
Post-Training Piecewise Linear Quantization
for Deep Neural Networks

Jun Fang1, Ali Shafiee1, Hamzah Abdel-Aziz1, David Thorsley1,
Georgios Georgiadis2?, and Joseph Hassoun1

1 Samsung Semiconductor, Inc.
{jun.fang, ali.shafiee, hamzah.a, d.thorsley, j.hassoun}@samsung.com

2 Microsoft gegeo@microsoft.com

Abstract. Quantization plays an important role in the energy-efficient
deployment of deep neural networks on resource-limited devices. Post-
training quantization is highly desirable since it does not require retrain-
ing or access to the full training dataset. The well-established uniform
scheme for post-training quantization achieves satisfactory results by
converting neural networks from full-precision to 8-bit fixed-point inte-
gers. However, it suffers from significant performance degradation when
quantizing to lower bit-widths. In this paper, we propose a piecewise
linear quantization (PWLQ) scheme to enable accurate approximation
for tensor values that have bell-shaped distributions with long tails. Our
approach breaks the entire quantization range into non-overlapping re-
gions for each tensor, with each region being assigned an equal number of
quantization levels. Optimal breakpoints that divide the entire range are
found by minimizing the quantization error. Compared to state-of-the-
art post-training quantization methods, experimental results show that
our proposed method achieves superior performance on image classifica-
tion, semantic segmentation, and object detection with minor overhead.

Keywords: deep neural networks, post-training quantization, piecewise
linear quantization

1 Introduction

In recent years, deep neural networks (DNNs) have achieved state-of-the-art re-
sults in a variety of learning tasks including image classification [23,24,54,19,53,29],
segmentation [5,18,49] and detection [36,47,48]. Scaling up DNNs by one or all
of the dimensions [55] of network depth [19], width [59] or image resolution [30]
attains better accuracy, at a cost of higher computational complexity and in-
creased memory requirements, which makes the deployment of these networks
on embedded devices with limited resources impractical.

One feasible way to deploy DNNs on embedded systems is quantization of
full-precision (32-bit floating-point, FP32) weights and activations to lower preci-
sion (such as 8-bit fixed-point, INT8) integers [25]. By decreasing the bit-width,

? Work done at Samsung Semiconductor, Inc.

ar
X

iv
:2

00
2.

00
10

4v
2

 [
cs

.C
V

]
 1

8
M

ar
 2

02
0

2 J. Fang et al.

the number of discrete values is reduced, while the quantization error, which
generally correlates with model performance degradation increases. To minimize
the quantization error and maintain the performance of a full-precision model,
many recent studies [63,4,40,25,6,60,12,27] rely on training either from scratch
(“quantization-aware” training) or by fine-tuning a pre-trained FP32 model.

However, post-training quantization is highly desirable since it does not re-
quire retraining or access to the full training dataset. It saves time-consuming
fine-tuning effort, protects data privacy, and allows for easy and fast deploy-
ment of DNN applications. Among various post-training quantization schemes
proposed in the literature [28,7,62], uniform quantization is the most popular
approach to quantize weights and activations since it discretizes the domain of
values to evenly-spaced low-precision integers which can be efficiently imple-
mented on commodity hardware’s integer-arithmetic units.

Recent work [28,31,42] shows that post-training quantization based on a uni-
form scheme with INT8 is sufficient to preserve near original FP32 pre-trained
model performance for a wide variety of DNNs. However, ubiquitous usage of
DNNs in resource-constrained settings requires even lower bit-width to achieve
higher energy efficiency and smaller models. In lower bit-width scenarios, such as
4-bit, post-training uniform quantization causes significant accuracy drop [28,62].
This is mainly because the distributions of weights and activations of pre-trained
DNNs is bell-shaped such as Gaussian or Laplacian [17,35]. That is, most of the
weights are clustered around zero while few of them are spread in a long tail.
As a result, when operating at low bit-widths, uniform quantization assigns too
few quantization levels to small magnitudes and too many to large ones, which
leads to significant accuracy degradation [28,62].

To mitigate this issue, various quantization schemes [41,4,3,43,26,34] are de-
signed to take advantage of the fact that weights and activations of pre-trained
DNNs typically have bell-shaped distributions with long tails. Here, we present a
new number representation via a piecewise linear approximation to be suited for
these phenomena. It breaks the entire quantization range into non-overlapping
regions where each region is assigned an equal number of quantization levels.
Although our method works with an arbitrary number of regions, we suggest
limiting them to two to simplify the complexity of the proposed approach and
the hardware overhead. The optimal breakpoints that divide the entire range can
be found by minimizing the quantization error. Compared to uniform quantiza-
tion, our piecewise linear quantization (PWLQ) provides a richer representation
that reduces the quantization error. This indicates its potential to reduce the gap
between floating-point and low-bit precision models. It is also more hardware-
friendly when compared to other non-linear approaches such as logarithm-based
and clustering-based approaches [41,56,3], since in our method, computation can
still be carried out without the need of any transforms or look-up tables.

The main contributions of our work are as follows:

• We propose a piecewise linear quantization (PWLQ) scheme for efficient
deployment of pre-trained DNNs without retraining or access to the full
training dataset. We also investigate its impact on hardware implementation.

Post-Training Piecewise Linear Quantization for Deep Neural Networks 3

• We present a solution to find the optimal breakpoints and demonstrate that
our method achieves a lower quantization error than the uniform scheme.

• We provide a comprehensive evaluation on image classification, semantic
segmentation, and object detection benchmarks and show that our proposed
method achieves state-of-the-art results.

2 Related Work

There is a wide variety of approaches in the literature that facilitate the efficient
deployment of DNNs. The first group of techniques relies on designing network
architectures that depend on more efficient building blocks. Notable examples
include depth/point-wise layers [22,52] as well as group convolutions [61,38].
These methods require domain knowledge, training from scratch and full access
to the task datasets. The second group of approaches optimizes network architec-
tures in a typical task-agnostic fashion and may or may not require (re)training.
Weight pruning [17,32,20,37], activation compression [10,9,14], knowledge distil-
lation [21,45] and quantization [8,46,66,64,41,25] fall under this category.

In particular, quantization of activations and weights [15,16,57,35,6,60,62]
leads to model compression and acceleration as well as to overall savings in
power consumption. Model parameters can be stored in a fewer number of bits
while the computation can be executed on integer-arithmetic units rather than
on power-hungry floating-point ones [25]. There has been extensive research on
quantization with and without (re)training. In the rest of this section, we focus
on post-training quantization that directly converts full-precision pre-trained
models to their low-precision counterparts.

Recent works [28,31,42] have demonstrated that 8-bit quantized models have
been able to accomplish negligible accuracy loss for a variety of networks. To
improve accuracy, per-channel (or channel-wise) quantization is introduced in
[28,31] to address variations of the range of weight values across channels. Weight
equalization/factorization is applied by [39,42] to rescale the difference of weight
ranges between different layers. In addition, bias shifts in the mean and vari-
ance of quantized values are observed and counteracting methods are suggested
by [2,13]. A comprehensive evaluation of clipping techniques is presented by [62]
along with an outlier channel splitting method to improve quantization perfor-
mance. Moreover, adaptive processes of assigning different bit-width for each
layer are proposed in [35,65] to optimize the overall bit allocation.

There are also a few attempts to tackle 4-bit post-training quantization by
combining multiple techniques. In [2], a combination of analytical clipping, bit
allocation, and bias correction is used, while [7] minimizes the mean squared
quantization error by representing one tensor with one or multiple 4-bit tensors
as well as by optimizing the scaling factors.

Most of the aforementioned works utilize a linear or uniform quantization
scheme. However, linear quantization cannot capture the bell-shaped distribution
of weights and activations, which results in sub-optimal solutions. To overcome
this deficiency, [3] proposes a quantile-based method to improve accuracy but

4 J. Fang et al.

their method works efficiently only on highly customized hardware; [26] employs
two different scale factors on overlapping regions to reduce computation bits over
fixed-point implementations. However, its scale factors restricted to powers of
two and heuristic options limit the accuracy performance. Instead, we propose
a piecewise linear approach that improves over the selection of optimal break-
points that leads to state-of-the-art quantized model results. Our method can
be implemented efficiently with minimal modification to commodity hardware.

3 Quantization Schemes

In this section, we review a uniform quantization scheme and discuss its limi-
tations. We then present PWLQ, our piecewise linear quantization scheme and
show that it has a stronger representational power (a smaller quantization error)
compared to the uniform scheme.

Fig. 1. Quantization of conv4 layer weights in a pre-trained Inception-v3. Left: uni-
form quantization. Middle: piecewise linear quantization (PWLQ) with one breakpoint,
dotted line indicates the breakpoint. Right: Mean squared quantization error (MSE)
for various bit-widths (b = 4, 6, 8). MSE of PWLQ is convex w.r.t. the breakpoint p,
the b-bit PWLQ can achieve a smaller quantization error than the b-bit uniform scheme

3.1 Uniform Quantization

Uniform quantization (the left of Figure 1) linearly maps full-precision real num-
bers r into low-precision integer representations. From [25,7], the approximated
version r̂ from uniform quantization scheme at b-bit can be defined as:

r̂ = uni(r; b, rl, ru, z) = s× rq + z,

rq =
⌈
clamp(r;rl,ru)−z

s

⌋
Zb

,

clamp(r; rl, ru) = min(max(r, ru), rl),

s = ∆
N−1 , ∆ = ru − rl, N = 2b,

(1)

where [rl, ru] is the quantization range, s is the scaling factor, z is the off-
set, N is the number of quantization levels, rq is the quantized integer com-
puted by a rounding function d·cZb

followed by saturation to the integer domain

Post-Training Piecewise Linear Quantization for Deep Neural Networks 5

Zb. We set the offset z = 0 for symmetric signed distributions combined with
Zb = {−2b−1, ..., 2b−1 − 1} and z = rl for asymmetric unsigned distributions
(e.g., ReLU-based activations) with Zb = {0, ..., 2b−1}. Since the scheme (1) in-
troduces a quantization error defined as εuni = r̂− r, the expected quantization
error squared is given by:

E(ε2uni; b, rl, ru) =
s2

12
= C(b)∆2, (2)

with C(b) = 1
12(2b−1)2 under uniform distributions [58].

From the above definition, uniform quantization divides the range evenly
despite the distribution of r. Empirically, the distributions of weights and ac-
tivations of pre-trained DNNs are similar to bell-shaped Gaussian or Lapla-
cian [17,35]. Therefore, uniform quantization is not always able to achieve small
enough approximation error to maintain model accuracy, especially in low-bit
cases.

3.2 Piecewise Linear Quantization (PWLQ)

To improve model accuracy for quantized models, we need to approximate the
original model as accurately as possible by minimizing the quantization error. We
follow this natural criterion to investigate the quantization performance, even
though no direct relationship can easily be established between the quantization
error and the final model accuracy [7].

Inspired from [43,26] that takes advantage of bell-shaped distributions, our
approach based on piecewise linear quantization is designed to minimize the
quantization error. It breaks the quantization range into two non-overlapping
regions: the dense, central region and the sparse, high-magnitude region. An
equal number of quantization levels N = 2b is assigned to these two regions.
We chose to use two regions with one breakpoint to maintain simplicity in the
inference algorithm (Section 5.1) and the hardware implementation (Section 4).
Multiple-region cases are discussed in Section 5.1.

Therefore, we only consider one breakpoint p to divide the quantization
range3 [−m,m] (m > 0) into two symmetric regions: the center region R1 =
[−p, p] and the tail region R2 = [−m,−p) ∪ (p,m]. Each region consists of a
negative piece and a positive piece. Within each of the four pieces, (b − 1)-bit
(b ≥ 2) uniform quantization (1) is applied such that including the sign every
value in the quantization range is being represented into b-bit. We define the
b-bit piecewise linear quantization (denoted by PWLQ) scheme as:

pw(r; b,m, p) =

{
sign(r)× uni(|r|; b− 1, 0, p, 0), r ∈ R1

sign(r)× uni(|r|; b− 1, p,m, p), r ∈ R2

, (3)

where the sign of full-precision real number r is denoted by sign(r). The associ-
ated quantization error is defined as εpw = pw(r; b,m, p)− r.
3 Here we consider symmetric quantization range [−m,m] (m > 0) for simplicity, it is

extendable to asymmetric ranges [m1,m2] for any real numbers m1 < m2.

6 J. Fang et al.

Figure 1 shows the comparison between uniform quantization and PWLQ on
the empirical distribution of the conv4 layer weights in a pre-trained Inception-
v3 model [54]. We emphasize that b-bit PWLQ represents FP32 values into b-bit
integers to support b-bit multiply-accumulate operations, even though in total,
it has the same number of quantization levels as (b+1)-bit uniform quantization.
The implications of this are further discussed in Section 4.

3.3 Error Analysis

To study the quantization error for PWLQ, we suppose the full-precision real
number r has a symmetric probability density function (PDF) f(r) on a bounded
domain [−m,m] with the cumulative distribution function (CDF) F (r) satisfying
f(r) = f(−r) and F (−m) = 0, F (m) = 1. Then, we calculate the expected
quantization error squared of PWLQ from (2) based on the error of each piece:

E(ε2pw; b,m, p) = C(b− 1)
{

(m− p)2
[
F (−p) + 1− F (p)

]
+ p2[F (p)− F (−p)]

}
,

(4)

Since F (r) = 1−F (−r) for a symmetric PDF, equation (4) can be simplified as:

E(ε2pw; b,m, p) = C(b− 1)
{

(m− p)2 +m(2p−m)
[
2F (p)− 1

]}
. (5)

The performance of a quantized model with PWLQ scheme critically de-
pends on the value of the breakpoint p. If p = m

2 , then the PWLQ is essentially
equivalent to uniform quantization, because the four pieces have equal quanti-
zation ranges and bit-widths. If p < m

2 , the center region has a smaller range
and greater precision than the tail region, as shown in the middle of Figure 1.
Conversely, if p > m

2 , the tail region has greater precision than the center region.
To reduce the overall quantization error for bell-shaped distributions found in
DNNs, we increase the precision in the center region and decrease it in the tail
region. Thus, we limit the breakpoint to the range 0 < p < m

2 .

Accordingly, the optimal breakpoint p∗ can be estimated by minimizing the
expected squared quantization error:

p∗ = arg minp∈(0,m2) E(ε2pw; b,m, p). (6)

Since bell-shaped distributions tend to zero as r becomes large, we consider a
smooth f(r) is decreasing when r is positive, i.e., f ′(r) < 0, ∀r > 0. Then we
prove that the optimization problem (6) is convex with respect to the breakpoint
p ∈ (0, m2). Therefore one unique p∗ exists to minimize the quantization error
(5), as demonstrated by the following Lemma 1.

Lemma 1 If f(−r) = f(r), f ′(r) < 0 for all r > 0, then E(ε2pw; b,m, p) is a
convex function of the breakpoint p ∈ (0, m2).

Post-Training Piecewise Linear Quantization for Deep Neural Networks 7

Proof. Taking the first and second derivatives of (5) yields:

∂E(ε2pw;b,m,p)

∂p = 2C(b− 1)
[
p− 2m+ 2mF (p) +m(2p−m)f(p)

]
, (7)

∂2E(ε2pw;b,m,p)

∂p2 = 2C(b− 1)
[
1 + 4mf(p) +m(2p−m)f ′(p)

]
, (8)

Since f ′(p) < 0 and p < m
2 , m(2p − m)f ′(p) > 0, then

∂2E(ε2pw;b,m,p)

∂p2 > 0.

Therefore, E(ε2pw; b,m, p) is convex w.r.t. p, and thus a unique p∗ exists.

In practice, we can find the optimal breakpoint by solving (6) by assuming an
underlying Gaussian or Laplacian distribution using gradient descent [50]. Once
the optimal breakpoint p∗ is found, both Lemma 2 and the numerical simulation
in the right of Figure 1 show that PWLQ achieves a smaller quantization error
than uniform quantization, which indicates its stronger representational power.

Lemma 2 E(ε2pw; b,m, p∗) < C(b−1)
16C(b) E(ε2uni; b,−m,m) for b ≥ 2.

Proof. The b-bit uniform quantization error on [−m,m] is calculated from (2):

E(ε2uni; b,−m,m) = C(b)(2m)2 = 4C(b)m2. (9)

For b-bit PWLQ, we solve the convex problem (6) by letting the first derivative
equal to zero in (7), and determine that the optimal breakpoint p∗ satisfies:

2mF (p∗) = 2m− p∗ +m(m− 2p∗)f(p∗). (10)

By substituting (10) in (5) and simplifying, we obtain:

E(ε2pw; b,m, p∗) = C(b− 1)
[
− (p∗)2 +mp∗ −m(m− 2p∗)2f(p∗)

]
. (11)

Subtract the above from C(b−1)
16C(b) of (9), we complete the proof:

E(ε2pw; b,m, p∗)− C(b−1)
16C(b) E(ε2uni; b,−m,m)

= E(ε2pw; b,m, p∗)− C(b− 1)(1
4m

2)

≤ C(b− 1)
[
− (p∗ − m

2)2 −m(m− 2p∗)2f(p∗)
]
< 0.

(12)

Note that C(b) = 1
12(2b−1)2 given from equation (2), for b ≥ 2,

C(b− 1)

16C(b)
=

1

16

(
2b − 1

2b−1 − 1

)2

=
1

16

(
2 +

1

2b−1 − 1

)2

≤ 9

16
. (13)

Therefore, b-bit PWLQ achieves a smaller quantization error, which is at most 9
16

of b-bit uniform scheme. This improvement in performance requires only an extra
bit for storage and no extra multiplication, as we discuss in the next section.

8 J. Fang et al.

4 Hardware Impact

In this section, we discuss the hardware requirements for efficient deployment of
DNNs quantized with PWLQ. In convolutional and fully-connected layers, every
output can be computed using an inner product between vector X and vector W ,
which correspond to the input activation and weight (sub)tensors respectively.

From scheme (1), the approximated versions of uniform quantization are
X̂ = sxXq+zxI and Ŵ = swWq (assuming symmetric quantization for weights),
where Xq and Wq are quantized integer vectors from X and W , I is an identity
vector, sx, sw and zx are associated constant-valued scaling factors and offset,
respectively. The output of this uniform quantization is:

〈X̂, Ŵ 〉 = 〈sxXq + zxI, swWq〉 = C0〈Xq, Wq〉+ C1, (14)

where 〈·, ·〉 is defined as vector inner product, C0 = sxsw and C1 = zxsw〈Wq, I〉
denote floating-point constant terms that can be pre-computed offline.

Equation (14) implies that a uniformly quantized DNN requires two steps: (i)
an integer-arithmetic (INT) inner product; and (ii) followed by a floating-point
(FP) affine map. The expensive O(|W |) (the size of vector W) FP operations
〈X̂, Ŵ 〉 are then accelerated via INT operations 〈Xq, Wq〉, plus O(1) FP re-
scaling and adding operands using C0 and C1.

As we showed in Section 3.2 when applying PWLQ on weights with one
breakpoint, the algorithm breaks the ranges into non-overlapping regions (R1

and R2), which requires separate computational paths (P1 and P2) as each region
has a different scaling factor. We set offsets zw1

= 0, zw2
= p and denote scaling

factors by sw1
, sw2

in R1, R2, respectively. We also define by 〈·, ·〉Ri
the associated

partial vector inner product, and Wqi the associated quantized integer vector of
W in region Ri for i = 1, 2. Then P1 is computed using the following equation:

P1 = 〈sxXq + zxI, sw1
Wq1〉R1

= C2〈Xq, Wq1〉R1
+ C3. (15)

P2 has additional terms as it has a non-zero offset p:

P2 = 〈sxXq + zxI, sw2Wq2 + pI〉R2

= C4〈Xq, Wq2〉R2
+ C5〈Xq, I〉R2

+ C6,
(16)

where C2, C3, C4, C5, and C6 are constant terms, which can be pre-computed
similar to C0 and C1 in (14).

As indicated by (15) and (16) for PWLQ compared to uniform quantization
(14), the extra term 〈Xq, I〉R2

is needed due to the non-zero offset p, which sums
up the activations corresponding to weights in R2. Since most of the weights4

are in R1, these extra computations in R2 rarely happen. In addition, FP re-
scaling and adding are needed in each region, which also increases the overall
FP operation overhead.

In short, an efficient hardware implementation of PWLQ requires:

4 Around 90% of the weights are locating in the center region R1 in our experiments.

Post-Training Piecewise Linear Quantization for Deep Neural Networks 9

– One multiplier for products in both of 〈Xq,Wq1 〉R1
and 〈Xq, Wq2〉R2

.

– Three accumulators: one of each for sum of products in P1 and P2, and
another one for activations in P2.

– At most one extra bit for storage5 per weight value to indicate the region.
Note that this extra bit does not increase the multiply-accumulate (MAC)
computation and it is only used to determine the appropriate accumulator,
which can be done in hardware at negligible cost on the MAC unit.

Based on the above explanation, it is clear that more breakpoints require
more accumulators and more storage bits per weight tensor. Also, applying
PWLQ on both weights and activations6 requires accumulators for each combi-
nation of activation regions and weight regions, which translates to more hard-
ware overhead. As a result, more than one breakpoint on the weight tensor or
applying PWLQ on both weights and activations might not be feasible, from a
hardware implementation perspective.

5 Experiments

We evaluate the robustness of our proposed PWLQ scheme for post-training
quantization on popular networks of several computer vision benchmarks: Im-
ageNet classification [51], semantic segmentation and object detection on the
Pascal VOC challenge [11]. In all experiments, we apply batch normalization
folding [25] before quantization. For activations, we follow the profiling strategy
in [62] to sample from 512 training images, and collect the median7 of the top-
10 smallest and top-10 largest activation values for the minimum and maximum
range boundaries at each layer, respectively. During inference, we apply quan-
tization after clipping with these ranges. Unless stated otherwise, we quantize
all network weights per-channel into 3-to-8 bits; and uniformly quantize activa-
tions as well as pooling layers per-layer into 8-bit. We perform all experiments
in Pytorch 1.2.0 [44].

5.1 Ablation Study on ImageNet

In this section, we conduct experiments on the ImageNet classification challenge
[51] and investigate the effectiveness of our proposed PWLQ method. We evalu-
ate the top-1 accuracy performance on the validation dataset for three popular
network architectures: Inception-v3 [54], ResNet-50 [19] and MobileNet-v2 [52].
We use torchvision8 0.4.0 and its pre-trained models for our experiments.

5 This extra storage cost can be further compressed by exploiting the non-uniform
distribution of values [1,43].

6 Applying PWLQ on both weights and activations is discussed in the supplementary
material.

7 We test with the top-k median and percentile-based [33] approaches and use the
top-10 median method for better robustness of low-bit quantization. We refer to the
supplementary material for details.

8 https://pytorch.org/docs/stable/torchvision

https://pytorch.org/docs/stable/torchvision

10 J. Fang et al.

Optimal Breakpoint Selection. In order to apply PWLQ, we first need
to find the optimal breakpoints to divide the quantization ranges into non-
overlapping regions. As stated in Section 3.3, we assume weights and activations
satisfy Gaussian or Laplacian distributions, then we find the optimal breakpoints
by solving the optimization problem (6).

For the case of one optimal breakpoint p∗, we can iteratively find it by gra-
dient descent since (6) is convex; or using a simple and fast approximation of
p∗/m = ln(0.8614m + 0.6079) for normalized Gaussian. Experimental results
show that the approximation obtains almost the same accuracy compared to
gradient descent, while also being considerably faster. Therefore, unless stated
otherwise we use this approximated version of the optimal breakpoint for the
rest of this paper. We report results with other assumptions such as Laplacian
distributions in the supplementary material.

Other works treat the data distributions differently: BiScaled-DNN [26] pro-
poses a ratio heuristic to divide the data into two overlapping regions; and
V-Quant [43] introduces a value-aware method to split them into two non-
overlapping regions, e.g, 2% (98%) of large (small) values located in the tail
(center) region, respectively. Our implementation results in Figure 2 (left) show
that PWLQ with non-overlapping regions achieves a superior performance on
low-bit quantization compared to BiScaled-DNN improved version9 (denoted
by BSD+) and V-Quant, especially with a large margin on 4-bit MobileNet-v2.
Non-overlapping approach shortens the quantization ranges (∆ in (2)) for the tail
regions by 1.25× to 2×. Therefore, both our choices of non-overlapping regions
and optimal breakpoints have a significant impact on reducing the quantization
error and improving the performance of low-bit quantized models.

Fig. 2. Left: the impact of non-overlapping and breakpoint options on the top-1 accu-
racy for 4-bit post-training quantization models. Right: the robustness of the optimal
breakpoint found by solving (6) with some perturbation levels from 5% to 30% for 4-bit
Inception-v3 (full-precision accuracy 77.49%). Each perturbation level is run with 100
random samples, the star and the associated number indicate the median accuracy, the
bold bar displays the accuracy range between the 25th and 75th percentiles

9 We improved the original BiScaled-DNN [26] by applying affine-based uniform
scheme (1) on each region and per-channel quantization.

Post-Training Piecewise Linear Quantization for Deep Neural Networks 11

In Figure 2 (right), we explore the robustness of the optimal breakpoint
found by minimizing the quantization error in (6) for 4-bit Inception-v3. We
randomly add perturbation levels from 5% to 30% on each optimal breakpoint
p∗ per-channel per-layer, e.g., the new breakpoint p̂∗ = 0.95p∗ or 1.05p∗ for 5%
of perturbation. We run 100 random samples for each perturbation level to gen-
erate the results. Overall, model performance decreases as the perturbation level
increases, which indicates that our selection of the optimal breakpoint is crucial
for accurate post-training quantization. Note that when 5% of perturbation is
added to our selection of optimal breakpoints, more than half of the experiments
produce a lower accuracy, and can be as low as 74.05%, which is a 1.67% drop
from the zero-perturbation baseline.

Multiple Breakpoints. In this section, we discuss the trade-off of multiple
breakpoints on model accuracy and hardware overhead. Theoretically, as the
number of breakpoints on weights increases, the associated hardware cost lin-
early rises. Meanwhile, the number of non-overlapping regions and the associated
total number of quantization levels grows, indicating a stronger representational
power. Numerically, the extension of finding the optimal multi-breakpoints is
straightforward by calculating the same quantization error (4), and solving the
same optimization problem (6) with gradient descent in an enlarged search space.
Table 1 shows the accuracy performance up to three breakpoints. In general, us-
ing more breakpoints consistently improves model accuracy under the growing
support of customized hardware. We suggest using one breakpoint to maintain
the simplicity of the inference algorithm and its hardware implementation. Thus
we only report PWLQ with one breakpoint for the rest of this paper.

Table 1. Top-1 accuracy (%) and requirement of hardware accumulators for PWLQ
with multiple breakpoints on weights

Number of

Breakpoints

Hardware

Accumulators

Inception-v3 (77.49) ResNet-50 (76.13) MobileNet-v2 (71.88)

5-bit 4-bit 3-bit 5-bit 4-bit 3-bit 5-bit 4-bit 3-bit

One Three 77.28 75.72 61.76 75.62 74.28 67.30 69.05 54.34 16.77

Two Five 77.31 76.73 71.40 75.94 75.24 73.27 70.01 65.74 36.44

Three Seven 77.46 77.00 74.07 76.06 75.77 73.84 70.43 67.71 55.17

PWLQ and Uniform Quantization. In Section 3.3, we analytically and nu-
merically demonstrate that our method, PWLQ, obtains a smaller quantization
error than uniform quantization. We compare these two schemes in Table 2. In
this table, weights are quantized per-channel with the same computational bit-
width b = 4, 6, 8; activations are uniformly quantized per-layer into 8-bit. Gener-
ally, PWLQ achieves higher accuracy than uniform quantization except for one
minor case of 8-bit Inception-v3. When the bit-width is large enough (b = 8), the

12 J. Fang et al.

quantization error is small and both uniform quantization and PWLQ provide
good accuracy. However, when the bit-width is decreased to 4, PWLQ obtains
a notably higher accuracy, i.e., PWLQ attains 75.72% but uniform quantization
only attains 44.28% for 4-bit Inception-v3. These results show that PWLQ is
a more powerful representation scheme in terms of both quantization error and
model accuracy, making it a viable alternative for uniform quantization in low
bit-width cases. Moreover, PWLQ applies uniform quantization on each piece,
hence it features a simple computational scheme and can benefit from any tricks
that improve uniform quantization performance such as bias correction.

Table 2. Comparison results of top-1 accuracy (%) for uniform and PWLQ schemes
on weights. b+BC: b-bit with bias correction for bit-width b = 4, 6, 8. Each bold value
indicates the best result from different methods for specified bit-width and network

Network Weight Bit-width 8-bit 8+BC 6-bit 6+BC 4-bit 4+BC

Inception-v3

(77.49)

Uniform 77.53 77.52 76.87 77.24 44.28 62.46

PWLQ (Ours) 77.52 77.53 77.42 77.48 75.72 76.45

ResNet-50

(76.13)

Uniform 76.10 76.14 75.61 75.92 65.48 72.45

PWLQ (Ours) 76.10 76.10 76.03 76.08 74.28 75.62

MobileNet-v2

(71.88)

Uniform 71.35 71.58 67.76 70.81 11.37 41.80

PWLQ (Ours) 71.59 71.73 70.82 71.58 54.34 69.22

Bias Correction. An inherent bias in the mean and variance of the tensor
values was observed after the quantization process and the benefits of correcting
this bias term have been demonstrated in [2,13,42]. This bias can be compensated
by folding certain correction terms into the scale and the offset [2]. We adopt
this idea into our PWLQ method and show the results in Table 2 (columns with
“+BC”). Applying bias correction further improves the performance of low-bit
quantized models. It allows 6-bit post-training quantization with piecewise linear
scheme for all three networks to achieve near full-precision accuracy within a
drop of 0.30%; 4-bit MobileNet-v2, also without retraining, achieves an accuracy
of 69.22%. In general, a combination of low-bit PWLQ and bias correction on
weights achieves minimal loss of full-precision model performance.

5.2 Comparison to Existing Approaches

In this section, we compare our PWLQ method with other existing approaches,
by quoting the reported performance scores from the original literature.

An inclusive evaluation of clipping techniques along with outlier channel
splitting (OCS) was presented in [62]. To fairly compare with these methods,

Post-Training Piecewise Linear Quantization for Deep Neural Networks 13

we adopt the same setup of applying per-layer quantization on weights and
without quantizing the first layer. In Table 3, we show that our PWLQ (no bias
correction) outperforms the best results of clipping method combined with OCS.
Besides, OCS needs to change the network architecture, in contrast to PWLQ.

Table 3. Comparison results of per-layer PWLQ and best clipping with OCS [62]
on top-1 accuracy (%) loss. W/A indicate the bit-width on weights/activations. The
accuracy difference values are measured from the full-precision (32/32) result

Network W/A 32/32 8/8 7/8 6/8 5/8 4/8

Inception-v3
OCS + Best Clip 75.9 -0.6 (75.3) -1.2 (74.7) -3.4 (72.5) -13.0 (62.9) -71.1 (4.8)

PWLQ (Ours) 77.5 +0.1 (77.6) -0.1 (77.4) -0.3 (77.2) -2.0 (75.5) -12.8 (64.7)

ResNet-50
OCS + Best Clip 76.1 -0.4 (75.7) -0.5 (75.6) -0.9 (75.2) -2.7 (73.4) -6.8 (69.3)

PWLQ (Ours) 76.1 -0.0 (76.1) -0.1 (76.0) -0.2 (75.9) -0.7 (75.5) -2.4 (73.7)

In Table 4, we provide a comprehensive comparison result of our PWLQ to
other existing quantization methods. Here we apply per-layer quantization on
activations and per-channel PWLQ on weights with bias correction. Except for
the 4/4 case where we apply 4-bit PWLQ on activations, we always apply 8-
bit uniform quantization on activations for the rest of the 8/8 and 4/8 cases.
Under the same bit-width of computational cost among all the methods, our
PWLQ combined with bias correction achieves the state-of-the-art results on all
cases and it outperforms all other methods with a large margin on 4/8 and 4/4
cases. We emphasize that our PWLQ method is simple and efficient. It achieves
the desired accuracy at the small cost of a few more accumulations per MAC
unit and a minor overhead of storage. More importantly, it is orthogonal and
applicable to other methods.

Table 4. Comparison of our PWLQ and other methods on top-1 accuracy (%) loss.
PWLQ: weights are piecewise linearly quantized per-channel with bias correction, ac-
tivations are quantized per-layer

Network W/A PWLQ (Ours) QWP [28] ACIQ [2] LBQ [7] SSBD [39] QRD [31] UNIQ [3] DFQ [42]

Inception-v3

(Top1%)

32/32 77.49 78.00 77.20 76.23 77.90 77.97 - -

8/8 +0.04 (77.53) 0.00 (78.00) - - -0.03 (77.87) -0.09 (77.88) - -

4/8 -1.04 (76.45) -7.00 (71.00) -9.00 (68.20) -1.44 (74.79) - - - -

4/4 -2.58 (74.91) - -10.80 (66.40) -4.62 (71.61) - - - -

ResNet-50

(Top1%)

32/32 76.13 75.20 76.10 76.01 75.20 - 76.02 -

8/8 -0.03 (76.10) -0.10 (75.10) - - -0.25 (74.95) - - -

4/8 -0.51 (75.62) -21.20 (54.00) -0.80 (75.30) -1.03 (74.98) - - -2.56 (73.37) -

4/4 -1.28 (74.85) - -2.30 (73.80) -3.41 (72.60) - - - -

MobileNet-v2

(Top1%)

32/32 71.88 71.90 - - 71.80 71.23 - 71.72

8/8 -0.15 (71.73) -2.10 (69.80) - - -0.61 (71.19) -1.68 (69.55) - -0.53 (71.19)

4/8 -2.68 (69.22) -71.80 (0.10) - - - - - -

14 J. Fang et al.

5.3 Other Applications

To show the robustness and applicability of our proposed approach, we extend
the PWLQ idea to other computer vision tasks including semantic segmentation
on DeepLab-v3+ [5] and object detection on SSD [36].

Semantic Segmentation. In this section, we apply PWLQ on DeepLab-v3+
with a backbone of MobileNet-v2. The performance is evaluated using mean
intersection over union (mIoU) on the Pascal VOC segmentation challenge [11].

In our experiments, we utilize the implementation of public Pytorch repos-
itory10 to evaluate the performance. After folding batch normalization of the
pre-trained model into the weights, we found that several layers of weight ranges
become very large (e.g., [-54.4, 64.4]). Considering the fact that quantization
range [27], especially in the early layers [7], has a profound impact on the per-
formance of quantized models, we fix the configuration of some early layers in
the backbone. More precisely, we apply 8-bit PWLQ on three depth-wise convo-
lution layers with large ranges in all configurations shown in Table 5. Note that
the MAC operations of these three layers are negligible in practice since they
only contribute 0.2% of the entire network computation, but it is remarkably
beneficial to the performance of low-bit quantized models.

Table 5. Uniform quantization and PWLQ on DeepLab-v3+. Weights are quantized
per-channel with bias correction, activations are uniformly quantized per-layer

Network W/A 32/32 8/8 6/8 4/8

DeepLab-v3+

(mIoU%)

Uniform 70.81 -0.65 (70.16) -1.54 (69.27) -20.76 (50.05)

PWLQ (Ours) 70.81 -0.12 (70.69) -0.42 (70.39) -3.15 (67.66)

DFQ [42] 72.94 -0.61 (72.33) - -

As noticed in classification, low-bit uniform quantization causes significant
accuracy drop from the full-precision models. In Table 5, applying the piece-
wise linear method combined with bias correction, the 6-bit PWLQ model on
weights even outperforms 8-bit DFQ [42], which attains 0.42% degradation of
the pre-trained model. Moreover, the 4-bit PWLQ significantly improves the
mIoU by 17.61% from the 4-bit uniform quantized model, indicating the poten-
tial of low-bit post-training quantization via piecewise linear approximation for
the semantic segmentation task.

Object Detection. We also test the proposed PWLQ for the object detection
task. The experiments are performed on the public Pytorch implementation11

10 https://github.com/jfzhang95/pytorch-deeplab-xception
11 https://github.com/qfgaohao/pytorch-ssd

https://github.com/jfzhang95/pytorch-deeplab-xception
https://github.com/qfgaohao/pytorch-ssd

Post-Training Piecewise Linear Quantization for Deep Neural Networks 15

of SSD-Lite version [36] with a backbone of MobileNet-v2. The performance
is evaluated with mean average precision (mAP) on the Pascal VOC object
detection challenge [11].

Table 6 compares the results of the mAP score of quantized models using
the uniform and PWLQ schemes. Similar to image classification and seman-
tic segmentation tasks, even with bias correction and per-channel quantization
enhancements, 4-bit uniform scheme causes 3.91% performance drop from the
full-precision model, while 4-bit PWLQ with these two enhancements is able to
remove this notable gap down to 0.38%.

Table 6. Uniform quantization and PWLQ of SSD-Lite version. Weights are quantized
per-channel with bias correction, activations are uniformly quantized per-layer

Network W/A 32/32 8/8 6/8 4/8

SSD-Lite

(mAP%)

Uniform 68.70 -0.20 (68.50) -0.43 (68.37) -3.91 (64.79)

PWLQ (Ours) 68.70 -0.19 (68.51) -0.28 (68.42) -0.38 (68.32)

DFQ [42] 68.47 -0.56 (67.91) - -

6 Conclusion

In this work, we present a piecewise linear quantization scheme for accurate
post-training quantization of deep neural networks. It breaks the bell-shaped
distributed values into non-overlapping regions per tensor where each region is
assigned an equal number of quantization levels. We further analyze the resulting
quantization error as well as the hardware requirements. We show that our ap-
proach achieves state-of-the-art low-bit post-training quantization performance
on image classification, semantic segmentation, and object detection tasks un-
der the same computational cost. It indicates its potential of efficient and rapid
deployment of computer vision applications on resource-limited devices.

Acknowledgements. We would like to thank Hui Chen and Jong Hoon Shin
for valuable discussions.

16 J. Fang et al.

References

1. Bakunas-Milanowski, D., Rego, V., Sang, J., Chansu, Y.: Efficient algorithms for
stream compaction on gpus. International Journal of Networking and Computing
pp. 208–226 (2017)

2. Banner, R., Nahshan, Y., Hoffer, E., Soudry, D.: Post training 4-bit quantization
of convolution networks for rapid-deployment. CoRR, abs/1810.05723 (2018)

3. Baskin, C., Schwartz, E., Zheltonozhskii, E., Liss, N., Giryes, R., Bronstein, A.M.,
Mendelson, A.: Uniq: Uniform noise injection for non-uniform quantization of neu-
ral networks. arXiv preprint arXiv:1804.10969 (2018)

4. Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-
wave gaussian quantization. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 5918–5926 (2017)

5. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: Proceedings of
the European conference on computer vision (ECCV). pp. 801–818 (2018)

6. Choi, J., Wang, Z., Venkataramani, S., Chuang, P.I.J., Srinivasan, V., Gopalakr-
ishnan, K.: Pact: Parameterized clipping activation for quantized neural networks.
arXiv preprint arXiv:1805.06085 (2018)

7. Choukroun, Y., Kravchik, E., Kisilev, P.: Low-bit quantization of neural networks
for efficient inference. arXiv preprint arXiv:1902.06822 (2019)

8. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep neural net-
works with binary weights during propagations. In: Advances in neural information
processing systems. pp. 3123–3131 (2015)

9. Dhillon, G.S., Azizzadenesheli, K., Lipton, Z.C., Bernstein, J., Kossaifi, J., Khanna,
A., Anandkumar, A.: Stochastic activation pruning for robust adversarial defense.
arXiv preprint arXiv:1803.01442 (2018)

10. Dong, X., Huang, J., Yang, Y., Yan, S.: More is less: A more complicated net-
work with less inference complexity. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 5840–5848 (2017)

11. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. International journal of computer vision pp.
303–338 (2010)

12. Faraone, J., Fraser, N., Blott, M., Leong, P.H.: Syq: Learning symmetric quanti-
zation for efficient deep neural networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 4300–4309 (2018)

13. Finkelstein, A., Almog, U., Grobman, M.: Fighting quantization bias with bias.
arXiv preprint arXiv:1906.03193 (2019)

14. Georgiadis, G.: Accelerating convolutional neural networks via activation map com-
pression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 7085–7095 (2019)

15. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks
using vector quantization. arXiv preprint arXiv:1412.6115 (2014)

16. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: International Conference on Machine Learning. pp.
1737–1746 (2015)

17. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

Post-Training Piecewise Linear Quantization for Deep Neural Networks 17

18. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision. pp. 2961–2969 (2017)

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

20. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural net-
works. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 1389–1397 (2017)

21. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

22. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

23. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132–7141 (2018)

24. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4700–4708 (2017)

25. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2704–2713 (2018)

26. Jain, S., Venkataramani, S., Srinivasan, V., Choi, J., Gopalakrishnan, K., Chang,
L.: Biscaled-dnn: Quantizing long-tailed datastructures with two scale factors for
deep neural networks. In: 2019 56th ACM/IEEE Design Automation Conference
(DAC). pp. 1–6. IEEE (2019)

27. Jung, S., Son, C., Lee, S., Son, J., Han, J.J., Kwak, Y., Hwang, S.J., Choi, C.:
Learning to quantize deep networks by optimizing quantization intervals with task
loss. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4350–4359 (2019)

28. Krishnamoorthi, R.: Quantizing deep convolutional networks for efficient inference:
A whitepaper. arXiv preprint arXiv:1806.08342 (2018)

29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

30. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-
resolution with deep laplacian pyramid networks. IEEE transactions on pattern
analysis and machine intelligence (2018)

31. Lee, J.H., Ha, S., Choi, S., Lee, W.J., Lee, S.: Quantization for rapid deployment
of deep neural networks. arXiv preprint arXiv:1810.05488 (2018)

32. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710 (2016)

33. Li, R., Wang, Y., Liang, F., Qin, H., Yan, J., Fan, R.: Fully quantized network for
object detection. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 2810–2819 (2019)

34. Li, Y., Dong, X., Wang, W.: Additive powers-of-two quantization: An efficient non-
uniform discretization for neural networks. In: International Conference on Learn-
ing Representations (2020), https://openreview.net/forum?id=BkgXT24tDS

35. Lin, D., Talathi, S., Annapureddy, S.: Fixed point quantization of deep convolu-
tional networks. In: International Conference on Machine Learning. pp. 2849–2858
(2016)

https://openreview.net/forum?id=BkgXT24tDS

18 J. Fang et al.

36. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
Ssd: Single shot multibox detector. In: European conference on computer vision.
pp. 21–37. Springer (2016)

37. Luo, J.H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural
network compression. In: Proceedings of the IEEE international conference on
computer vision. pp. 5058–5066 (2017)

38. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: Proceedings of the European Conference on
Computer Vision (ECCV). pp. 116–131 (2018)

39. Meller, E., Finkelstein, A., Almog, U., Grobman, M.: Same, same but different-
recovering neural network quantization error through weight factorization. arXiv
preprint arXiv:1902.01917 (2019)

40. Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg,
B., Houston, M., Kuchaiev, O., Venkatesh, G., et al.: Mixed precision training.
arXiv preprint arXiv:1710.03740 (2017)

41. Miyashita, D., Lee, E.H., Murmann, B.: Convolutional neural networks using log-
arithmic data representation. arXiv preprint arXiv:1603.01025 (2016)

42. Nagel, M., van Baalen, M., Blankevoort, T., Welling, M.: Data-free quantization
through weight equalization and bias correction. arXiv preprint arXiv:1906.04721
(2019)

43. Park, E., Yoo, S., Vajda, P.: Value-aware quantization for training and inference of
neural networks. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp. 580–595 (2018)

44. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. 31st
Conference on Neural Information Processing Systems (2017)

45. Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quan-
tization. arXiv preprint arXiv:1802.05668 (2018)

46. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In: European Conference on
Computer Vision. pp. 525–542. Springer (2016)

47. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7263–7271 (2017)

48. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

49. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

50. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. nature pp. 533–536 (1986)

51. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision (2015)

52. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 4510–4520 (2018)

53. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

Post-Training Piecewise Linear Quantization for Deep Neural Networks 19

54. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2818–2826 (2016)

55. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946 (2019)

56. Ullrich, K., Meeds, E., Welling, M.: Soft weight-sharing for neural network com-
pression. arXiv preprint arXiv:1702.04008 (2017)

57. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 4820–4828 (2016)

58. You, Y.: Audio Coding: Theory and Applications. Springer Science & Business
Media (2010)

59. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint
arXiv:1605.07146 (2016)

60. Zhang, D., Yang, J., Ye, D., Hua, G.: Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In: Proceedings of the European Con-
ference on Computer Vision (ECCV). pp. 365–382 (2018)

61. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 6848–6856 (2018)

62. Zhao, R., Hu, Y., Dotzel, J., De Sa, C., Zhang, Z.: Improving neural network
quantization without retraining using outlier channel splitting. In: International
Conference on Machine Learning. pp. 7543–7552 (2019)

63. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization:
Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044
(2017)

64. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160 (2016)

65. Zhou, Y., Moosavi-Dezfooli, S.M., Cheung, N.M., Frossard, P.: Adaptive quanti-
zation for deep neural network. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

66. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. arXiv
preprint arXiv:1612.01064 (2016)

	Post-Training Piecewise Linear Quantization for Deep Neural Networks

