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o Fig. 1: Our approach enables control over the style of a scene and its objects via high-

| level attributes or textual descriptions. It also allows for image manipulation through
] the mask, including moving, deleting, or adding object instances. The decomposition of
O) the background and foreground (top-right corner) facilitates local changes in a scene.

Abstract. We propose a weakly-supervised approach for conditional
image generation of complex scenes where a user has fine control over
objects appearing in the scene. We exploit sparse semantic maps to con-
trol object shapes and classes, as well as textual descriptions or attributes
to control both local and global style. In order to condition our model on
textual descriptions, we introduce a semantic attention module whose
computational cost is independent of the image resolution. To further
augment the controllability of the scene, we propose a two-step gener-
ation scheme that decomposes background and foreground. The label
maps used to train our model are produced by a large-vocabulary object
detector, which enables access to unlabeled data and provides structured
instance information. In such a setting, we report better FID scores com-
pared to fully-supervised settings where the model is trained on ground-
truth semantic maps. We also showcase the ability of our model to ma-
nipulate a scene on complex datasets such as COCO and Visual Genome.
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1 Introduction

Deep generative models such as VAEs [23] and GANs [9] have made it possible to
learn complex distributions over various types of data, including images and text.
For images, recent technical advances [1,13,20,28,29,19] have enabled GANs to
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produce realistically-looking images for a large number of classes. However, these
models often do not provide high-level control over image characteristics such as
appearance, shape, texture, or color, and they fail to accurately model multiple
(or compound) objects in a scene, thus limiting their practical applications. A
related line of research aims at disentangling factors of variation [21]. While these
approaches can produce images with varied styles by injecting noise at different
levels, the style factors are learned without any oversight, leaving the user with
a loose handle on the generation process. Furthermore, their applicability has
only been demonstrated for single-domain images (e.g. faces, cars, or birds).
Some conditional approaches allow users to control the style of an image using
either attributes [12,46] or natural language [15,50,51], but again, these methods
only show compelling results on single-domain datasets.

One key aspect in generative modeling is the amount of required semantic in-
formation: i) weak conditioning (e.g. a sentence that describes a scene) makes the
task underconstrained and harder to learn, potentially resulting in incoherent im-
ages on complex datasets. On the other hand, ii) rich semantic information (e.g.
full segmentation masks) yields the best generative quality, but requires more
effort from an artist or annotator. The applications of such richly-conditioned
models are numerous, including art, animation, image manipulation, and realistic
texturing of video games. Existing works in this category [4,17,31,32,44] typi-
cally require hand-labeled segmentation masks with per-pixel class annotations.
Unfortunately, this is not flexible enough for downstream applications such as
image manipulation, where the artist is faced with the burden of modifying the
semantic mask coherently. Common transformations such as moving, deleting,
or replacing an object require instance information (usually not available) and a
strategy for infilling the background. Moreover, these models present little-to-no
high-level control over the style of an image and its objects.

Our work combines the merits of both weak conditioning and strong seman-
tic information, by relying on both mask-based generation — using a variant we
call sparse masks — and text-based generation — which can be used to control
the style of the objects contained in the scene as well as its global aspects. Fig. 1
conceptualizes our idea. Our approach uses a large-vocabulary object detector to
obtain annotations, which are then used to train a generative model in a weakly-
supervised fashion. The input masks are sparse and retain instance information
— making them easy to manipulate — and can be inferred from images or videos
in-the-wild. We additionally contribute a conditioning scheme for controlling the
style of the scene and its instances, either using high-level attributes or natural
language with an attention mechanism. Unlike prior approaches, our attention
model is applied directly to semantic maps (making it easily interpretable) and
its computational cost does not depend on the image resolution, enabling its use
in high-resolution settings. This conditioning module is general enough to be
plugged into existing architectures. We also tackle another issue of existing gen-
erative models: local changes made to an object (such as moving or deleting) can
affect the scene globally due to the learned correlations between classes. While
these entangled representations improve scene coherence, they do not allow the
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user to modify a local part of a scene without affecting the rest. To this end,
our approach relies on a multi-step generation process where we first generate a
background image and then we generate foreground objects conditioned on the
former. The background can be frozen while manipulating foreground objects.
Finally, we evaluate our approach on COCO [2,5,26] and Visual Genome [25],
and show that our weakly-supervised setting can achieve better FID scores [13]
than fully-supervised counterparts trained on ground-truth masks, and weakly-
supervised counterparts where the model is trained on dense maps obtained from
an off-the-shelf semantic segmentation model, while being more controllable and
scalable to large unlabeled datasets. We show that this holds both in presence
and in absence of style control.
Code is available at https://github.com/dariopavllo/style-semantics.

2 Related work

The recent success of GANs has triggered interest for conditional image synthesis
from categorical labels [1,28,29,49], text [33,45,50,51], semantic maps [17,31,44],
and conditioning images from other domains [17,53].

Image generation from semantic maps. In this setting, a semantic segmen-
tation map is translated into a natural image. Non-adversarial approaches are
typically based on perceptual losses [4,32], whereas GAN architectures are based
on patch-based discriminators [17], progressive growing [20,44], and conditional
batch normalization where the semantic map is fed to the model at different res-
olutions [31]. Similarly to other state-of-the-art methods, our work is also based
on this paradigm. Most approaches are trained on hand-labeled masks (limiting
their application in the wild), but [31] shows one example where the model is
weakly supervised on masks inferred using a semantic segmentation model [3].
Our model is also weakly supervised, but instead of a semantic segmentation
model we use an object detector — which allows us to maintain instance infor-
mation during manipulations, and results in sparse masks. While early work
focused on class semantics, recent methods support some degree of style control.
E.g. [44] trains an instance autoencoder and allows the user to choose a latent
code from among a set of modes, whereas [31] trains a VAE to control the global
style of a generated image by copying the style of a guide image. Both these
methods, however, do not provide fine-grained style control (e.g. changing the
color of an object to red). Another recent trend consists in generating images
from structured layouts, which are transformed into semantic maps as an inter-
mediate step to facilitate the task. In this regard, there is work on generation
from bounding-box layouts [14,15,40,52] and scene graphs [18]. Although these
approaches tackle a harder task, they generate low-resolution images and are not
directly relatable to our work, which tackles controllability among other aspects.
Semantic control. Existing approaches do not allow for easy manipulation of
the semantic map because they present no interface for encoding existing images.
In principle, it is possible to train a weakly-supervised model on maps inferred
from a semantic segmentation model, as [31] does for landscapes. However, as
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Fig. 2: Left: when manipulating a ground-truth mask (e.g. deleting one bus), one is
left with the problem of infilling the background which is prone to ambiguities (e.g.
selecting a new class as either road or building). Furthermore, in existing models, local
changes affect the scene globally due to learned correlations. Middle: in the wild,
ground-truth masks are not available (neither are instance maps). One can infer maps
using a semantic segmentation model, but these are often noisy and lack instance
information (in the example above, we observe that the two buses are merged). Right:
our weakly-supervised sparse mask setting, which combines fine-detailed masks with
instance information. The two-step decomposition ensures that changes are localized.

we show in sec. 4.2, the results in this setting are notably worse than fully-
supervised baselines. Furthermore, manipulations are still challenging because
instance information is not available. Since the label masks are dense, even simple
transformations such as deleting or moving an object would create holes in the
semantic map that need to be adjusted by the artist (Fig. 2). Dense masks
also make the task too constrained with respect to background aspects of the
scene (e.g. sky, land, weather), which leaves less room for style control. Semantic
control can also be framed as an unpaired image-to-image translation task [30],
but this requires ground-truth masks for both source and target instances, and
can only translate between two classes.

Text-based generation. Some recent models condition the generative process
on text data. These are often based on autoregressive architectures [34] and
GANs [33,45,50,51]. Learning to generate images from text using GANs is
known to be difficult due to the task being unconstrained. In order to ease the
training process, [50,51] propose a two-stage architecture named StackGAN. To
avoid the instability associated with training a language model jointly with a
GAN, they use a pretrained sentence encoder [24] that encodes a caption into a
fixed-length vector which is then fed to the model. More advanced architectures
such as AttnGAN [45] use an attention mechanism which we discuss in one of
the next paragraphs. These approaches show interesting results on single-domain
datasets (birds, flowers, etc.) but are less effective on complex datasets such as
COCO [206] due to the intrinsic difficulty of generating coherent scenes from text
alone. Some works [19,48] have demonstrated that generative models can benefit
from taking as input multiple diverse textual descriptions per image. Finally, we
are not aware of any prior work that conditions the generative process on both
text and semantic maps (our setting).
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Multi-step generation. Approaches such as [38,47] aim at disentangling back-
ground and foreground generation. While fully-unsupervised disentanglement is
provably impossible [27], it is still achievable through some form of inductive
bias — either in the model architecture or in the loss function. While [47] uses
spatial transformers to achieve separation, [38] uses object bounding boxes. Both
methods show compelling results on single-domain datasets that depict a cen-
tered object, but are not directly applicable to more challenging datasets. For
composite scenes, [412] generates foreground objects sequentially to counteract
merging effects. In our work, we are not interested in full disentanglement (i.e. we
do not assume independence between background and foreground), but merely
in separating the two steps while keeping them interpretable. Our model still
exploits correlations among classes to maximize visual quality, and is applied to
datasets with complex scenes. Finally, there has also been work on interactive
generation using dialogue [6, 8, 30].

Attention models in GANs. For unconditional models (or models conditioned
on simple class labels), self-attention GANs [1,19] use visual-visual attention to
improve spatial coherence. For generation from text, [15] employ sentence-visual
attention coupled with an LSTM encoder, but only in the generator. In the
discriminator, the caption is enforced through a supervised loss based on features
extracted from a pretrained Inception [41] network. We introduce a new form
of attention (sentence-semantic) which is applied to semantic maps instead of
convolutional feature maps, and whose computational cost is independent of the
image resolution. It is applied both to the generator and the discriminator, and
on the sentence side it features a transformer-based [43] encoder.

3 Approach

3.1 Framework

Our main interest is conditional image generation of complex scenes where a
user has fine control over the objects appearing in the scene. Prior work has
focused on generating objects from ground-truth masks [17, 31,44, 53] or on
generating outdoor scenes based on simple hand-drawn masks [31]. While the
former approach requires a significant labeling effort, the latter is not directly
suitable for complex datasets such as COCO-Stuff [2], whose images consist of a
large number of classes with complex (hard to draw) shapes. We address these
problems by introducing a new model that is conditioned on sparse masks — to
control object shapes and classes — and on text/attributes to control style and
textures. This gives the ability to a user to produce scenes through a variety of
image manipulations (such as moving, scaling or deleting an instance, adding an
instance from another image or from a database of shapes) as well as style ma-
nipulations controlled using either high-level attributes on individual instances
(e.g. red, green, wet, shiny) or using text that refers to objects as well as global
context (e.g. “a red car at night”). In the latter case, visual-textual correlations
are not explicitly defined but are learned in an unsupervised way.



6 D. Pavllo et al.

Sparse masks. Instead of training a model on precise segmentation masks as
in [17,31,44], we use a mask generated automatically from a large-vocabulary
object detector. Compared to a weakly-supervised setting based on semantic
segmentation, this process introduces less artifacts (see Appendix A.4 in the
supplementary material) and has the benefit of providing information about
each instance (which may not always be available otherwise), including parts of
objects which would require significant manual effort to label in a new dataset. In
general, our set of classes comprises countable objects (person, car, etc.), parts of
objects (light, window, door, etc.), as well as uncountable classes (grass, water,
snow ), which are typically referred to as “stuff” in the COCO terminology [2]. For
the latter category, an object detector can still provide useful sparse information
about the background, while keeping the model autonomous to fill-in the gaps.
We describe the details of our object detection setup in sec. 4.1.

Two-step generation. In the absence of constraints, conditional models learn
class correlations observed in the training data. For instance, while dogs typically
stand on green grass, zebras stand on yellow grass. While this feature is useful for
maximizing scene coherence, it is undesirable when only a local change in the im-
age is wanted. We observed similar global effects on other local transformations,
such as moving an object or changing its attributes, and generally speaking,
small perturbations of the input can result in large variations of the output.
We show a few examples in the Appendix A.4. To tackle this issue, we propose
a variant of our architecture which we call two-step model and which consists
of two concatenated generators (Fig. 3, right). The first step (generator Gy) is
responsible for generating a background image, whereas the second step (gener-
ator G2) generates a foreground image conditioned on the background image.
The definition of what constitutes background and foreground is arbitrary: our
choice is to separate by class: static/uncountable objects (e.g. buildings, roads,
grass, and other surfaces) are assigned to background, and moving/countable ob-
jects are assigned to foreground. Some classes can switch roles depending on the
parent class, e.g. window is background by default, but it becomes foreground if
it is a child of a foreground object such as a car.

When applying a local transformation to a foreground object, the background
can conveniently be frozen to avoid global changes. As a side benefit, this also
results in a lower computational cost to regenerate an image. Unlike work on
disentanglement [38,47] which enforces that the background is independent of
the foreground without necessarily optimizing for visual quality, our goal is to
enforce separation while maximizing qualitative results. In our setting, G is
exposed to both background and foreground objects, but its architecture is de-
signed in a way that foreground information is not rendered, but only used to
induce a bias in the background (see sec. 3.2).

Attributes. Our method allows the user to control the style of individual in-
stances using high-level attributes. These attributes refer to appearance factors
such as colors (e.g. white, black, red), materials (wood, glass), and even modifiers
that are specific to classes (leafless, snowy), but not shape or size, since these
two are determined by the mask. An object can also combine multiple attributes



Controlling Style and Semantics in Weakly-Supervised Image Generation 7

(e.g. black and white) or have none — in this case, the generator would pick a
predefined mode. This setup gives the user a lot of flexibility to manipulate a
scene, since the attributes need not be specified for every object.

Captions. Alternatively, one can consider conditioning style using natural lan-
guage. This has the benefit of being more expressive, and allows the user to
control global aspects of the scene (e.g. time of the day, weather, landscape) in
addition to instance-specific aspects. While this kind of conditioning is harder to
learn than plain attributes, in sec. 3.2 we introduce a new attention model that
shows compelling results without excessively increasing the model complexity.

3.2 Architecture.

We design our conditioning mechanisms to have sufficient generality to be at-
tached to existing conditional generative models. In our experiments, we choose
SPADE [31] as the backbone for our conditioning modules, which to our knowl-
edge represents the state of the art. As in [31], we use a multi-scale discrimina~
tor [44], a perceptual loss in the generator using a pretrained VGG network [37],
and a feature matching loss in the discriminator [44].

One-step model. Since this model (Fig. 3, left) serves as a baseline, we keep
its backbone as close as possible to the reference model of [31]. We propose to
insert the required information about attributes/captions in this architecture by
modifying the input layer and the conditional batch normalization layers of the
generator, which is where semantic information is fed to the model. We name
these S-blocks (short for semantic-style block).

Semantic-style block. For class semantics, the input sparse mark is fed to a
pixel-wise embedding layer to convert categorical labels into 64D embeddings
(including the empty space, which is a special class “no class”). To add style
information, we optionally concatenate another 64D representation to the class
embedding (pixel-wise); we explain how we derive this representation in the next
two paragraphs. The resulting feature map is convolved with a 3 x 3 kernel, passed
through a ReLLU non-linearity and convolved again to produce two feature maps
~ and 3, respectively, the conditional batch normalization gain and bias. The
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Fig. 3: Left: One-step model. Right: two-step model. The background generator G1
takes as input a background mask (processed by S-blocks) and the full mask (processed
by Savg-blocks, where positional information is removed). The foreground generator
takes as input the output of G1 and a foreground mask. Finally, the two outputs are
alpha-blended. For convenience, we do not show attributes/text in this figure.
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Fig. 4: Left: Conditioning block with attributes. Class and attribute embeddings are
concatenated and processed to generate the conditional batch normalization gain and
bias. In the attribute mask, embeddings take the contour of the instance to which they
refer. In G1 of the two-step model, where S and S..g are both used, the embedding
weights are shared. Right: Attention mechanism for conditioning style via text. The
sentence (of length n = 7 including delimiters) is fed to a pretrained attention encoder,
and each token is transformed into a key and a value using two trainable linear layers.
The queries are learned for each class, and the attention yields a set of contextualized
class embeddings that are concatenated to the regular semantic embeddings.

normalization is then computed as y = BN(x) ® (1 +) 4+ 3, where BN(x) is the
parameter-free batch normalization. The last step is related to [31] and other
architectures based on conditional batch normalization. Unlike [31], however, we
do not use 3 x 3 convolutions on one-hot representations in the input layer. This
allows us to scale to a larger number of classes without significantly increasing
the number of parameters. We apply the same principle to the discriminators.
Conditioning on attributes. For attributes, we adopt a bag-of-embeddings
approach where we learn a 64D embedding for each possible attribute, and all
attribute embeddings assigned to an instance are broadcast to the contour of
the instance, summed together, and concatenated to the class embedding. Fig. 4
(left) (S-block) depicts this process. To implement this efficiently, we create a
multi-hot attribute mask (1 in the locations corresponding to the attributes as-
signed to the instance, 0 elsewhere) and feed it through a 1 x 1 convolutional
layer with Ny, input channels and 64 output channels. Attribute embeddings
are shared among classes and are not class-specific. This helps the model gen-
eralize better (e.g. colors such as “white” apply both to vehicles and animals),
and we empirically observe that implausible combinations (e.g. leafless person)
are simply ignored by the generator without side effects.

Conditioning on text. While previous work has used fixed-length vector rep-
resentations [50,51] or one-layer attention models coupled with RNNs [15], the
diversity of our scenes led us to use a more powerful encoder entirely based on
self-attention [13]. We encode the image caption using a pretrained BERT s
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model [7] (110M parameters). It is unreasonable to attach such a model to a
GAN and fine-tune it, both due to excessive memory requirements and due to
potential instabilities. Instead, we freeze the pretrained model and encode the
sentence, extract its hidden representation after the last or second-to-last layer
(we compare these in sec. 4.2), and train a custom multi-head attention layer for
our task. This paradigm, which is also suggested by [7], has proven successful on
a variety of NLP downstream tasks, especially when these involve small datasets
or limited vocabularies. Furthermore, instead of storing the language model in
memory, we simply pre-compute the sentence representations and cache them.

Next, we describe the design of our trainable attention layer (Fig. 4, right).
Our attention mechanism is different from the commonly-used sentence-visual
attention [45], where attention is directly applied to convolutional feature maps
inside the generator. Instead, we propose a form of sentence-semantic attention
which is computationally efficient, interpretable, and modular. It can be con-
catenated to conditioning layers in the same way as we concatenate attributes.
Compared to sentence-visual attention, whose cost is O(nd?) (where n is the
sentence length and d x d is the feature map resolution), our method has a cost
of O(nc) (where ¢ is the number of classes), i.e. it is independent of the im-
age resolution. We construct a set of ¢ queries (i.e. one for each class) of size
h = 64 (where h is the attention head size). We feed the hidden representations
of each token of the sentence to two linear layers, one for the keys and one for
the values. Finally, we compute a scaled dot-product attention [43], which yields
a set of ¢ wvalues. To allow the conditioning block to attend to multiple parts
of the sentence, we use 6 or 12 attention heads (ablations in sec. 4.2), whose
output values are concatenated and further transformed through a linear layer.
This process can be thought of as generating contextualized class embeddings,
i.e. class embeddings customized according to the sentence. For instance, given
a semantic map that depicts a car and the caption “a red car and a person”,
the query corresponding to the visual class car would most likely attend to “red
car”, and the corresponding value will induce a bias in the model to add redness
to the position of the car. Finally, the contextualized class embeddings are applied
to the semantic mask via pixel-wise matrix multiplication with one-hot vectors,
and concatenated to the class embeddings in the same way as attributes. In the
current formulation, this approach is unable to differentiate between instances

of the same class. We propose a possible mitigation in sec. 5.

Two-step model. It consists of two concatenated generators. G; generates the
background, i.e. it models p(zng), whereas G generates the foreground condi-
tioned on the background, i.e. p(zs|2pe). One notable difficulty in training such
a model is that background images are never observed in the training set (we only
observe the final image), therefore we cannot use an intermediate discriminator
for G;. Instead, we use a single, final discriminator and design the architecture in
a way that the gradient of the discriminator (plus auxiliary losses) is redirected
to the correct generator. The convolutional nature of G; would then ensure that
the background image does not contain visible holes. A natural choice is alpha
blending, which is also used in [38,47]. G2 generates an RGB foreground image



10 D. Pavllo et al.

plus a transparency mask (alpha channel), and the final image is obtained by
pasting the foreground onto the background via linear blending:

Tfinal = Thg * (]— - afg) + Lfg * Qg (1)

where Tgnal, The, and x; are RGB images, and ag is a 1-channel image bounded
in [0, 1] by a sigmoid. Readers familiar with highway networks [39] might notice
a similarity to this approach in terms of gradients dynamics. If ag = 1, the
gradient is completely redirected to ¢, while if oz = 0, the gradient is redirected
to ng. This scheme allows us to train both generators in an end-to-end fashion
using a single discriminator, and we can also preserve auxiliary losses (e.g. VGG
loss) which [31] has shown to be very important for convergence. To incentivize
separation between classes as defined in sec. 3.1, we supervise oy, using a binary
cross-entropy loss, and decay this term over time (see sec. 4.1).

G uses the same S-blocks as the ones in the one-step model, but here they
take a foreground mask as input (Fig. 3, right). G1, on the other hand, must ex-
ploit foreground information without rendering it. We therefore devise a further
variation of input conditioning that consists of two branches: (i) the first branch
(S-block) takes a background mask as input and processes it as usual to produce
the batch normalization gain v and bias 8. (ii) the second branch (Sg.g-block,
Fig. 4 left) takes the full mask as input (background plus foreground), processes
it, and applies global average pooling to the feature map to remove information
about localization. This way, foreground information is only used to bias G; and
cannot be rendered at precise spatial locations. After pooling, it outputs Yaug
and Bgug. (iii) The final conditional batch normalization is computed as:

y = BN(X) © (1 +v+ 'Yavg) +8+ fBavg (2)

Finally, the discriminator D takes the full mask as input (background plus fore-
ground). Note that, if G took the full mask as input without information re-
duction, it would render visible “holes” in the output image due to gradients
never reaching the foreground zones of the mask, which is what we are trying to
avoid. The Appendix A.1 provides more details about our architectures, and A.2
shows how G5 can be used to generate one object at a time to fully disentangle
foreground objects from each other (although this is unnecessary in practice).

4 Experiments

For consistency with [31], we always evaluate our model on the COCO-Stuff
validation set [2], but we train on a variety of training sets:

COCO-Stuff (COCO02017) [2,26] contains 118k training images with cap-
tions [5]. We train with and without captions. COCO-Stuff extends COCO2017
with ground-truth semantic maps, but for our purposes the two datasets are
equivalent since we do not exploit ground-truth masks.

Visual Genome (VG) [25] contains 108k images that partially overlap with
COCO (=50%). VG does not have a standard train/test split, therefore we leave
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Fig. 5: Left: the larger set of labels in our sparse masks improves fine details. These
masks are easy to obtain with a semi-supervised object detector, and would otherwise
be too hard to hand-label. Right: sparse masks are also easy to sketch by hand.

out 10% of the dataset to use as a validation set (IDs ending with 9), and use
the rest as a training set from which we remove images that overlap with the
COCO-Stuff validation set. We extract the attributes from the scene graphs.
Visual Genome augmented (VG+) VG augmented with the 123k images
from the COCO unlabeled set. The total size is 217k images after removing exact
duplicates. The goal is to evaluate how well our method scales to large unlabeled
datasets. We train without attributes and without captions.

For all experiments, we evaluate the Frchet Inception Distance (FID) [13]
(precise implementation details of the FID in the Appendix A.3). Furthermore,
we report our results in sec. 4.2 and provide additional qualitative results in A.4.

4.1 Implementation details

Semantic maps. To construct the input semantic maps, we use the semi-
supervised implementation of Mask R-CNN [11,35] proposed by [16]. It is trained
on bounding boxes from Visual Genome (3000 classes) and segmentation masks
from COCO (80 classes), and learns to segment classes for which there are no
ground-truth masks. We discard the least frequent classes, and, since some VG
concepts overlap (e.g. car, vehicle) leading to spurious detections, we merge these
classes and end up with a total of ¢ = 280 classes (plus a special class for “no
class”). We set the threshold of the object detector to 0.2, and further refine the
predictions by running a class-agnostic non-maximum-suppression (NMS) step
on the detections whose mask intersection-over-union (IoU) is greater than 0.7.
We also construct a transformation hierarchy to link children to their parents in
the semantic map (e.g. headlight of a car) so that they can be manipulated as
a whole; further details in the Appendix A.1. We select the 256 most frequent
attributes, manually excluding those that refer to shapes (e.g. short, square).

Training. We generate images at 256x256 and keep our experimental setting
and hyperparameters as close as possible to [31] for a fair comparison. For the
two-step model, we provide supervision on the alpha blending mask and decay
this loss term over time, observing that the model does not re-entangle back-
ground and foreground. This gives G5 some extra flexibility in drawing details
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"a man in a blue coat skiing
Input mask Generated background Input mask Generated background Input mask through a snowy field" ~ [...] in a yellow coat [...]

'1!3 L

Generated final image Change player colors Generated final image Leafless trees, car colors, "amaninaredcoat "amaninablack coat "aman ina white coat

via attributes delete leftmost car walking in the forest" walking in the park" walking on a lake"
m@

Input mask “a city on a sunny day"  "a city on a rainy day" "a city at sunset" "a city on a cloudy day" “a city at night" "a black and white
picture of a city"

Fig. 6: Qualitative results (256 x 256). Top-left and top-middle: two-step generation
with manipulation of attributes and instances. Top-right: manipulating style (both
context and instances) via text. Bottom: manipulating global style via text.

that are not represented by the mask (reflections, shadows). Hyperparameters
and additional training details are specified in the Appendix A.1.

4.2 Results

Quantitative. We show the FID scores for the main experiments in Table 1
(left). While improving FID scores is not the goal of our work, our weakly-
supervised sparse mask baseline (#3) interestingly outperforms both the fully-
supervised baseline on SPADE [31] (#1) and the weakly-supervised baseline
(#2) trained on dense semantic maps. These experiments adopt an identical
architecture and training set, no style input, and differ only in the type of input
mask. For #2 we obtain the semantic maps from DeepLab-v2 [3], a state-of-the-
art semantic segmentation model pretrained on COCO-Stuff. Our improvement
is partly due to masks better representing fine details (such as windows, doors,
lights, wheels) in compound objects, which are not part of the COCO class
set. In Fig. 5 (left) we show some examples. Moreover, the experiment on the
augmented Visual Genome dataset highlights that our model benefits from extra
unlabeled images (#4). Rows #5-9 are trained with style input. In particular,
we observe that these outperform the baseline even when they use a two-step
architecture (which is more constrained) or are trained on a different training
set (VG instead of COCO). Row #6-7 draw their text embeddings from the last
BERT layer and adopt 12 attention heads (the default), whereas #5 draws its
embeddings from the 2nd-last layer, uses 6 heads, and performs slightly better.
Qualitative. In Fig. 6 we show qualitative results as well as examples of manip-
ulations, either through attributes or text. Additional examples can be seen in
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Table 1: Left: FID scores for the main experiments; lower is better. The first line
represents the SPADE baseline [31]. For the models trained on VG, we also report FID
scores on our VG validation set. (f) indicates that the model is weakly-supervised, (6h)
denotes “6 attention heads”, L,_; indicates that the text embeddings are drawn from
the second-to-last BERT layer. Right: ablation study with extra experiments.

# | Training set | Test set(s) Type Mask input Style input | FID
1 | COCO-train | COCO-val 1-step [31] [ Ground truth None 22.64 .
2 | COCO-train | COCO-val 1-step’ |Semantic seg. None 23.97 T Rcf' ?’g’égnii;t T only ‘%QI;IID (€)67
3 | COCO-train | COCO-val 1-step | Sparse (ours) None 20.02 T #0_ 1'21 T m.gs. 0[;” ‘20"44(+d 19)
4 |VG+ (aug.) | COCO-val/VGoval| L-step’ |Sparse (ours) None 18.93/13.23 ## b, L, attr. in 44 (-0.19)

T ane) |2 —e - 0| #6 |12h, Loy 19.77 (-0.86)
5 | COCO-train | COCO-val l-step " | Sparse (ours) | Text (6h, L,,—1)|19.65 V| %6 |6, I 19.65 (-0.98)
6 | COCO-train | COCO-val 1step! | Sparse (ours) | Text (12h, L) |20.63 e 0

. i " > V [#9 [No f.g. info in Sauy | 25.16 (+4.33)

7 | COCO-train | COCO-val 2-step Sparse (ours) | Text (12h, L) |20.64 VI|#9 | Attr. randomization | 20.64 (-0.19)
3 |VG COCO-val/VG-val | I-step' |Sparse (ours)| Attributes |21.13/15.12 — — - :
9 | VG COCO-val/VG-val| 2-step! |Sparse (ours) Attributes 20.83/14.88

Fig. 7: Random styles by sampling attributes from a per-class empirical distribution.

the Appendix A.4, including latent space interpolation [22]. In A.5, we visualize
the attention mechanism. Finally, we observe that sketching sparse masks by
hand is very practical (Fig. 5, right) and provides an easier interface than dense
semantic maps (in which the class of every pixel must be manually specified).
The supplementary video (see Appendix A.7) shows how these figures are drawn.
Style randomization. Since we represent style explicitly, at inference we can
randomize the style of an image by drawing attributes from a per-class empiri-
cal distribution. This is depicted in Fig. 7, and has the additional advantage of
being interpretable and editable (attributes can be refined manually after sam-
pling). The two-step decomposition also allows users to specify different sampling
strategies for the background and foreground; more details in the Appendix A.2.
Ablation study. While Table 1 (left) already includes a partial ablation study
where we vary input conditioning and some aspects of the attention module,
in Table 1 (right) we make this more explicit and include additional experi-
ments. First, we train a model on a sparsified COCO dataset by only keeping
the “things” classes and discarding the “stuff” classes. This setting (I) per-
forms significantly worse than #1 (which uses all classes), motivating the use
of a large class vocabulary. Next, we ablate conditioning via text (baseline #6,
which adopts the default hyperparameters of BERT). In (II), we augment the
discriminator with ground-truth attributes to provide a stronger supervision sig-
nal for the generator (we take the attributes from Visual Genome for the images
that overlap between the two datasets). The improvement is marginal, suggesting
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that our model can learn visual-textual correlations without explicit supervision.
In (IIT), we draw the token representations from the second-to-last layer instead
of the last, and in (IV) we further reduce the number of attention heads from
12 to 6. Both IIT and IV result in an improvement of the FID, which justifies
the hyperparameters chosen in #5. Finally, we switch to attribute conditioning
(baseline #9). In (IV), we remove foreground information at inference from the
Savg block of the first generator Gy (we feed the background mask twice in S
and Sqvg). The FID degrades significantly, suggesting that G effectively exploits
foreground information to bias the result. In (V) we show that randomizing style
at inference (previous paragraph) is not detrimental to the FID, but in fact seems
to be slightly beneficial, probably due to the greater sample diversity.
Robustness and failure cases. Input masks can sometimes be noisy due to
spurious object detections on certain classes. Since these are also present at
train time, weakly-supervised training leads to some degree of noise robustness,
but sometimes the artifacts are visible in the generated images. We show some
positive/negative examples in the Appendix Fig. 14. In principle, mask noise
can be reduced by using a better object detector. We also observe that our
setup tends to work better on outdoor scenes and sometimes struggles with fine
geometric details in indoor scenes or photographs shot from a close range.

5 Conclusion

We introduced a weakly-supervised approach for the conditional generation of
complex images. The generated scenes can be controlled through various manip-
ulations on the sparse semantic maps, as well as through textual descriptions or
attribute labels. Our method enables a high level of semantic/style control while
benefiting from improved FID scores. From a qualitative point-of-view, we have
demonstrated a wide variety of manipulations that can be applied to an image.
Furthermore, our weakly supervised setup opens up opportunities for large-scale
training on unlabeled datasets, as well as generation from hand-drawn sketches.
There are several ways one could pursue to further enrich the set of tools
used to manipulate the generation process. For instance, the current version of
our attention mechanism cannot differentiate between instances belonging to
the same class and does not have direct access to positional information. While
incorporating such information is beyond the scope of this work, we suggest
that this can be achieved by appending a positional embedding to the attention
queries. In the NLP literature, the latter is often learned according to the position
of the word in the sentence [7,43], but images are 2D and therefore do not possess
such a natural order. Additionally, this would require captions that are more
descriptive than the ones in COCO, which typically focus on actions instead of
style. Finally, in order to augment the quality of sparse maps, we would like to
train the object detector on a higher-quality, large-vocabulary dataset [10].
Acknowledgments. This work was partly supported by the Swiss National
Science Foundation (SNF) and Research Foundation Flanders (FWO), grant
#176004. We thank Graham Spinks and Sien Moens for helpful discussions.
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A Supplementary material

A.1 Detailed architecture

In this section, we provide additional imple-
mentation details about our architecture in or-
der to consolidate the already-presented Fig. 3
(overview of the generators) and Fig. 4 (con-
ditioning blocks).

One-step generator. In sec. 3.2 we men-
tion that we use [31] as the backbone for the
one-step model, and that we insert condition-
ing information in the normalization blocks
as well as in the very first layer of the gener-
ator. In Fig. 8 (top) we show the detailed ar-
chitecture of this model. The implementation
of an individual “SPADE ResBlock” is speci-
fied in [31], but for reference we mention that
each residual block consists of two normaliza-
tion blocks wrapped by a skip-connection. If
the number of input and output channels does
not match, the skip-connection is learned, i.e.
a third normalization block is learned. In the
models conditioned on captions, we never at-
tach attention inputs to skip-connections (to
avoid potential instabilities). Each normaliza-
tion block learns its own set of weights, and
in our case they correspond to the S or Sq.q
blocks specified in Fig. 4.

Two-step generator. The architecture of
the two-step generator is depicted in Fig. 9,
and differs significantly from the aforemen-
tioned implementation. The background gen-
erator G; is a simplified version of the one-
step generator with fewer residual blocks. The
foreground generator (G2 implements a bot-
tleneck architecture that takes as input the
generated background image and compresses
it through a series of unconditional residual
blocks. The low-resolution feature-map is then
expanded again through a series of conditional
blocks. Interestingly, for foreground manipu-
lations it is possible to preprocess the feature
maps up to the last unconditional downsam-
pling block in G5 (8 x 8 resolution) and greatly
speed up regeneration.

Semantic
map

Attribute ma
e, Y [ or PJ

Mﬂ Caption

Embed & Concat

8x8
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Upsample
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Fig.8: Top: one-step genera-
tor using the SPADE backbone.
“1024¢” stands for “1024 output
channels”. The number on the
right of an arrow specifies the fea-
ture map resolution at that level.
Orange arrows indicate that the in-
put information is fed to S blocks.
Bottom: discriminator (used in
all architectures).
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Discriminator. We use the multi-
scale discriminator from [31, 44]
and change its input layer to
add information about attributes
or captions. The architecture is
shown in Fig. 8 (bottom). As
usual with multi-scale discrimi-
nators, we train two instances:
one which takes as input an im-
age at full resolution, and one
which takes as input a downsam-
pled version (by a factor of two).
They learn different sets of em-
beddings and different sets of at-
tention heads if the style is condi-
tioned on a sentence.

Model complexity. Table 2
presents the number of param-
eters for all wvariants of our
approach. The SPADE baseline
trained on the 182 COCO-Stuff
classes requires 97.5M parame-
ters. Our 1-step baseline trained
without style information (nei-
ther attributes mnor captions)
on our set of 280 classes re-
quires a slightly lower number
of parameters (94.2M) thanks
to the pixel-wise class embed-
dings, even though the number of
classes is larger. In the version
with attributes, the added cost
(42.3M parameters) is only due
to the learned attribute embed-
dings (256 64d embeddings per
normalization block). In the ver-
sion with captions, the custom at-
tention modules add 12.5M pa-
rameters (for 6 heads) or 23.3M
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Fig. 9: Two-step generator. The left side of the
figure depicts G1 (background generator), while
the right side depicts G2 (foreground genera-
tor). Orange arrows indicate that the input in-
formation is fed to S blocks, whereas green ar-

rows denote inputs to

Savg blocks.

parameters (for 12 heads). The number of parameters can be easily tuned by
varying the number of attention heads. We conduct a similar analysis on the
two-step model. In this case, the background generator is slightly more powerful

than the foreground generator.
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Table 2: Number of parameters for different variations of our approach. For the two-
step models we specify the numbers for both generators (respectively G1 and G2). “6h”
denotes “6 attention heads”.

Approach | Style input # params

Baseline [31] None 97.56M
1-step None 94.2M
1-step Attributes 96.5M
1-step Text (6h) 106.7M
1-step Text (12h) 117.5M
2-step None 74.5M + 50.6M
2-step Attributes | 78.3M + 51.9M
2-step Text (12h) | 90.7M + 65.8M

Sparse map generation and manipulation. In this paragraph we provide
further details in addition to those presented in sec. 4.1. Specifically, we describe
how we construct and maintain the data structure that enables instance manip-
ulation and rasterization into a sparse semantic map. Since a scene may consist
of objects that partially overlap, the order in which they are drawn on the se-
mantic map matters, e.g. given a car and its headlight, we want to render the
headlight semantic mask on top of the car and not the opposite. Therefore, we
sort all instances by mask area and draw them from the largest to the smallest.
Additionally, we construct a scene graph to facilitate manipulation: if 70% of the
area of an instance is contained within another instance, it becomes a child of
the latter. With regard to the previous example, moving the car would also move
the headlights attached to it. Finally, in our experiments on Visual Genome, we
link attributes to an instance if the IoU between the ground-truth region and
the detected bounding box is greater than 0.5.

Training details and hyperparameters. In all experiments, we train on 8
Pascal GPUs for 100 epochs using Adam (learning rate: le-4 for G, 4e-4 for
D, one G update per D update), and start decaying the learning rate to 0
after the 50th epoch in a linear fashion. We use a batch size of 32 for the one-
step model and 24 for the two-step model (the largest we can fit into memory),
with synchronized batch normalization. Training takes one week for the one-step
model and two weeks for the two-step model. For the alpha blending loss term,
we start from a factor of 10, and decay it exponentially with o« = 0.9997 per
weight update, down to 0.01. For the experiments with captions, since COCO
comprises five captions per image, we randomly select one caption at training
time. In the evaluation phase, we concatenate the representations of all captions
since our attention model can easily decide which ones to attend to.

A.2 Additional inference details

Randomizing style. In sec. 4.2 we mention that we can randomize the style of
an image by sampling attributes from a per-class empirical distribution. More
precisely, we estimate a discrete probability distribution of the attributes as-
signed to each class of the dataset. This includes the empty set (no attribute
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for a given instance) as well as compound attributes (e.g. blue and red is dif-
ferent than blue or red). At inference, for each instance, we sample an element
from the distribution of the class to which the instance belongs. The two-step
decomposition also allows us to specify different strategies for the background
and foreground. In the examples in Fig. 7, all background instances of a given
class take the same attributes as input (e.g. all trees are leafless), which results
in scenes with coherent styles. Conversely, foreground instances are still fully
randomized (it would not be realistic to see cars all of the same color, for exam-
ple). Within an individual instance, the style of its children is uniform, e.g. the
same attributes are assigned to all wheels of a car, but of course wheel styles
can be different across different cars.

Interpolating style. Our approach allows for smooth interpolation of attributes
and text. While attention models usually preclude interpolation (whereas mod-
els based on fixed-length sentence embeddings such as [50] easily allow it), our
sentence-semantic attention mechanism enables interpolation over the contex-
tualized class embeddings, i.e. over the pooled attention values. For all cases
(masks, attributes, text), we respectively interpolate between class embeddings,
attribute embeddings, and contextualized class embeddings using spherical in-
terpolation (slerp), which traverses regions with a higher probability mass [22].
Unlike [50], we found it unnecessary to enforce a prior on the embeddings via

zebras standing on snow zebras standing on green grass at sunset

Fig. 10: Interpolating style between two sentences (top two rows) and two attributes
(bottom row). The smooth transitions across multiple factors of variation (e.g. color
and time of the day) suggest that our latent space is structured and does not require
regularization. For instance, in the middle row, the bus color traverses the region of
orange while interpolating between red and yellow, even though it is not explicitly
instructed to do so. Additionally, the headlights of the bus become increasingly brighter.
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a KL divergence term in the loss. We show some examples of interpolation in
Fig. 10 as well as in the supplementary video (sec. A.7).

Generating one object at a time. To ensure that foreground objects do not
affect each other in the two-step model, it may be interesting to generate them
one-by-one. In our experiments we generate all foreground objects at once by
running a single instance of Ga, motivated by the much lower computational
cost and the observation that foreground objects are usually well-separated.
Nonetheless, our framework is flexible enough to support one-by-one generation
of objects. In this regard, G5 can be run independently for each object, and the
output images and masks can be combined into a single, final image. Denoting
the background image as Xpg, the foreground images as xl[fg] (1€{l1...N}), and

the corresponding unscaled (i.e. before the activation function) transparency

masks as o’ p, we can generalize Equation 1 as follows:

w[i] = softmax; (a'm) (3)
Z X[l] (4)
Qg = Z sigmoid ( 43 ]) M (5)

Xfinal = Xbg * (]- - afg) + Xfg * Ofg (6)

The second line combines foreground images into a single image through an
object-wise weighted average. The same is repeated for the transparency channel
(third line). Finally, the alpha blending is performed as in Equation 1. This
formulation is differentiable and can be used for training the model, although
the memory requirement may be excessive in high-resolution settings.

A.3 FID evaluation

The FID metric is very sensitive to aspects such as image resolution, number
of images (where a low number results in underestimated FID scores), and the
weights of the pretrained Inception network. To be consistent with [31], we try
to follow their methodology as closely as possible. We resize the ground-truth
images to the same resolution as the generated ones (256 x 256), and we keep the
two sets aligned, i.e. one generated image per test image. We use the weights of
the pretrained InceptionV3 network provided by PyTorch. To make the results
in Table 1 comparable, we retrained the baseline from [31] and evaluated the
results using our methodology.

A.4 Additional results

Semantic and style manipulation. Fig. 11 and Fig. 12 show examples of
semantic manipulation and style manipulation (either using attributes or text).
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Input mask Horse: brown Horse: white Horse: black Horse class to zebra Ground truth

Al trees: leafless All trees: snowy All trees: bushy Add elephant Ground truth

Fig. 11: Examples of semantic and attribute manipulations (Visual Genome dataset).
The images are generated by our two-step model. In the first row, the background is
frozen to encourage locality.

"a train traveling next "atrain travelingona "ared train traveling  "ared train [...] green
Input mask to a dirt road" foggy day" next to green grass" grass at sunset"

Ground truth

"a red and white bus "a blue bus in the "a green bus in the "a bus in the rain at
rain" night" Ground truth

Input mask in the rain"

"a black and white cat "a black and white "a cat sitting on a
sitting on a desk" picture of a cat [...]"

desk in a dark room"

Ground truth

im

Fig. 12: Further examples of style manipulation using text (COCO validation set). It
is possible to control the style of individual instances (albeit in a less targeted fashion
than attributes) as well as the global style of the image.
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The last row of Fig. 12 suggests that our attention mechanism can correctly
exploit the contextualized token embeddings produced by BERT. For instance,
the caption “a black and white cat” affects only the cat, while “a black and white
picture of a cat” affects the entire scene by generating a black-and-white image.
Two-step model. Fig. 17 shows additional demos generated by our two-step
model on the Visual Genome validation set. In particular, we highlight the de-
composition of the background and foreground, and the inputs taken by G; and
(5. Since G2 outputs a soft transparency channel for the alpha blending, it can
slightly violate the constraints imposed by the foreground mask. This allows it
to draw reflections and shadows underneath foreground objects. Furthermore,
as we mention in sec. 3.1, the motivation behind the two-step generator is that
it facilitates local changes. In Fig. 15 we qualitatively compare one-step and
two-step generation when manipulations are carried out on the input condition-
ing information (mask and style). We show that, in the two-step model, local
manipulations do not result in global changes of the output. To further enhance
locality, the background can be frozen when manipulating the foreground.

Table 3: Comparison to layout-based methods. The metric is the FID score [13]; lower
is better. “GT BBox” stands for “ground-truth bounding-box”, whereas our approach
uses the sparse masks inferred from an object detector as usual.

Approach Input Training set | Test set | FID
Sg2im [18] GT BBox layout | COCO-train | COCO-val | 67.96
Layout2im [52] | GT BBox layout | COCO-train | COCO-val | 38.14
LostGAN [10] | GT BBox layout | COCO-train | COCO-val | 34.31
Ours (#3) Sparse mask | COCO-train | COCO-val | 18.57
Ours (#5) Sparse mask | VG+ (aug.) | COCO-val |17.98

Comparison with layout-based methods. While in sec. 4.2 we compare
our approach to [31] under uniform settings, it is also interesting to see how
our sparse mask setting compares to approaches that generate images from
bounding-box layouts (which are also sparse by nature) [15,40,52]. While these
methods address a harder task (bounding boxes provide less information than
segmentation masks), their applicability has only been demonstrated in low-
resolution settings (typically 64 x 64), which makes them not directly comparable
to our higher-resolution setting. To our knowledge, no bounding-box approach
can currently generate high-resolution images that have the same visual quality
and geometric coherence as mask-based approaches. Nonetheless, for complete-
ness, in Table 3 we compare our sparse mask approach to these layout-based
methods. We use the models trained on COCO or VG+ with no style input
(rows #3 and #4 in Table 1, left), and downscale our images to 64 x 64 before
computing the FID score.

Qualitative comparison of input masks. In Fig. 16, we show qualitative
results for different input masks, both in fully supervised and weakly supervised
settings. Additionally, in the figure we show qualitative results for the sparsified
COCO model (ablation I in Table 1, right), where we keep only the “thing”
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classes of COCO. While the outputs produced by the semantic segmentation
maps are satisfactory, it is not clear how to manipulate them as they present
banding artifacts and jagged edges.

A.5 Attention visualization

The behavior underlying our attention model can be easily visualized. Our for-
mulation (sentence-semantic attention) is particularly suited for visualization
tasks because it is tied to the semantic map, and not to feature maps in inner
convolutional layers. Therefore, for each class in the semantic map (e.g. person,
tree, empty space), we can observe how the sentence conditions that particular
class. Considering that the attention modules have multiple entry points in the
generator (one for each normalization block), it is easier to carry out this analy-
sis in the discriminator, where there are only two entry points (in the input layer
of each discriminator, since we adopt a multi-scale discriminator). We select the
first discriminator for illustration purposes, and show the resulting attention
maps in Fig. 13. The figure shows what parts of the sentence the discriminator
is attending to in order to discriminate whether the caption is suitable for the
input image.

Attention for the class "person” Attention for the class "person

L 1
2 ] :
1 ®a
s s
< e ®
g7 57
58 £ .
)
1 | 1 |
2 12
5] 3 mem W a  blie coat sking thiough 3  snowy figd  [SEP) S T b W e h me o 1seel
aman in a blue coat skiing aman in a red coat walking
through a snowy field in the forest

Attention for the class "no class"
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Fig. 13: Visualization of the attention mechanism in the discriminator for two images
generated from the same semantic map, but different captions. An attention map is
produced for each class in the semantic map, and each of these consists of 6 or 12
independent attention heads (12 here). In this illustration we only show those corre-
sponding to person and no class (i.e. blank space) for clarity. [CLS] and [SEP] are
special delimiters indicating respectively the start and end of a sentence. A head pay-
ing attention to these can be interpreted as not being triggered by the sentence. In the
attention maps, a darker color indicates a higher weight.
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Fig. 14: Left: in many cases, weakly-supervised training leads to input noise robust-
ness, i.e. artifacts in the input mask are not visible in the generated images. Right:
some failure cases where the artifacts are visible in the output images.

A.6 Negative results

In this section, we discuss some of the unsuccessful ideas that we explored before
reaching our current formulation.

Two-step model. Before successfully achieving two-step generation with sparse
masks, we tried to implement the same idea using dense COCO segmentation
maps. In the areas corresponding to foreground objects, G1 (the background gen-
erator) would always render visible gaps. We tried to regularize the model using
partial convolutions (a recently-proposed approach for infilling), but this did
not have the desired effect. We also experimented with an attention mechanism
where foreground areas were masked in G;. While this was partly successful in
filling the gaps, the model was very difficult to train and the final visual quality
was considerably lower.

Discriminator architecture. We explored various ways of injecting condi-
tional information in the discriminator. While SPADE uses input concatenation,
recent GANs conditioned on classes [1,49] use projection discrimination [29].
This idea led to marginally better FID scores, but we observed that the contour
of generated objects would stick too close to the input mask, essentially resulting
in a “polygonal” appearance. On the other hand, input concatenation allows the
model to slightly deviate from the input mask, possibly resulting in a greater
robustness to mask noise.

Hyperparameters. We tried to vary the design of SPADE blocks, e.g. by stack-
ing more layers or using dilated convolutions. These ideas had a detrimental effect
on the final result and we decided not to pursue them further.

A.7 Demo video

The video at https://github.com/dariopavllo/style-semantics illustrates
examples of interactive manipulations. Among other things, we show how images
can be generated from sketches as the user draws the masks, extra results from
the two-step model (including comparisons with the one-step model with regard
to local changes), and interpolations in the latent space of text and attributes.
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Changing an attribute in the one-step model Translating an object in the one-step model
Changing an attribute in the two-step model Translating an object in the two-step model

Fig. 15: In a single-generator model, local changes (e.g. changing the color of the dog to
white) affect the scene globally due to learned correlations. The same can be observed
when moving an object (e.g. left to right), as the representation space is discontinuous.
In the two-step model, we can locally manipulate the background and foreground.

Fully supervised Weakly supervised
J .

r N Al
Ground-truth COCO full mask Ground-truth COCO sparsified mask Map from semantic segmentation Sparse masks (ours)

Fig. 16: Input masks for different approaches, and corresponding generated images. Our
sparse masks do not present the typical artifacts of semantic segmentation outputs and
are much easier to sketch or manipulate than dense maps.
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Full mask Background mask Background output Foreground mask Final output Ground truth

Fig. 17: Demos generated by our two-step model. In addition to the full input mask,
we show its decomposition into background mask and foreground mask (taken as input
in S blocks respectively by G1 and G2). Note that G1 also takes as input the full mask
in Sguvg blocks.



