classification with
51-100 classes. They start off with 1000 samples in memory and add 20 samples
to memory for each subsequent task added. They use ResNet32 on CIFAR100 and
ResNet18 on Imagenet100 to match the formulation and provide 3 class-orders
for CIFAR100 and 1 class-order for Imagenet100 which we use. We measure
average and last-task accuracy on using the same set of class-orders, using the
same memory and networks as specified in the formulation.

Formulation C1 ([42]): It splits MNIST into 5 disjoint tasks of 2 classes
each. The architecture used is a MLP with 2 hidden layers of 400 nodes for
MNIST. The formulation controls the total static memory overhead, resulting in
storage capacity of 4400 for memory-based approaches. We use three different
class-to-task mappings to get performance.

Formulation C2 ([9]): TinyImagenet is divided into 10 disjoint tasks of 20
classes each in this formulation. We compare with the overall best accuracies
obtained (Table 10 in [9]). The table lists their best performance observed over
different architectures, regularization strategies, hyperparameter searches, etc. We
test for two stored sample limit (k): 4500 and 9000. We use DenseNetBC-100-12
architecture as detailed in subsequent sections. Note that although it differs from
the architectures tested; it is a fairly standard efficient architecture.
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Formulation D ([36]): We borrow the benchmark on CIFAR100, consisting
of 20 disjoint tasks of 5 classes each. We train 17 tasks, store upto 13 samples
per class and use the same reduced ResNet18 architecture.

Formulation E ([37]): It consists of two datasets (MNIST and CIFAR10)
with class-imbalanced, blurry boundary setting. Each has 5 tasks, each task
having 2 classes each. MNIST has 2000 online samples of current task and 200
from each other tasks for every task in the formulation. Similarly, in CIFAR10
we keep 90% of the data for each task, and introduce 10% of data from the other
tasks. The same architectures are used as in GSS [37], which are a 2-layer MLP
with hidden size 100 for MNIST and a ResNet18 for CIFAR10. The limit on
stored samples (k) is 300 for MNIST and 500 for CIFAR10.
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