Skip to main content

CoTeRe-Net: Discovering Collaborative Ternary Relations in Videos

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Modeling relations is crucial to understand videos for action and behavior recognition. Current relation models mainly reason about relations of invisibly implicit cues, while important relations of visually explicit cues are rarely considered, and the collaboration between them is usually ignored. In this paper, we propose a novel relation model that discovers relations of both implicit and explicit cues as well as their collaboration in videos. Our model concerns Collaborative Ternary Relations (CoTeRe), where the ternary relation involves channel (C, for implicit), temporal (T, for implicit), and spatial (S, for explicit) relation (R). We devise a flexible and effective CTSR module to collaborate ternary relations for 3D-CNNs, and then construct CoTeRe-Nets for action recognition. Extensive experiments on both ablation study and performance evaluation demonstrate that our CTSR module is significantly effective with approximate \(3\%\) gains and our CoTeRe-Nets outperform state-of-the-art approaches on three popular benchmarks. Boosts analysis and relations visualization also validate that relations of both implicit and explicit cues are discovered with efficacy by our method. Our code is available at https://github.com/zhenglab/cotere-net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battaglia, P., Pascanu, R., Lai, M., Rezende, D.J., et al.: Interaction networks for learning about objects, relations and physics. In: NIPS, pp. 4502–4510 (2016)

    Google Scholar 

  2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the Kinetics dataset. In: CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  3. Crasto, N., Weinzaepfel, P., Alahari, K., Schmid, C.: MARS: motion-augmented RGB stream for action recognition. In: CVPR, pp. 7882–7891 (2019)

    Google Scholar 

  4. Diba, A., et al.: Spatio-temporal channel correlation networks for action classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 299–315. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_18

    Chapter  Google Scholar 

  5. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV, pp. 6202–6211 (2019)

    Google Scholar 

  6. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: CVPR, pp. 1933–1941 (2016)

    Google Scholar 

  7. Ghadiyaram, D., Tran, D., Mahajan, D.: Large-scale weakly-supervised pre-training for video action recognition. In: CVPR, pp. 12046–12055 (2019)

    Google Scholar 

  8. Gkioxari, G., Girshick, R., Dollár, P., He, K.: Detecting and recognizing human-object interactions. In: CVPR, pp. 8359–8367 (2018)

    Google Scholar 

  9. Gkioxari, G., Girshick, R., Malik, J.: Actions and attributes from wholes and parts. In: ICCV, pp. 2470–2478 (2015)

    Google Scholar 

  10. Goyal, R., et al.: The “something something" video database for learning and evaluating visual common sense. In: ICCV, pp. 5842–5850 (2017)

    Google Scholar 

  11. Gupta, A., Kembhavi, A., Davis, L.S.: Observing human-object interactions: using spatial and functional compatibility for recognition. IEEE TPAMI 31(10), 1775–1789 (2009)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: CVPR, pp. 3588–3597 (2018)

    Google Scholar 

  14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  15. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE TPAMI 35(1), 221–231 (2013)

    Article  Google Scholar 

  16. Jiang, B., Wang, M., Gan, W., Wu, W., Yan, J.: STM: spatiotemporal and motion encoding for action recognition. In: ICCV, pp. 2000–2008 (2019)

    Google Scholar 

  17. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., Girshick, R.: CLEVR: a diagnostic dataset for compositional language and elementary visual reasoning. In: CVPR, pp. 2901–2910 (2017)

    Google Scholar 

  18. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR, pp. 1725–1732 (2014)

    Google Scholar 

  19. Kay, W., et al.: The Kinetics human action video dataset. arXiv preprint arXiv:1409.1556 (2017)

  20. Kemp, C., Tenenbaum, J.B.: The discovery of structural form. PNAS 105(31), 10687–10692 (2008)

    Article  Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  22. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV, pp. 2556–2563 (2011)

    Google Scholar 

  23. Kumar, M.P., Koller, D.: Efficiently selecting regions for scene understanding. In: CVPR, pp. 3217–3224 (2010)

    Google Scholar 

  24. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  25. Li, L., Gan, Z., Cheng, Y., Liu, J.: Relation-aware graph attention network for visual question answering. In: ICCV, pp. 10313–10322 (2019)

    Google Scholar 

  26. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: ICCV, pp. 7083–7093 (2019)

    Google Scholar 

  27. Liu, X., Lee, J.Y., Jin, H.: Learning video representations from correspondence proposals. In: CVPR, pp. 4273–4281 (2019)

    Google Scholar 

  28. Long, X., Gan, C., de Melo, G., Wu, J., Liu, X., Wen, S.: Attention clusters: purely attention based local feature integration for video classification. In: CVPR, pp. 7834–7843 (2018)

    Google Scholar 

  29. Luo, C., Yuille, A.L.: Grouped spatial-temporal aggregation for efficient action recognition. In: ICCV, pp. 5512–5521 (2019)

    Google Scholar 

  30. Ma, C.Y., Kadav, A., Melvin, I., Kira, Z., AlRegib, G., Graf, H.P.: Attend and interact: Higher-order object interactions for video understanding. In: CVPR, pp. 6790–6800 (2018)

    Google Scholar 

  31. Martinez, B., Modolo, D., Xiong, Y., Tighe, J.: Action recognition with spatial-temporal discriminative filter banks. In: ICCV, pp. 5482–5491 (2019)

    Google Scholar 

  32. Ni, B., Yang, X., Gao, S.: Progressively parsing interactional objects for fine grained action detection. In: CVPR, pp. 1020–1028 (2016)

    Google Scholar 

  33. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with Pseudo-3D residual networks. In: ICCV, pp. 5533–5541 (2017)

    Google Scholar 

  34. Qiu, Z., Yao, T., Ngo, C.W., Tian, X., Mei, T.: Learning spatio-temporal representation with local and global diffusion. In: CVPR, pp. 12056–12065 (2019)

    Google Scholar 

  35. Russell, B.C., Freeman, W.T., Efros, A.A., Sivic, J., Zisserman, A.: Using multiple segmentations to discover objects and their extent in image collections. In: CVPR, vol. 2, pp. 1605–1614 (2006)

    Google Scholar 

  36. Santoro, A., et al.: A simple neural network module for relational reasoning. In: NIPS, pp. 4967–4976 (2017)

    Google Scholar 

  37. Shou, Z., et al.: DMC-Net: generating discriminative motion cues for fast compressed video action recognition. In: CVPR, pp. 1268–1277 (2019)

    Google Scholar 

  38. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS, pp. 568–576 (2014)

    Google Scholar 

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  40. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  41. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: AAAI, pp. 4278–4284 (2017)

    Google Scholar 

  42. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  43. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  44. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp. 4489–4497 (2015)

    Google Scholar 

  45. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: ICCV, pp. 5552–5561 (2019)

    Google Scholar 

  46. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: CVPR, pp. 6450–6459 (2018)

    Google Scholar 

  47. Wang, F., et al.: Residual attention network for image classification. In: CVPR, pp. 3156–3164 (2017)

    Google Scholar 

  48. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: CVPR, pp. 3169–3676 (2011)

    Google Scholar 

  49. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV, pp. 3551–3558 (2013)

    Google Scholar 

  50. Wang, L., Li, W., Li, W., Van Gool, L.: Appearance-and-relation networks for video classification. In: CVPR, pp. 1430–1439 (2018)

    Google Scholar 

  51. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  52. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  53. Wang, X., Gupta, A.: Videos as space-time region graphs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 413–431. Springer, Videos as space-time region graphs (2018). https://doi.org/10.1007/978-3-030-01228-1_25

    Chapter  Google Scholar 

  54. Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu, R., Tacchetti, A.: Visual interaction networks: learning a physics simulator from video. In: NIPS, pp. 4539–4547 (2017)

    Google Scholar 

  55. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  56. Xiao, T., Fan, Q., Gutfreund, D., Monfort, M., Oliva, A., Zhou, B.: Reasoning about human-object interactions through dual attention networks. In: ICCV, pp. 3919–3928 (2019)

    Google Scholar 

  57. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  58. Yao, B., Fei-Fei, L.: Modeling mutual context of object and human pose in human-object interaction activities. In: CVPR, pp. 17–24 (2010)

    Google Scholar 

  59. Yao, J., Fidler, S., Urtasun, R.: Describing the scene as a whole: joint object detection. In: CVPR. Citeseer (2012)

    Google Scholar 

  60. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: CVPR, pp. 4694–4702 (2015)

    Google Scholar 

  61. Zhao, Y., Xiong, Y., Lin, D.: Recognize actions by disentangling components of dynamics. In: CVPR, pp. 6566–6575 (2018)

    Google Scholar 

  62. Zhao, Y., Xiong, Y., Lin, D.: Trajectory convolution for action recognition. In: NeurIPS, pp. 2208–2219 (2018)

    Google Scholar 

  63. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 831–846. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_49

    Chapter  Google Scholar 

  64. Zolfaghari, M., Singh, K., Brox, T.: ECO: efficient convolutional network for online video understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 713–730. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_43

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under grant numbers 61771440 and 41776113.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyong Zheng or Bing Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Z. et al. (2020). CoTeRe-Net: Discovering Collaborative Ternary Relations in Videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58539-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58538-9

  • Online ISBN: 978-3-030-58539-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics