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Abstract. Generative Adversarial Networks (GANs) have brought about
rapid progress towards generating photorealistic images. Yet the equi-
table allocation of their modeling capacity among subgroups has received
less attention, which could lead to potential biases against underrepre-
sented minorities if left uncontrolled. In this work, we first formalize the
problem of minority inclusion as one of data coverage, and then pro-
pose to improve data coverage by harmonizing adversarial training with
reconstructive generation. The experiments show that our method out-
performs the existing state-of-the-art methods in terms of data coverage
on both seen and unseen data. We develop an extension that allows ex-
plicit control over the minority subgroups that the model should ensure
to include, and validate its effectiveness at little compromise from the
overall performance on the entire dataset. Code, models, and supplemen-
tal videos are available at GitHub.
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1 Introduction

Photorealistic image generation has increasingly become reality, thanks to the
emergence of large-scale datasets [10,34,51] and deep generative models [28,15,29,32].
However, these advances have come at a cost: there could be potential biases
in the learned model against underrepresented data subgroups [49,57,45,16,17].
The biases are rooted in the inevitable imbalance in the dataset [42], which are
preserved or even exacerbated by the generative models [57]. In particular, re-
constructive (non-adversarial) generative models like variational autoencoders
(VAEs) [28,40] can preserve data biases against minorities due to their objective
of reproducing the frequencies images occur in the dataset, while adversarial
generative models (GANs) [15,39,12,11,37,23,6,24,25] can implicitly disregard
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Fig. 1. The diagram of our method. It harmonizes adversarial (GAN) and reconstruc-
tive (IMLE) training in one framework without introducing an auxiliary encoder. GAN
guides arbitrary sampling towards generating realistic appearances approximate to
some real data while IMLE ensures data coverage where there are always generated
samples approximate to each real data. See Section 3.3 for more details where Gθ and
Dψ represent the trainable generator and discriminator in a GAN, and F represents a
distant metric, in some cases, a pre-trained neural network.

infrequent images due to the well-established problem of mode collapse [46,32],
thereby further introducing model biases on top of data biases. This issue is
particularly acute from the perspective of minority inclusion, because training
data associated with minority subgroups by definition do not form dominant
modes. Consequently, data from minority groups are rare to begin with, and
would not be capable of being produced by the generative model at all due to
mode collapse.

In this work, we aim to improve the comprehensive performance of the state-
of-the-art generative models, with a specific focus on their coverage of minority
subgroups. We start with an empirical study on the correlation between data bi-
ases and model biases, and then formalize the objective of alleviating model bias
in terms of improving data coverage, in particular over the minority subgroups.
We propose a new method known as IMLE-GAN that achieves competitive im-
age quality while ensuring improved coverage of minority groups.

Our method harmonizes adversarial and reconstructive generative models, in
the process combining the benefits of both. Adversarial models have evolved to
generate photorealistic results, whereas reconstructive models offer guarantees
on data coverage. We build upon one of the state-of-the-art implementations of



Inclusive GAN 3

adversarial models, i.e., StyleGAN2 [25], and incorporate it with the Implicit
Maximum Likelihood Estimation (IMLE) framework [32], which is at its core
reconstructive. See Figure 1 for a diagram.

Different from the existing hybrid generative models [29,46,41,4] that require
training an auxiliary encoder network alongside a vanilla GAN, our method op-
erates purely with the standard components of a GAN. This brings two main
benefits: (1) it sidesteps the complication from combining the minimax objective
used by adversarial models and the pure minimization objective used by recon-
structive models, and (2) it avoids carrying over the practical issues of training
auxiliary encoder, like posterior collapse [5,26], which can cause the regression-
to-the-mean problem, leading to blurry images.

We validate our method with thorough experiments and demonstrate more
comprehensive data coverage that goes beyond that of existing state-of-the-art
methods. In addition, our method can be flexibly adapted to ensure the inclusion
of specified minority subgroups, which cannot be easily achieved in the context
of existing methods.

Contributions. We summarize our main contributions as follows: (1) we study
the problem of underrepresented minority inclusion and formalize it as a data
coverage problem in generative modeling; (2) we present a novel paradigm of har-
monizing adversarial and reconstructive modeling for improving data coverage;
(3) our experiments set up a new suite of state-of-the-art performance in terms
of covering both seen and unseen data; and (4) we develop an effective extension
of our technique to ensure inclusion of the specified minority subgroups.

2 Related Work

Bias mitigation efforts for machine learning. Bias in machine learning
results from data imbalance, which can be detected and alleviated by three cat-
egories of approaches: The pre-process approaches that purify data from bias
before training [7,13,14,53], the in-process approaches that enforce fairness dur-
ing training with constraints or regularization in the objectives [22,52,42,55], and
the post-process approaches that adjust the output from a learned model [21,19].
A comprehensive survey [35] articulates this taxonomy. These approaches target
biases in classification and cannot be adapted to generative modeling.

Bias mitigation efforts for generative models. There have been relatively
few papers [49,57,45,16,17] that focus on biases in generative models. [49,45,16],
motivated from benefiting a downstream classifier, mainly aim for fair gener-
ation conditioned on attribute inputs, in terms of yielding allocative decisions
and/or removing the correlation between generation and attribute conditions.
[57] focuses on understanding the inductive bias so as to investigate the gener-
alization of generative models. [17] proposes an importance weighting strategy
to compensate for the biases of learned generative models. Different from their
goals and solutions that equalize performance across different data subgroups
possibly at the cost of overall performance, we instead aim to improve the over-
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all data coverage, with a specific purpose of ensuring more significant gains over
the underrepresented minorities.
Data coverage in GANs. GANs are finicky to train because of the minimax
formulation and the alternating gradient ascent-descent. In addition, GANs are
known to exhibit mode collapse, where the generator only learns to generate
a subset of the modes of the underlying data distribution. To alleviate mode
collapse in GANs, some methods propose to improve the minimax loss func-
tion [36,2,18,1], some methods apply constraints or regularization terms along
with the minimax objectives [9,3,47,50,33], and some other methods aim to mod-
ify the discriminator designs [48,56,37,38]. These directions are orthogonal to our
research while, in principle, demonstrate less effective data coverage than the hy-
brid models below.
Data coverage in hybrid generative models. Reconstructive (non-adversarial)
generative models like variational autoencoders (VAEs) [28,40], on the other
hand, are more successful at data coverage because they explicitly try to maxi-
mize a lower bound on the likelihood of the real data. This motivates a variety of
designs for hybrid models that combine reconstruction and adversarial training.
α-GAN [41] is trained to reconstruct pixels while VAEGAN [29] is trained to re-
construct discriminator features. ALI [12], BiGAN [11], and SVAE [8] propose to
instead jointly match the bidirectional mappings between data and latent distri-
butions. VEEGAN [46] is designed with reconstruction in the latent space, in the
purpose of avoiding the metric dilemma in the data space. Hybrid models benefit
for mode coverage, but deteriorate generation fidelity in practice, because of their
dependency on auxiliary encoder networks. In contrast, our method follows the
idea of hybrid models, but avoids an encoder network and instead apply all train-
ing back-propagation through the generator. A recent non-adversarial generative
framework, Implicit Maximum Likelihood Estimation (IMLE) [32], satisfies our
design. We discuss more about the advantages of IMLE in Section 3.2.

3 Inclusive GAN for Data and Minority Coverage

Our method is a novel paradigm of harmonizing the strengths of adversarial (Sec-
tion 3.1) and reconstructive generative models (Section 3.2) that avoids mode
collapse. The harmonization efforts (Section 3.3) are necessary and non-trivial
due to the incompatibility between the two, which is validated in the supple-
mentary material. In Section 3.4 we show the straightforward adaptation of our
method to improve minority inclusion.

3.1 Adversarial Generation: GANs

Photorealistic image generation can be viewed as the problem of sampling from
the unknown probability distribution of real-world images. Generative Adversar-
ial Networks (GANs) [15] introduce an elegant solution for distribution estima-
tion, which is formulated as a discriminative classification problem, and enables
supervised learning methods to be used for this task.
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A GAN consists of two deep neural networks: a generator Gθ : Rd 7→ RD
and a discriminator Dψ : RD 7→ [0, 1]. The generator maps a latent noise vector
z ∼ N (0, Id) to an image, and the discriminator predicts the probability that
the image it sees is real. The real ground truth images are denoted as x ∼ p̂(x),
sampled from an unknown distribution p̂(x). The discriminator is trained to
maximize classification accuracy while the generator is trained to produce images
that can fool the discriminator. More precisely, the objective is shown in Eq. 1:

min
θ

max
ψ

Ladv(θ, ψ) = Ex∼p̂(x) [logDψ(x)] + Ez∼N (0,Id) [log(1−Dψ(Gθ(z)))]

(1)
Unfortunately, GANs are unstable to train and suffer from mode collapse:

While each generated sample gets to pick a mode it is drawn to, each mode does
not get to pick a generated sample. After training, the generator will not be able
to generate samples around the “unpopular” modes.

Minority modes are precisely the “unpopular” modes that are more likely to
be collapsed. As shown in Section 4.3 and Figure 2, minority subgroups with
diverse appearances indeed bring more challenges to generative modeling and
are allocated worse coverage compared to the others. Therefore, we propose to
leverage reconstructive models to improve the coverage of minority subgroups.

3.2 Reconstructive Generation: IMLE

Our novel paradigm is based on a recent reconstructive framework, Implicit Max-
imum Likelihood Estimation (IMLE) [32], that favors complete mode coverage.
IMLE avoids mode collapse by reversing the direction in which generated sam-
ples are matched to real modes. In GANs, each generated sample is effectively
matched to a real mode. In IMLE, each real mode is matched to a generated sam-
ple. This ensures that all real modes, including each underrepresented minority
mode, are matched, and no real mode is left out.

Mathematically, IMLE tackles the optimization problem in Eq. 2:

min
θ

Ez1,...,zm∼N (0,Id)

[
Ex∼p̂(x)

[
min

i∈{1,...,m}
‖Gθ(zi)− x‖22

]]
(2)

= min
θ

Ez1,...,zm∼N (0,Id)

[
Ex∼p̂(x)

[
‖Gθ(z∗(x))− x‖22

]]
, (3)

where z∗ = argmin
i∈{1,...,m}

‖Gθ(zi)− x‖22 (4)

The joint optimization is achieved by alternating between the two decoupled
phases until convergence. The first phase corresponds to the inner optimization,
where we search for each x the optimal z∗(x) from the latent vector candidates,
given a fixed Gθ. This is implemented by the Prioritized DCI [31], a fast nearest
neighbor search algorithm. The second phase corresponds to the outer optimiza-
tion, where we train the generator in the regular back-propagation manner, given
pairs of (x, z∗(x)).

One significant advantage of IMLE over the other reconstructive models is the
elimination of the need for an auxiliary encoder. The encoder encourages mode
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coverage but at the cost of either deviating the latent sampling distribution from
the original prior (in VAEGAN [29]) or absorbing the training gradients before
substantially back-propagating to the generator (in VEEGAN [46]). Unlike them,
IMLE directly samples latent vector from a natural prior during training and
encourages explicit reconstruction fully upon the generator.

3.3 Harmonizing Adversarial and Reconstructive Generation:
IMLE-GAN

Below we propose a way to harmonize adversarial training with the IMLE frame-
work, so as to ensure both generation quality (precision) and coverage (recall)
simultaneously.

The vanilla hybrid model between IMLE and GAN is to directly add the ad-
versarial loss in Eq. 1 to the non-adversarial loss in Eq. 2. This has two problems
because of (1) differences in the domains over which latent vectors are sampled
and (2) differences in the metric spaces on which GAN and IMLE operate. For
(1), in the case of GAN, a different latent vector is randomly sampled every
iteration, whereas in the case of IMLE, many latent vectors are sampled at once
(over which matching is performed) and are kept fixed for many iterations. The
former gives up control over which data point each latent vector is asked to gen-
erate by the discriminator, but can avoid overfitting to any one latent vector.
The latter explicitly controls which latent vectors are matched to data points,
but can overfit to the set of matched latent vectors until they are resampled. For
(2), in the case of GAN, the discriminator takes the inner product between the
features and the weight vector of the last layer to produce a realism score, and
so it effectively operates on features of images; on the other hand, in the case of
IMLE, matching is performed on raw pixels.

To bridge the gap in losses, we propose two adaptations that better harmonize
the GAN and IMLE objectives. First, to make the domain over which latent
vectors are sampled denser, we augment the matched latent vectors with random
linear interpolations. Second, to make the spaces on which the two losses are
computed more comparable, we measure the reconstruction loss in a deep feature
space instead of pixel space, such that it contains a comparable amount and level
of semantic information to that used by the discriminator. Mathematically, our
goal is to optimize Eq. 5:

min
θ

max
ψ

Ladv(θ, ψ) + Ez1,...,zm∼N (0,Id)

[
λLrec(θ) + βLitp(θ)

]
(5)

Here Ladv(θ, ψ) is as defined in Eq. 1,

Lrec(θ) =Ex∼p̂(x)
[
‖F (Gθ(z

∗(x)))− F (x)‖22
]

(6)

where z∗(x) = argmin
i∈{1,...,m}

‖F (Gθ(zi))− F (x)‖22, (7)

and Litp(θ) =Ex,x̃∼p̂(x),α∼U [0,1]

[
α‖F (Gθ(z

∗(α,x, x̃)))− F (x)‖22+ (8)

(1− α)‖F (Gθ(z
∗(α,x, x̃)))− F (x̃)‖22

]
(9)

where z∗(α,x, x̃) =αz∗(x) + (1− α)z∗(x̃) (10)
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Algorithm 1: IMLE-GAN with Minority Inclusion

Data: Real training data p̂(x) and a specified minority subgroup q̂(y)
Result: A generator Gθ with specified minority inclusion performance
for epoch = {1, . . . , E} do

if epoch % S == 0 then
Sample z1, . . . , zm ∼ N (0, Id) i.i.d.;
for yj ∼ q̂(y) do

z∗(yj)← arg mini∈{1,...,m} ||F (Gθ(zi))− F (yj)||22;
end

end
for xk ∼ p̂(x) and yi,yj ∼ q̂(y) do

Sample z ∼ N (0, Id);

Ladv ← logDψ(xk) + log(1−Dψ(Gθ(z)));
Sample δi, δj ∼ N (0, σId) i.i.d.;
z∗i ← z∗(yi) + δi;
z∗j ← z∗(yj) + δj ;
Lrec ← 1

2
(||F (Gθ(z

∗
i ))− F (yi)||22 + ||F (Gθ(z

∗
j ))− F (yj)||22);

Sample α ∼ U [0, 1];
z∗ij = αz∗i + (1− α)z∗j ;

Litp ← α||F (Gθ(z
∗
ij))− F (yi)||22 + (1− α)||F ((Gθ(z

∗
ij))− F (yj)||22;

L← Ladv + λLrec + βLitp;
ψ = ψ + η∇ψL;
θ = θ − η∇θL;

end

end

Here Eq. 6 generalizes Eq. 3 by computing distance in feature space, where
F (·) is a fixed function to compute features of images. Eq. 8 and 9 defines
the interpolation loss, which linearly interpolates between two matched latent
vectors z∗(x), z∗(x̃) (as shown in Eq. 10) and tries to make the image generated
from the interpolated latent vector z∗(α,x, x̃) similar to the two ground truth
images x, x̃ that correspond to the latent vectors at the endpoints. The weight on
the distance to each ground truth image depends on how close the interpolated
latent vector is to the endpoint, which is denoted by α. λ and β are used to
balance each loss term. We experiment with four possible feature spaces: raw
pixels, discriminator features [29], Inception features [44], and LPIPS features
(i.e.: features such that the `2 distance between them is equivalent to the LPIPS
perceptual metric [54]), and compare them in the the supplementary material.

3.4 Minority Coverage in IMLE-GAN

IMLE-GAN framework is designed to improve the overall mode coverage. One
benefit compared to other hybrid models is that it is straightforward to adapt
it for minority inclusion. We simply need to replace the empirical distribution
over the entire dataset p̂(x) with a distribution q̂(x) whose support only covers
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a specified minority subgroup (i.e.: supp(q̂) ⊂ supp(p̂)) in Eq. 6 and 8 (for re-
constructive training) and leave Eq. 1 unchanged (for adversarial training). This
ensures an explicit coverage over the minority while still carrying out the ap-
proximation to the entire real data. This comes with another advantage: because
q̂(x) in practice has support over a much smaller set than p̂(x), there is less data
imbalance and variance within the support of q̂(x) than in p̂(x), thereby requir-
ing less model capacity to model. As a result, covering q̂(x) should be easier
than covering p̂(x), and so the perceptual quality of samples tend to improve.

We summarize our IMLE-GAN algorithm with minority inclusion in Algo-
rithm 1, where E is the number of training epochs, S indicates how often (in
epochs) to update latent matching, m is the pool size of the latent vector candi-
dates, δi, δj are the additive Gaussian perturbations, and η is the learning rate.
We provide the hyperparameter settings in the supplementary material.

4 Experiments

We articulate the experimental setup in Section 4.1. In Section 4.2 we start with
preliminary validation on Stacked MNIST dataset [36], an easy and interpretable
task. In Section 4.3 we conduct empirical study to analyze the correlation be-
tween data bias and model bias. We then move on to the validation of our two
harmonization strategies in the supplementary material. In Section 4.4 we per-
form comprehensive evaluation and comparisons on CelebA dataset [34], and
finally specify minority inclusion applications in Section 4.5.

4.1 Setup

Datasets. For preliminary study, we employ Stacked MNIST dataset [36] for
explicit data coverage evaluation. 240,000 RGB images in the size of 32×32 are
synthesized by stacking three random digit images from MNIST [30] along the
color channel, resulting in 1,000 explicit modes in a uniform distribution.

We conduct our main experiments on CelebA human face dataset [34], where
the 40 binary facial attributes are used to specify minority subgroups. We sample
the first 30,000 images in the size of 128×128 for GAN training, and sample the
last 3,000 or 30,000 images for validation.
GAN backbone. We build our IMLE-GAN framework on the state-of-the-art
StyleGAN2 [25] architecture for unconditional image generation. We reuse all
their default settings.
Baseline methods. Besides the backbone StyleGAN2 [25], we also compare
our method to eight techniques that show improvement in data coverage and/or
generation diversity: SNGAN [37], Dist-GAN [47], DSGAN [50], PacGAN [33],
ALI [12], VAEGAN [29], α-GAN [41], and VEEGAN [46]. For VAEGAN which
originally involves image reconstruction in the discriminator feature space, we
also experiment with three other distance metrics as discussed in Section 3.3.
For fair comparisons, we replace the original architectures used in all methods
with StyleGAN2. See supplementary material for their parameter settings.
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Table 1. Comparisons on Stacked MNIST dataset. The statistics are calculated from
240,000 randomly generated samples. We indicate for each metric whether a higher (⇑)
or lower (⇓) value is more desirable. We highlight the best performance in bold.

# modes (max 1000) (⇑) KL to uniform (⇓)

StyleGAN2 [25] 940 0.424
SNGAN [37] 571 1.382
DSGAN [50] 955 0.343
PacGAN [33] 908 0.638
ALI [12] 956 0.680
VAEGAN [29] 929 0.534
VEEGAN [46] 987 0.310
Ours LPIPS interp 997 0.200

Evaluation. For Stacked MNIST, following [36,46], we report the number of
generated modes that is detected by a pre-trained mode classifier, as well as the
KL divergence between the generated mode distribution and the uniform distri-
bution. The statistics are calculated from 240,000 randomly generated samples.

For CelebA, Fréchet Inception Distance (FID) [20] is used to reflect both data
quality (precision) and coverage (recall) in an entangled manner. We also explic-
itly measure the Precision and Recall [43] of a generative model w.r.t. the real
dataset in the Inception space. Moreover, to emphasize on instance-level data
coverage, we further include Inference via Optimization Measure (IvOM) [36]
into our metric suite, which measures the mean retrieval error from a genera-
tive model given each query image. We also report the standard deviation of
IvOM across 40 CelebA attributes, in order to evaluate the balance of genera-
tive coverage. For the generalization purpose, we evaluate over both the training
set and a validation set (unseen during training). More details of the evaluation
implementation are in the supplementary material.

4.2 Preliminary Study on Stacked MNIST

In a real-world data distribution, the notion of modes is difficult to quantize. We
instead start with Stacked MNIST [36] where 1,000 discrete modes are unam-
biguously synthesized. This allows us to zoom in the challenge of mode collapse
and facilitate a precise pre-validation.

We report the evaluation in Table 1. Our method narrows down the gap
between experimental performance and the theoretical limit: It covers the most
number of modes and achieves the closest mode distribution to the uniform
distribution ground truth. This study validates the improved effectiveness of
harmonizing IMLE with GAN, compared to the other GAN models or hybrid
models, in terms of explicit mode/data coverage. This sheds the light and pre-
qualifies to apply our method on more complicated real-world datasets.
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Fig. 2. Visualizations for data and model biases. Left: Sorted CelebA attribute his-
togram with a balance point marked by the red dashed line. Right: Sorted Inception
feature variance per attribute. Middle: Per-attribute mean IvOM over 30,000 CelebA
training samples for StyleGAN2 (red) and for our method (blue), where each bar cor-
responds to one attribute.

4.3 Empirical Study on Data and Model Biases

As discussed in Section 2, data biases lead to biases in generative models. Even
worse, a model without attention to minorities can exacerbate such biases against
allocating adequate representation capacities to them. In this empirical study,
we first show the existence of biases across CelebA attributes in terms of sample
counts and sample variance, and then correlate them to the biased performance
of the backbone StyleGAN2 [25].

As shown in the left barplot of Figure 2, given the attribute histogram over
30,000 samples, 29 out of 40 binary attributes are more than 50% biased from the
balance point (15,000 out of 30,000 samples with a positive attribute annotation,
shown as the red dashed line). On the other hand, in the right barplot of Figure 2,
we calculate the standard deviation of Inception features [44] of samples within
each attribute, and notice a wide range spanning from 0.038 to 0.062.

Too few samples or too large appearance variance in one attribute discourages
generative coverage for that attribute, and thus results in biases. To quantify the
per-attribute coverage, we measure the mean IvOM [36] over positive training
samples. A larger value indicates a worse coverage. In the middle barplot of
Figure 2, we visualize the correlation between IvOM and the joint distribution
of sample counts and sample variance. There is a clear gradient trend of IvOM
when the samples of an attribute turn rarer and/or more diverse. To validate
such a strong correlation, we first normalize the sample counts and sample vari-
ance across attributes by their means and standard deviations. Then we simply
add them up as a joint variable vector, and calculate its Spearman’s ranking cor-
relation to the per-attribute IvOM. For StyleGAN2 (the red bar), the correlation
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Table 2. Comparisons on CelebA dataset. We indicate for each metric whether a
higher (⇑) or lower (⇓) value is more desirable. The first part corresponds to the
comparisons among different methods. For VAEGAN we report the results based on
LPIPS distance metric. We report additional results based on the other three metrics
in the supplementary material. We highlight the best performance in bold and the
second best performance with underline. We visualize the radar plots in Figure 3 for
the comprehensive evaluation of each method over the validation set. The second part
corresponds to our minority inclusion model variants in Section 4.5.

FID30k Precision30k Recall30k IvOM3k IvOM3k std
⇓ ⇑ ⇑ ⇓ ⇓

Method Train Val Train Val Train Val Train Val Train Val

StyleGAN2 [25] 9.37 9.49 0.855 0.844 0.730 0.741 0.303 0.302 0.0268 0.0264
SNGAN [37] 13.32 13.24 0.792 0.787 0.631 0.616 0.325 0.322 0.0274 0.0261
Dist-GAN [47] 30.97 30.44 0.511 0.595 0.360 0.385 0.282 0.280 0.0220 0.0209
DSGAN [50] 14.29 14.00 0.868 0.862 0.679 0.724 0.301 0.300 0.0227 0.0220
PacGAN [33] 15.05 15.12 0.870 0.869 0.726 0.758 0.311 0.308 0.0256 0.0238
ALI [12] 10.09 10.06 0.842 0.867 0.688 0.710 0.298 0.297 0.0240 0.0245
VAEGAN [29] LPIPS 24.10 23.47 0.878 0.851 0.572 0.560 0.318 0.315 0.0284 0.0272
α-GAN [41] 12.65 12.53 0.803 0.810 0.757 0.763 0.267 0.267 0.0208 0.0192
VEEGAN [46] 16.34 16.13 0.752 0.768 0.660 0.695 0.260 0.269 0.0190 0.0181
Ours LPIPS interp 11.56 11.28 0.927 0.941 0.849 0.848 0.255 0.262 0.0193 0.0195

Ours Eyeglasses 13.54 14.43 0.914 0.910 0.890 0.895 0.255 0.265 0.0249 0.0193
Ours Bald 13.34 13.46 0.903 0.895 0.886 0.892 0.268 0.272 0.0381 0.0227
Ours EN&HM 15.18 15.00 0.885 0.891 0.830 0.842 0.268 0.270 0.0318 0.0277
Ours BUE&HC&A 14.27 13.85 0.878 0.874 0.871 0.884 0.262 0.266 0.0300 0.0254

Fig. 3. Radar plots for the first part of Table 2. “P” represents Precision, “R” represents
Recall, and “Std” represents IvOM standard deviation. Values have been normalized
to the unit range, and axes are inverted so that the higher value is always better.

coefficient of 0.75 indicates a strong correlation between data biases and model
biases. This evidences the urgency to mitigate biases against the rare and diverse
samples, in another word, to enhance the coverage over minority subgroups.
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Fig. 4. Retrieval samples on the left (used for IvOM evaluation) and random generation
samples on the right (used for FID, precision, and recall evaluation). The query images
for retrieval in the top left row are real and unseen during training.

4.4 Comparisons on CelebA

In Section 3.3 we propose two strategies to harmonize adversarial and recon-
structive training: the deep distance metric and the interpolation-based aug-
mentation. We compare four distance metrics and with/without augmentation
in the supplementary material. We obtain: (1) LPIPS similarity shows near-
top performance all around measures; and (2) interpolation-based augmentation
consistently benefits all the measures in general for all the distance metrics. We
therefore employ both into our full method.
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To evaluate our data coverage performance in practice, we conduct compre-
hensive comparisons on CelebA [34] against baseline methods. The first part of
Table 2 show our comparisons. Figure 3 assists interpret the table. We find:

(1) FID is not a gold standard to reflect the entire capability of a generative
model, as it ranks differently from the other metrics.

(2) Compared to the original backbone StyleGAN2 which achieves the second-
best FID, our full method (“Ours LPIPS interp”) trades slight FID deterioration
for significant boosts in all the other metrics. This is meaningful because pre-
cision (FID) can be traded off at the expense of recall (Recall, IvOM) via the
truncation trick used in [6,25], while the opposite direction is infeasible.

(3) Our full method outperforms all the existing state-of-the-art techniques in
terms of Precision, Recall, and IvOM, where the latter two are the key evidence
for effective data coverage. The last radar plot in Figure 3 shows our method
achieves near-top measures all around with the most balanced performance.

(4) Our method also achieves the top-3 performance in the standard deviation
of per-attribute IvOM, indicating an equalized capacity across the attribute
spectrum. The blue bars in the middle barplot of Figure 2 also visualize our
method consistently outperforms StyleGAN2 (red bars) for all the attributes, in
particular with more significant improvement for the minority subgroups.

(5) Figure 4 shows qualitative comparisons in terms of query retrieval and
uncurated random generation. StyleGAN2 suffers from mode collapse. For the
collapsed modes, our method significantly improves the generation from non-
existence of rare attributes to good quality (hat, sunglasses, etc.). Our method
also demonstrates desirable generation fidelity and diversity.

(6) All the conclusions above generalize well to unseen data, as evidenced by
the “Val” columns in Table 2.

4.5 Extension to Minority Inclusion

We adapt our method for ensuring specific coverage over minority subgroups
(Algorithm 1). Without introducing unconscious bias on the CelebA attributes,
we arbitrarily specify four sets of attributes, the samples of which count for
no more than 6% of the population, and therefore, constitute four minority
subgroups respectively. The attribute sets and their portions are listed in the
first column of Table 3.

To validate minority inclusion, we first compare our minority model variants
over the corresponding minority subsets against the backbone StyleGAN2 and
against our general full model. See Table 3 for the results. Our minority variants
consistently outperform the two baselines over all the minority subgroups. In
Figure 5, our method retrieves the minority attributes the most accurately, even
for the subtle attributes like eye bags where StyleGAN2 fails. It validates better
training data utilization of our minority models. Additional results are shown in
the supplementary material.

To validate the overall performance beyond minority subgroups, we show at
the bottom of Table 2 the performance on the entire attribute spectrum. We



14 Ning Yu et al.

Table 3. Comparisons on CelebA minority subgroups, where the percentages show
their portion w.r.t. the entire population. The metrics are measured on the corre-
sponding subgroups only. We indicate for each metric whether a higher (⇑) or lower
(⇓) value is more desirable. We highlight the best performance in bold.

Precision1k Recall1k IvOM1k
minority only minority only minority only

Arbitrary minority ⇑ ⇑ ⇓
subgroup Method Train Val Train Val Train Val

StyleGAN2 [25] 0.719 0.704 0.582 0.589 0.355 0.352
Eyeglasses Ours LPIPS interp 0.843 0.845 0.740 0.708 0.309 0.308
(6%) Ours Eyeglasses 0.904 0.919 0.897 0.892 0.261 0.288

StyleGAN2 [25] 0.707 0.750 0.461 0.424 0.301 0.305
Bald Ours LPIPS interp 0.763 0.783 0.666 0.670 0.269 0.273
(2%) Ours Bald 0.779 0.718 0.842 0.810 0.189 0.273

Narrow Eyes StyleGAN2 [25] 0.719 0.701 0.543 0.577 0.272 0.274
&Heavy Makeup Ours LPIPS interp 0.794 0.760 0.632 0.621 0.246 0.248
(4%) Ours EN&HM 0.799 0.766 0.698 0.696 0.194 0.244

Bags Under Eyes StyleGAN2 [25] 0.838 0.804 0.736 0.725 0.263 0.268
&High Cheekbones Ours LPIPS interp 0.816 0.831 0.700 0.742 0.237 0.241
&Attractive (4%) Ours BUE&HC&A 0.889 0.883 0.813 0.809 0.191 0.237

conclude that the improvement of all our minority models comes at little or no
compromise from their performance on the overall dataset.

5 Conclusion

In this paper, we formalized the problem of minority inclusion as one of data
coverage and improved data coverage using a novel paradigm that harmonizes
adversarial training (GAN) with reconstructive generation (IMLE). Our method
outperforms state-of-the-art methods in terms of Precision, Recall, and IvOM
on CelebA, and the improvement generalizes well on unseen data. We further
extended our method to ensure explicit inclusion for minority subgroups at little
or no compromise on overall full-dataset performance. We believe this is an
important step towards fairness in generative models, with the aim to reduce
and ultimately prevent discrimination due to model and data biases.
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Fig. 5. Retrieval samples according to different minority subgroups. The query images
for retrieval in the top row of each sub-figure are real from the training set.
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11. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: ICLR
(2016) 1, 4



16 Ning Yu et al.

12. Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M.,
Courville, A.: Adversarially learned inference. In: ICLR (2016) 1, 4, 8, 9, 11, 18

13. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. In: Proceedings of the 3rd innovations in theoretical computer science con-
ference (2012) 3

14. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.:
Certifying and removing disparate impact. In: KDD (2015) 3

15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: NeurIPS (2014) 1, 4

16. Grover, A., Choi, K., Shu, R., Ermon, S.: Fair generative modeling via weak su-
pervision. arXiv (2019) 1, 3

17. Grover, A., Song, J., Kapoor, A., Tran, K., Agarwal, A., Horvitz, E.J., Ermon,
S.: Bias correction of learned generative models using likelihood-free importance
weighting. In: NeurIPS (2019) 1, 3

18. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: NeurIPS (2017) 4

19. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
In: NeurIPS (2016) 3

20. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS
(2017) 9, 18

21. Kamiran, F., Calders, T., Pechenizkiy, M.: Discrimination aware decision tree
learning. In: ICDM (2010) 3

22. Kamishima, T., Akaho, S., Sakuma, J.: Fairness-aware learning through regular-
ization approach. In: ICDM Workshops (2011) 3

23. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. In: ICLR (2018) 1

24. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: CVPR (2019) 1

25. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: CVPR (2020) 1, 3, 8, 9, 10, 11,
13, 14, 18, 20

26. Kim, Y., Wiseman, S., Miller, A.C., Sontag, D., Rush, A.M.: Semi-amortized vari-
ational autoencoders. In: ICML (2018) 3

27. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2015) 18, 19
28. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014) 1, 4
29. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond

pixels using a learned similarity metric. In: ICML (2016) 1, 3, 4, 6, 7, 8, 9, 11, 18,
20

30. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE (1998) 8

31. Li, K., Malik, J.: Fast k-nearest neighbour search via prioritized dci. In: ICML
(2017) 5

32. Li, K., Malik, J.: Implicit maximum likelihood estimation. arXiv (2018) 1, 2, 3, 4,
5

33. Lin, Z., Khetan, A., Fanti, G., Oh, S.: Pacgan: The power of two samples in gen-
erative adversarial networks. In: NeurIPS (2018) 4, 8, 9, 11, 18

34. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
ICCV (2015) 1, 8, 13, 18

35. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning (2019) 3



Inclusive GAN 17

36. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial
networks. In: ICLR (2017) 4, 8, 9, 10, 18

37. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. In: ICLR (2018) 1, 4, 8, 9, 11, 18

38. Peng, X.B., Kanazawa, A., Toyer, S., Abbeel, P., Levine, S.: Variational discrimina-
tor bottleneck: Improving imitation learning, inverse rl, and gans by constraining
information flow (2019) 4

39. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. In: ICLR (2016) 1

40. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and varia-
tional inference in deep latent gaussian models. In: ICML (2014) 1, 4

41. Rosca, M., Lakshminarayanan, B., Warde-Farley, D., Mohamed, S.: Variational
approaches for auto-encoding generative adversarial networks. arXiv (2017) 3, 4,
8, 11, 18

42. Ryu, H.J., Adam, H., Mitchell, M.: Inclusivefacenet: Improving face attribute de-
tection with race and gender diversity (2018) 1, 3

43. Sajjadi, M.S., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.: Assessing generative
models via precision and recall. In: NeurIPS (2018) 9, 18

44. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. In: NeurIPS (2016) 7, 10, 20

45. Sattigeri, P., Hoffman, S.C., Chenthamarakshan, V., Varshney, K.R.: Fairness gan:
Generating datasets with fairness properties using a generative adversarial network
(2019) 1, 3

46. Srivastava, A., Valkov, L., Russell, C., Gutmann, M.U., Sutton, C.: Veegan: Reduc-
ing mode collapse in gans using implicit variational learning. In: NeurIPS (2017)
2, 3, 4, 6, 8, 9, 11, 18

47. Tran, N.T., Bui, T.A., Cheung, N.M.: Dist-gan: An improved gan using distance
constraints. In: ECCV (2018) 4, 8, 11, 18

48. Warde-Farley, D., Bengio, Y.: Improving generative adversarial networks with de-
noising feature matching. In: ICLR (2017) 4

49. Xu, D., Yuan, S., Zhang, L., Wu, X.: Fairgan: Fairness-aware generative adversarial
networks. In: Big Data (2018) 1, 3

50. Yang, D., Hong, S., Jang, Y., Zhao, T., Lee, H.: Diversity-sensitive conditional
generative adversarial networks. In: ICLR (2019) 4, 8, 9, 11, 18

51. Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: Lsun: Construction of a large-scale
image dataset using deep learning with humans in the loop. arXiv (2015) 1

52. Zafar, M.B., Valera, I., Rodriguez, M.G., Gummadi, K.P.: Fairness constraints:
Mechanisms for fair classification. In: AISTATS (2017) 3

53. Zhang, L., Wu, Y., Wu, X.: A causal framework for discovering and removing direct
and indirect discrimination. In: IJCAI (2017) 3

54. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018) 7, 18, 19,
20

55. Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.W.: Men also like
shopping: Reducing gender bias amplification using corpus-level constraints. In:
EMNLP (2017) 3

56. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network.
In: ICLR (2017) 4

57. Zhao, S., Ren, H., Yuan, A., Song, J., Goodman, N., Ermon, S.: Bias and gen-
eralization in deep generative models: An empirical study. In: NeurIPS (2018) 1,
3



18 Ning Yu et al.

7 Supplementary material

A Implementation Details

IMLE-GAN. We train each model using Adam optimizer [27] for K = 300
epochs. We use no exponential decay rate (β1 = 0.0) for the first moment es-
timates, and use the exponential decay rate β2 = 0.99 for the second moment
estimates. The learning rate η = 0.002, the same as in StyleGAN2 [25]. We up-
date the matching of latent vectors to data points every S = 20 epochs. The
size of the pool of latent vector candidates is 10 times of the size of the dataset
or the minority group depending on the application. Perturbation variance is
σ2 = 0.052. The weight of the reconstruction loss varies according to the choice
of metric, such that the magnitude of the reconstruction loss is about equal to
that of the adversarial loss. For `2 distance in pixel space, λ = 36. In the dis-
criminator feature space [29] λ = 9.6 × 106. In the Inception feature space [20]
λ = 10. For LPIPS [54] λ = 2.5. Consistently, the weight of the interpolation
loss is always set to β = 0.4λ.

We train all our models on 3 NVIDIA V100 Tensor Core GPUs with 16GB
memory each. Based on the memory available and the training performance, we
set the batch size at 32 for the 240,000 32×32×3 Stacked MNIST images [36],
and the training lasts for 1.7 days. We set the batch size at 16 for the 30,000
128×128×3 CelebA images [34], and the training lasts for 2.4 days.
Baseline methods. For fair comparisons, all the baseline methods are re-
implemented using the same StyleGAN2 backbone and training strategies. For
ALI [12], VAEGAN [29], α-GAN [41], and VEEGAN [46] where an encoder
is involved, we adapt the discriminator architecture for the encoder. For Dist-
GAN [47], we measure image distance by LPIPS [54] and tune the weight of the
distance constraint term such that its value is about 1/4 of the adversarial loss.
For DSGAN [50], we tune the weight of the diversity regularization term such
that its value is about 1/4 of the adversarial loss. For PacGAN [33], we set the
pack size to 8. For VAEGAN [29], we tune the weights of the data reconstruction
term and the prior term such that the former is about equal to the adversarial
loss and the latter is about 1/4 of that. For α-GAN [41], we use LPIPS dis-
tance [54] to reconstruct images and tune the weight of the reconstruction term
such that its value is about 1/4 of the adversarial loss. For VEEGAN [46], we
tune the weight of the latent reconstruction term such that its value is about
equal to the adversarial loss. For SNGAN [37] and ALI [12], there is no additional
hyperparameter.
Evaluation. For Precision and Recall [43] measurement, we use the default
setting from their official code repository. In particular, the features are extracted
from the Pool3 layer of a pre-trained Inception network [20]. The number of
clusters for k-means is set to 20. We launched for 10 independent runs and report
the average for Precision and Recall. For IvOM [36] measurement, the retrieval
is implemented as an optimization w.r.t. the latent vector, such that a learned
generator approximates its generation towards the query image. The retrieval
error is then calculated as the difference between the optimal generated image
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and the query image. The optimization objective and the error are measured
using the deep similarity metric LPIPS [54]. Given each query image and a
learned generative model, we optimized the latent vector via Adam [27] for
400 steps. The learning rate setting strategy is the same as in StyleGAN2: the
maximum learning rate is 0.1, and it is ramped up from zero linearly during the
first 20 steps and ramped down to zero using a cosine schedule during the last
100 steps.

B Effectiveness of Harmonization

In Section 3.3 in the main paper, we propose two strategies to harmonize adver-
sarial and reconstructive training: the deep distance metric and the interpolation-
based augmentation. We compare four distance metrics and with/without aug-
mentation in the third part of Table 4. For distance metrics, the pixel space (the
vanilla version) achieves the desirable Recall and the Inception space achieves
the desirable FID, but they contain obvious shortcomings in the other measures.
In contrast, the LPIPS similarity shows near-top measures all around with the
most balanced performance, which is employed in our full method. For augmen-
tation, it consistently benefits all the measures in general for all the distance
metrics, which is also employed. In summary, harmonizing GAN and IMLE is a
non-trivial challenge. Our two strategies achieve the best of the two worlds by
significantly improving the overall performance (including data coverage) from
the vanilla version.

For completeness, in Table 4 second part we also compare to VAEGAN which
is alternatively incorporated with different distance metrics. Although LPIPS
metric boosts our method the most, we find Inception space boosts VAEGAN
the most. But it is still not as advantageous as our performance in general,
especially for Recall and IvOM which corresponds to data coverage.

The radar plots in Figure 6 assist interpret Table 4.

C Additional Results on Minority Inclusion

In order to dynamically demonstrate the effectiveness of our minority inclusion
models, we are attaching four videos at GitHub. The videos show the results of
interpolating in the latent space from one arbitrary image to another image with
specific attribute(s). In this way we show our minority inclusion model variants
perform comparably to the other models for majority groups, and outperform
the others for minority groups.

In each video, the leftmost column is an arbitrary real image and the right-
most column is an arbitrary real image with specific attribute(s) of interest. For
each generative model, we project the image in the leftmost column onto its la-
tent space (i.e.: we find the latent vector that results in a generated image that
is most perceptually similar to the image according to LPIPS [54]), and then
interpolate starting from this latent vector. We do the same for the image in
the rightmost column and use the resulting latent vector as the target for inter-
polation. The sub-videos in the middle three columns are the images produced

https://github.com/ningyu1991/InclusiveGAN.git
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Table 4. Comparisons on CelebA dataset. We indicate for each metric whether a
higher (⇑) or lower (⇓) value is more desirable. We highlight the best performance in
bold and the second best performance with underline. We visualize the radar plots in
Figure 6 for the comprehensive evaluation of each method over the validation set.

FID30k Precision30k Recall30k IvOM3k IvOM3k std
⇓ ⇑ ⇑ ⇓ ⇓

Method Train Val Train Val Train Val Train Val Train Val

StyleGAN2 [25] 9.37 9.49 0.855 0.844 0.730 0.741 0.303 0.302 0.0268 0.0264

VAEGAN [29] 18.26 18.14 0.738 0.733 0.782 0.779 0.310 0.307 0.0264 0.0246
VAEGAN pixel 28.89 28.49 0.689 0.683 0.573 0.594 0.323 0.320 0.0259 0.0256
VAEGAN Inception 8.35 8.47 0.875 0.872 0.687 0.687 0.298 0.295 0.0248 0.0235
VAEGAN LPIPS 24.10 23.47 0.878 0.851 0.572 0.560 0.318 0.315 0.0284 0.0272

Ours pixel 34.94 34.46 0.774 0.771 0.751 0.763 0.272 0.280 0.0199 0.0222
Ours pixel interp 32.54 31.82 0.828 0.828 0.882 0.879 0.265 0.277 0.0207 0.0231
Ours Dfeature [29] 28.85 28.34 0.793 0.808 0.811 0.814 0.255 0.271 0.0188 0.0227
Ours Dfeature interp 22.38 21.92 0.849 0.842 0.806 0.826 0.263 0.277 0.0189 0.0219
Ours Inception [44] 14.86 14.95 0.859 0.853 0.675 0.706 0.294 0.299 0.0232 0.0237
Ours Inception interp 11.62 11.61 0.843 0.861 0.704 0.712 0.301 0.303 0.0234 0.0249
Ours LPIPS [54] 12.30 12.10 0.916 0.936 0.835 0.843 0.256 0.263 0.0194 0.0195
Ours LPIPS interp 11.56 11.28 0.927 0.941 0.849 0.848 0.255 0.262 0.0193 0.0195

Fig. 6. Radar plots for Table 4. “P” represents Precision, “R” represents Recall, and
“Std” represents IvOM standard deviation. Values have been normalized to the unit
range, and axes are inverted so that the higher value is always better.

by three methods: StyleGAN2 [25], our general IMLE-GAN model described in
Section 3.3 and 4.4 in the main paper (“Ours LPIPS interp”), and our IMLE-
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GAN model with specific minority inclusion described in Section 3.4 and 4.5 in
the main paper (Ours attributeA&attributeB). The four videos correspond to the
four arbitrarily selected attributes or attribute combinations used in Section 4.5
in the main paper: Eyeglasses, Bald, Narrow Eyes&Heavy Makeup (NE&HM ),
and Bags Under Eyes&High Cheekbone&Attractive (BUE&HC&A). For conve-
nience, we show the last frame of each video in Figure 7, where each generated
image is the projection of the rightmost image (a real image from the minority
group) onto the space of images learned by each generative model.

We note from the qualitative comparisons that incorporating minority inclu-
sion in the training objective ensures coverage of the specified minority group,
with little or no compromise from their performance on the majority. For exam-
ple, in each video, at the beginning the three models are comparably representa-
tive for the arbitrary real image from the majority group (the leftmost column).
As the latent vector transitions towards the corresponding minority region (the
rightmost column), the attribute appearances of the minority group are not re-
constructed accurately by the two models without an explicit focus on minority
attributes (the second and third columns from the left). On the contrary, our
minority inclusion model (the second column from the right) effectively repre-
sents the desired minority attributes, e.g., sunglasses, narrow eye shapes, or eye
bags.
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(a) Minority: Eyeglasses

(b) Minority: Bald

(c) Minority: Narrow Eyes&Heavy Makeup

(d) Minority: Bags Under Eyes&High Cheekbone&Attractive

Fig. 7. The last frame of each video in the attachment and also at GitHub. Each of
the middle three columns denotes a generated image from a learned model, the latent
vector of which is projected from the image in the rightmost column (a real image from
one minority subgroup).

https://github.com/ningyu1991/InclusiveGAN.git

