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Fig. 1. Filter style transfer results. Given reference images with arbitrary filters
applied (a), the filter styles can be transferred to a new image with our model. While
(b) is the ground-truth, (c)-(e) show the results of color transfer [24], photorealistic
style transfer: WCT2 [32], and ours, respectively.

Abstract. Over the past few years, image-to-image style transfer has
risen to the frontiers of neural image processing. While conventional
methods were successful in various tasks such as color and texture trans-
fer between images, none could effectively work with the custom filter
effects that are applied by users through various platforms like Insta-
gram. In this paper, we introduce a new concept of style transfer, Filter
Style Transfer (FST). Unlike conventional style transfer, new technique
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FST can extract and transfer custom filter style from a filtered style
image to a content image. FST first infers the original image from a fil-
tered reference via image-to-image translation. Then it estimates filter
parameters from the difference between them. To resolve the ill-posed
nature of reconstructing the original image from the reference, we repre-
sent each pixel color of an image to class mean and deviation. Besides, to
handle the intra-class color variation, we propose an uncertainty based
weighted least square method for restoring an original image. To the best
of our knowledge, FST is the first style transfer method that can transfer
custom filter effects between FHD image under 2ms on a mobile device
without any textual context loss.

Keywords: Photorealistic style transfer, Filter style transfer, Image-to-
image translation

1 Introduction

Stylizing an image with characteristics of other stylized images has long been
a difficult problem in Computer Vision. Beyond simple editings, people’s desire
to grand artistic feelings to their pictures has increased. For this reason, a tool
that can stylize their photos in a unique way is highly desired.

There have been several studies addressing technical solutions for image-to-
image style or content transfer. Reinhard et al. [24] is one of the pioneering
attempts where mean and variance of RGB color distribution from a source
image were used to apply the color scheme to a target image, but with lim-
ited success obtaining enough similarity between two images. Others [23,26–28]
tried to improve results by using various mathematical approaches to treat color
distribution but failed to consider the semantics of pictures during the process.
Moreover, their methods transferred objects inherent colors as well, limiting their
methods in the assumption that scene components of the two images must be
similar.

More recently, taking advantage of the advent of Deep Neural Network, more
sophisticated applications of image-to-image style transfer became possible. Style
transfer [7] encoded not only color but also shapes and textures. After that, many
following works branched out to further improve the accuracy and efficiency of
the style transfer. Some researches [12, 20, 35] were related to domain transfer,
which transfers styles between different image domains such as semantic-labels
to street-scene, aerial to map, and sketch to photo. However, since most domain
transfer approaches aimed to move input images’ distributions close to the target
domain, the output of them does not explicitly reflect the style of a single image.
Some other researches [18,21,25,32] introduced methods to transfer photorealis-
tic styles from a single style image, but they required a large dataset for training
leading to a high computational cost. Even with the high processing time, they
often displayed undesirable transfers of colors and textures due to fundamentally
implicit actions of deep neural networks. In this case, it is difficult to identify
causes and solutions, which is a significant hurdle when commercializing the
approaches.
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Meanwhile, some researches suggested automated photograph editing to en-
hance the overall quality [1–5, 8, 11, 14, 15, 22, 29, 30] or control exposure [10,
31, 33, 34]. All of these researches showed considerable progress on automated
image editing, but they also required large datasets to train an image enhance-
ment model. More importantly, they only followed a predefined editing rule like
High Dynamic Range (HDR). Some focused on the extraction of photo-editing-
parameters directly [1,2,8,22], while [5] focused on learning image enhancement
using GAN [9] to generate HDR output. A method in [2] suggested parameter
extraction from a neural network, but it was not a single-stage and showed lim-
ited performance. Also, efforts to model polynomial functions in the previous
studies [1, 2] may suffer from high-order variables’ fitting issues as well as they
still limited their methods to predefined editing rules. There have been a few
efforts to adopt reinforcement learning [10, 33] to train enhancement policies.
Despite all the efforts, all the aforementioned methods were not able to extract
filter parameters from an already stylized image and require the original version
of the stylized image to enhance the target image. Such limitations prevented
previous studies from fully satisfying commercial needs.

With the increased accessibility of mobile phones and the internet, these days,
people spend even more time on social media. As a result, many photo-editing
applications have been developed and are widely used with various stylizing
filters to give special effects on photos taken. To the best of our knowledge,
however, there has not been an attempt to extract custom filter effects from a
stylized photo. In this study, a mathematical formulation of custom filter ex-
traction and its application to new photos are presented. FST is quite efficient
without requiring expensive computing time, even in a low-end mobile device;
so the application can be easily adopted and used in our fast-moving social
networking environment.

2 Method Overview

Fig. 2 shows an overview of the proposed method in this research. It comprises
extracting custom photo filters from a single reference image (I) and applying
them to a new one (X). Our method restores the original image (Î) from I,
which is called defilterization in this paper. Then, using two images, a filter
parameter w is obtained, which is called filter style estimation. Lastly, using w,
a designed filter function fw can be used to filter the user’s original image (X)
to newly-stylized image (Y ).

3 Defilterization

In Fig. 2, the stylized reference input I is a projected image from the original
image Í using the filter-applying function fw, leading to

I = fw(Í). (1)
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Fig. 2. System overview to extract the photo editing parameter and apply it
to the new input images. I is a filtered or edited image that we want to extract filter
style and w represents the parameters of the filter style of I. The system is initially
black-box and must be designed appropriately to infer standalone parameters.

To determine fw, the relationship between the pair of the original image Í and
stylized image I needs to be investigated. From (1), we know that

Í = f−1w (I) (2)

Assume that there is a collection S of M stylized images, S = {I1, I2, , IM}.
Each image I consists of K object segments, like the sky, cow, grass, etc., and
each object segment can be represented its vectorized form o, such that

I = {o1,o2,o3, ,oK} (3)

where ok is a vector of colors of the flattened pixels in the k-th object segment.
Then the original image of I can also be represented as a set of the original
object segments, such that

Í = {ó1, ó2, ó3, , óK} (4)

where ók is the original colors before stylized. If an implicit object, ók, has some
class label, cls, and its mean color can be obtained by averaging all pixel colors
in cls throughout the dataset S, then, ók can be expressed with the mean color
value of the class, õk,cls, and pixel-wise color deviations, ∆k,cls. Note that we
start to explain from the implicit object level to introduce the class label and its
mean color. Also, there is a numerical error term εk due to imperfect restoration
of original object colors. Therefore ók can be expressed as

ók = õk,cls +∆k,cls = f−1w (ok) + εk. (5)

The distance between the restored image, f−1w (I), and the true original, Í, can be
described as the sum of the squared distance between restored and true objects.

Distance(f−1w (I), Í) =

K∑
k=1

‖f−1w (ok)− ók‖2 (6)
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Then our problem to find the original image becomes a minimization problem.
At a pixel level, the objective function of the minimization process becomes

arg min
f−1
w

1

N

K∑
k=1

[∑
c∈ok

(
f−1w (c)− ć

)2]
, (7)

where N is the number of pixels in I. The sum of the differences of ok can be
reformulated by merging two summations in (7). Then, the distance is a sum
of the squared difference between f−1w (c) and ć. Converting (5) into pixel-level
representation and substituting ć into its mean and deviations lead to

arg min
f−1
w

1

N

∑
c∈I

(
f−1w (c)− c̃cls −∆c,cls

)2
(8)

where c̃cls is an element of õk,cls. Since the objective function (7) and (8) corre-
sponds to the error criterion of the neural network, especially autoencoder, where
the pixel differences can be calculated after forward-passing the input image, we
now let f−1w be an autoencoder network and train to infer ć over the dataset S.
Then we can expect that the trained autoencoder can restore the original image
considering implicit semantic, cls. Thus, the objective function over the entire
dataset S of M equal-sized images is

arg min
f−1
w

M∑
m=1

[∑
c∈Im

(
f−1w (c)− c̃cls −∆c,cls

)2]
. (9)

By definition,
∑
c∈Scls

∆c,cls = 0 where Scls is a subset of S that belongs to a
class label cls. With this definition, after some calculation, eq. (9) becomes

arg min
f−1
w

M∑
m=1

[∑
c∈Im

((
f−1w (c)− c̃cls

)2
+ 2εc∆c,cls −∆2

c,cls

)]
. (10)

Since ∆2 is a constant for a given dataset S, the minimization becomes

arg min
f−1
w

M∑
m=1

[∑
c∈Im

((
f−1w (c)− c̃cls

)2
+ 2εc∆c,cls

)]
. (11)

Then f−1w learns to restore image toward the mean, between the mean and
original. Therefore, one can geometrically assume that εc at the optimum point
is smaller than and proportional to ∆c,cls. Since deducing ∆cls solely from a
single image is an ill-posed problem, our method minimizes the influence of the
inevitable error εc by collecting pixels during regression in chapter 4.1.

4 Filter Style Estimation

4.1 Filter Parameterization

Most of the image filtering and editing can be built with three operations bright-
ness, contrast, and color controls. Even though there are some local operations



6 Jonghwa Yim et al.

such as Vignetting, for simplicity, we have not considered those in this study. In
general the three primary operations can be expressed as linear or polynomial
functions for input image x and output image y;

Brightness y1 = x+ c (12)

Contrast y2 = ax+ b (13)

Color y3 =

α∑
i=1

(
eix

3
i + fix

2
i + gixi

)
(14)

where α is the number of color channels, three (i.e. RGB) in our case. After
adding up y1, y2, and y3 and expressing parameters as β, the three operations
becomes

yγ = βγ,0 +

3∑
i=1

(
βγ,i1xi + βγ,i2x

2
i + βγ,i3x

3
i

)
. (15)

Note that we repeatedly calculate yγ over the output color channel, i.e. γ ∈
{R,G,B}. Hereafter, we omit γ for brevity. Since (15) represents global editing
operations, using this, we model the parametric function f∗β of fw in the regard-
ing β. Thus, with the original and the reference image, we can approach filter
parameter extraction, obtaining β in (15), as a nonlinear regression problem
operated at every pixel of an image. Hence the minimization target E(β) is

E(β) =

N∑
n=1

(
yn − f∗β(x́n)

)2
(16)

where (x́, y) is a color pair in (Í , I). After applying (5), (16) becomes (17).
In a normalized color domain, recalling the geometrical interpretation of (11), ε
becomes small, and thus the high order of ε becomes negligibly small. After some
calculation and with the assumption that ε is proportional to ∆, (17) becomes

E(β) =

N∑
n=1

(
yn − f∗β(f−1w (yn) + εn)

)2
(17)

≈
N∑
n=1

(
yn − f∗β(f−1w (yn))

)2
. (18)

Since high order terms of εn are ignored, (18) is a rough approximation on a
single image. Due to the ill-posed nature of the problem, instead, we propose
uncertainty-based regression in chapter 4.2 to alleviate the error of rough ap-
proximation. To this end, we set the problem to weighted least squares and
solved it using quasi-Newton optimization. Note that eq. (18) works well when∑
c∈I ∆c,cls is close to 0.
Additionally, our method can also provide results similar to color transfer,

depending on filter parameters. If there are insufficient samples in the RGB color
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domain in a stylized image, it would not be easy to infer the coefficients to cover
the absence of samples. In this case, if the Channel Correlation term (CC) is
added, those colors can be transferred to other colors correlated with RG, RB,
GB values as below.

yγ = βγ,0 +

3∑
i=1

(
βγ,i1xi + βγ,i2x

2
i + βγ,i3x

3
i

)
+ βγ,1x1x2 + βγ,2x1x3 + βγ,3x2x3

(19)

Then the result becomes more like color transfer than FST. For example, in
Fig. 3, green color is absent in stylized image. Therefore, green is transferred to
another color in the result. More details will be presented in chapter 5.4.

Fig. 3. The result comparison with and without correlation term. (a) is an
input image. (b) is a stylized reference image. (c) and (d) are FST results using (15)
and (19), respectively.

4.2 Uncertainty-based Adaptive Filter Regression

After training f−1w , for any single filtered style image, we depend on a trained
neural network to get the restored image and to regress the approximate function
f∗β. In the process, there are high order terms of ε that causes the filter estimation
error in the previous chapter. Due to the lack of evidence to directly minimize the
error, we propose a roundabout method using the uncertainty of the inference
and lower the weight where ε is expected high.

The error term is inherently non-negligible in our case since the function
inferred ∆c,cls solely from a single image. To be more specific, in the single
inference of I, from each pixel c, the uncertainty of f−1w (c) would be high when
the implicit class variance V ar(∆c,cls) is high over the entire set S (aleatoric
uncertainty). That means if the variance of the deviation of cls is high over S,
the function f−1w (c) is likely to give larger ε. Moreover, f−1w (c) would be more
uncertain as ∆c,cls is increased (epistemic uncertainty). In this case, the weight
of unsure pixels should be lower when regressing the approximate function, f∗β.

The error term is independent over pixels. Therefore, we compute variance
term same as combined uncertainty, a combination of epistemic uncertainty from



8 Jonghwa Yim et al.

Mean Standard Deviation (Mean STD) in the earlier study [6] and aleatoric
uncertainty in [16] in recovering the original image. Then for every pixel, the
inverse of uncertainty, written as Ω−1, is used as a weight of the least squares
criterion. Then the general form of the solution to our regression problem is

β = (XTΩ−1X)−1XTΩ−1y (20)

In practice, our uncertainty-based regression can be achieved by multiplying
Ω−1/2 to both of the X and y followed by quasi-Newton optimization. Note
that X and y are the design matrix that consists of stacked polynomial vectors
of the restored original colors and the vector of the filtered colors, respectively.

4.3 Regularization

With the methods described in previous chapters, we are now able to estimate
the parameters of filter style from single image input. However, there are two
problems with this unrefined algorithm. Firstly, when we do not have enough
plots around each extremum of color space, the regression function is left to
vary dramatically outside of plots. Like the blue line shown in Fig. 4, a poly-
nomial function curves very fast without the basis of plots, leading the extrema
transformed to unfavorable values. So, for the new user input image X, stylized
image Y often show clipping or extreme colors around the extremes. The second
problem is that the output can sometimes be visually unnatural as the regression
function severely deviates from linear, leaving the regression process vulnerable
to specific colors, which are exceptionally scarce but saturated in the pairs of
the stylized and inferred original.

To relieve the above symptoms, we design and add regularization term in the
regression function. To deal with the first phenomenon, we regularize the function
to be close to (0, 0), (1, 1), respectively, when the color range is normalized.
Hence, an L2 penalty is added and penalizes the function when it starts to
diverge from 1 and 0. For each output channel γ,

R1,γ = β2
γ,0 +

{[
βγ,0 +

3∑
i=1

(βγ,i1 + βγ,i2 + βγ,i3)

]
− 1

}2

(21)

After adding (21), the nonlinear function looks like a red line instead of a blue
line in Fig. 4.

For the second symptom, we add an L2 penalty on the coefficients of high
order terms. Empirically we found out that imposing the L2 penalty only on
different sources of colors is visually good, rather than imposing L2 on all color
sources.

R2,γ =
∑
i6=γ

(
β2
γ,i2 + β2

γ,i3

)
(22)
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Fig. 4. An example of a nonlinear function that has unfavorable extrema
matching in a color transfer curve. Since there is no color sample near x = 1,
the function can diverge as shown by the blue dotted line. Instead, we can add a
regularization term to guide nonlinear function into a red line.

After adding two regularization terms (21) and (22), the error of regression
function becomes

É(βγ) = E(βγ) + λR(βγ), where (23)

R(βγ) = β2
γ,0 +

{[
βγ,0 +

3∑
i=1

(βγ,i1 + βγ,i2 + βγ,i3)

]
− 1

}2

+
∑
i 6=γ

(
β2
γ,i2 + β2

γ,i3

)
(24)

In Fig. 5, we show the difference in result images by introducing our regular-
ization term. In this figure, the result when regularization weight is 0 shows
clipping around the ground region, while the full use of the regularization does
not exhibit this behavior. Note that λ can be obtained by grid-search.

Fig. 5. An example of the regularization effect. Regularization term yields a
stable result where there is less or no clipping. (a) is an input image, (b) is a filtered
style image, and (c) and (d) are results of FST without and with regularization terms,
respectively.



10 Jonghwa Yim et al.

5 Experiment

5.1 Dataset

To generalize the defilterization network f−1w for various scenes, we require a
large-scale dataset with lots of classes. One of the most popular image datasets,
MSCOCO [19], is widely used and contains more than 110K images with 80
object categories. However, this dataset does not contain filtered images. There-
fore, to generate filtered images, we applied various types of real and arbitrary
synthetic photo filters to the dataset. Initially, a filtered dataset was generated
by posing 26 real Instagram filters using publicly available source code in CSS-
gram [17]. In addition, synthetic filtered images were added by posing random
color, contrast, and brightness six times. Based on this dataset, we trained the
defiliterization network and tested our proposed method.

To check the dataset dependecy, we also prepared 99 private photos and 17
unseen real filters from one of the camera application in Android Play Store. As
shown in the experiment in the next chapter, the proposed method, FST, can
successfully transfer filter effects from a single image to the new input, even the
filters unseen in the training phase.

5.2 Evaluation

Firstly we prepared the architecture of image-to-image translation, introduced
in [13], as a defilterization function f−1w . Then, we trained f−1w using the com-
bined dataset and fully synthetic dataset (self-supervised learning) until the test
MSE is saturated. Note that the filter transferred output would show better re-
sults with a better choice of defilterization network and more synthetic dataset
generation, but we leave it as further work.

To validate our proposed method, we randomly chose 100 images from the
MSCOCO validation set, and selected 18 real filters out of 26 filters to generate
1800 filtered images. We excluded eight filters that have a noticeable vignetting
effect, which is outside of the scope of the current study. Then, FST was per-
formed on the remaining validation images, and the result was compared with the
ground truth images, which were directly generated by applying filters. Quan-
titative and qualitative results are given in Table 1 and Fig. 6, respectively.
To further test our method on unseen dataset, we also evaluated the proposed
method on private photos with 43 filters (17 unseen filters and 26 Instagram
filters). The result is given in Table 2.

5.3 Comparison with Style Transfer

Our problem definition is inherently different from conventional style transfer
researches. Style transfer seeks the transfer of texture, color, and even abstract
concepts, while our method targets the transfer of photo editing or filter effects
applied to an image. Although photorealistic stylization approaches [18,32] show
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Table 1. Quantitative evaluation. The MSCOCO validation set with 18 Instagram
filters is used for evaluation. Our method supports a few variations. Our method can
have (R): regularization, (AU): Aleatoric uncertainty, (U): combined uncertainty, (CC):
color correlation. Note that for WCT2, we gave option that uses features from decoder
and skip-connection since it performs the best. Note that lower ∆E∗

00 (a.k.a., Delta-E
2000) is better.

Methods PSNR ∆E∗
00

Ours 25.226 6.660
Ours (w. U, CC) 24.931 6.725
Ours (w. AU) 25.438 6.427
Ours (w. U) 25.495 6.394
Ours (w. R, U) 26.093 6.148
WCT2 [32] 16.473 17.516
Color Transfer [24] 7.325 34.914

Table 2. Quantitative evaluation on private photos with 43 filters.

Methods Ours (w. R, AU) Ours (w. R, U) WCT2 [32] Color Transfer [24]

PSNR 25.814 25.850 17.234 6.985
∆E∗

00 5.881 5.854 15.723 35.123

Fig. 6. Qualitative results of FST. We also included the originals of filtered style
images, which were not given during inference.
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attractive results in terms of structure preservation, they tend to directly trans-
fer color distribution from the style to content images, not transferring filter
information of the style image. Nonetheless, we compared our proposed FST
with photorealistic style transfer, since style transfer is the most similar task.

To validate the effectiveness of the proposed method, we compare it with
two types of photorealistic style transfer methods based on conventional linear
color distribution transfer [24] and structure-preserved style transfer based on
a high-frequency component skip, which is the state-of-the-art in photorealistic
style transfer [32]. As shown in Fig. 7, both approaches tend to directly reflect
the color distribution of the style image to the content image while FST transfers
filter style only. In case of color transfer, if style image consists of achromatic
colors mostly, it often generates visually unpleasing and questionable results.
Furthermore, in terms of computational complexity, while conventional style
transfer techniques take several hundred milliseconds, our solution can transfer
filter style to the content image in less than a few milliseconds. Moreover, FST
can transfer stylish effects as well as unseen filters. Detailed results are shown
in Fig. 8.

Fig. 7. The results of FST with channel correlation. Given (a) an input pair
(top: content, bottom: style), the results of (b) color transfer [24], (c) WCT2 [32], (d)
and (e) ours (FST) are shown. With CC (color correlation) term, the proposed method
can also transfer colors of contents, whitish color in the first row, green forests in the
second row, and bluish color in the third row, for example.
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Fig. 8. More results from the proposed FST using stylish photos.

5.4 Application

A trade-off between Filter and Color Style. In chapter 4.1, the approx-
imate filter-applying function is modeled as a polynomial form (15) to transfer
filter styles. However, in addition to filter style, more dramatic effects may be re-
quired upon requests. In this case, by adding a correlation term to filter-applying
function as shown in (19), FST can transfer some colors that are not present
in the reference style image to neighbor colors at the expense of quantitative
accuracy. As shown in Fig 3, results look more like color style transfer than the
original FST.

Real-time Filter Transfer on Mobile Device. Along with the sat-
isfactory results of our method, it is designed to run real-time on a mobile en-
vironment, where there is a severe restriction on computational power. FST
takes most of its time on filter parameter extraction, and it costs as much as
the inference time of autoencoder, plus nonlinear regression. However, once the
parameters are obtained, transferring the filter style onto the new input can be
done almost instantly. The processing times are firstly measured on a PC, and
compared with WCT2 and Color Transfer. Results are given in Table 3. Further-
more, in a mobile environment, our approach performs with 900ms on average
on Qualcomm Snapdragon 855 to process an FHD image. The processing time
on a smartphone is given in Table 4. Note that once the filter is extracted, RGB
Look Up Table (LUT) can be precomputed and stored on the device to shorten
the processing time. Then, in the run-time, pixels are matched to new values
using LUT to generate a stylized output image, which requires less than 2ms to
transfer FHD images.

6 Conclusion and Future Work

To the best of our knowledge, this is the first study on the real-time filter transfer
between two real photos. Our approach resolves a new task called FST (Filter
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Table 3. Run-time comparison on a PC. Steps are divided into two; filter extrac-
tion and application. Tests were done using the machine with Python Numpy, Nvidia
GTX 1080ti, and Intel i7-8700 CPU. We used 256x256 image for filter extraction and
1920x1080 (FHD) for filter application. Note that excluding Epistemic Uncertainty
(EU) in the proposed method can shorten the time required for filter extraction. We
used 10 MC dropouts for EU.

Methods Filter extraction Filter application

Ours (w/o. EU) 28ms 86ms
Ours (full ver.) 132ms 86ms
WCT2 [32] 16ms 943ms
Color Transfer [24] 49ms (single stage)

Table 4. Run-time on a smartphone. We also measured our method in a mobile
environment, Samsung Galaxy S10. We used 256x256 image for filter extraction and
1920x1080 (FHD) for filter application. The filter application is much faster than the
PC version since the mobile version uses GPU parallel processing, while the PC version
partially uses Numpy CPU. Note that we excluded EU from the mobile version.

Methods Filter extraction Filter application

Ours, mobile version 900ms 2ms

Style Transfer), transferring custom filter operation between images, which is
different from previous works of style transfer. Although style transfer methods
yield reasonable outputs in some cases, it does not consistently generate pleasant
outputs in every case and may require an additional effort on tuning the result.
Moreover, arbitrary photorealistic style transfer still provides degraded or ruined
texture, which is not desirable in photo filter extraction.

In a mobile environment, once filter parameters acquired, FST consistently
runs within 2ms to transfer FHD previews in camera applications, which shows
exceptional real-time performance. Moreover, our solution can also perform sim-
ilar to color transfer depending on the regression function, but it still creates
more natural output than any other existing color transfer method.

In the proposed method, a defilterization network can be replaced by any
other network structures. However, note that the performance of the network
directly relates to the performance of filter transfer. In the future, we therefore
plan to work on improving the performance of the defilterization network to
extract the originals from filtered images more accurately. For implicit learning
of semantical objects, it may require to train class labels explicitly as well as
decoder part. If the defilterization network can perfectly extract the original
image, the final result of the filter transfer would be more reliable.
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