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Abstract. Image landmark detection aims to automatically identify the
locations of predefined fiducial points. Despite recent success in this field,
higher-ordered structural modeling to capture implicit or explicit re-
lationships among anatomical landmarks has not been adequately ex-
ploited. In this work, we present a new topology-adapting deep graph
learning approach for accurate anatomical facial and medical (e.g., hand,
pelvis) landmark detection. The proposed method constructs graph sig-
nals leveraging both local image features and global shape features. The
adaptive graph topology naturally explores and lands on task-specific
structures which are learned end-to-end with two Graph Convolutional
Networks (GCNs). Extensive experiments are conducted on three public
facial image datasets (WFLW, 300W, and COFW-68) as well as three
real-world X-ray medical datasets (Cephalometric (public), Hand and
Pelvis). Quantitative results comparing with the previous state-of-the-
art approaches across all studied datasets indicating the superior perfor-
mance in both robustness and accuracy. Qualitative visualizations of the
learned graph topologies demonstrate a physically plausible connectivity
laying behind the landmarks.
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1 Introduction

Image landmark detection has been a fundamental step for many high-level
computer vision tasks to extract and distill important visual contents, such as
image registration [23], pose estimation [], identity recognition [77] and image
super-resolution [5]. Robust and accurate landmark localization becomes a vital
component determining the success of the downstream tasks.

Recently, heatmap regression based methods [6274/4955] have achieved en-
couraging performance on landmark detection. They model landmark locations
as heatmaps and train deep neural networks to regress the heatmaps. Despite
popularity and success, they usually suffer from a major drawback of lacking a
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global representation for the structure/shape, which provides high-level and reli-
able cues in individual anatomical landmark localization. As a result, heatmap-
based methods could make substantial errors when being exposed to large ap-
pearance variations such as occlusions.

In contrast, coordinate regression based methods [36/7TJ69J54] have an innate
potential to incorporate structural knowledge since the landmark coordinates are
directly expressed. Most existing methods initialize landmark coordinates using
mean or canonical shapes, which indirectly inject weak structural knowledge [54].
While the exploitation of the structural knowledge in existing methods has still
been insufficient as well as further exploitation of the structural knowledge con-
sidering the underlying relationships between the landmarks. Effective means for
information exchange among landmarks to facilitate landmark detection are also
important but have yet to be explored. Due to these limitations, the performance
of the latest coordinate-based methods [63] falls behind the heatmap-based ones
[58].

In this work, we introduce a new topology-adapting deep graph learning ap-
proach for landmark detection, termed Deep Adaptive Graph (DAG). We model
the landmarks as a graph and employ global-to-local cascaded Graph Convolu-
tional Networks (GCNs) to move the landmarks towards the targets in multiple
steps. Graph signals of the landmarks are built by combining local image features
and graph shape features. Two GCNs operate in a cascaded manner, with the
first GCN estimating a global transformation of the landmarks and the second
GCN estimating local offsets to further adjust the landmark coordinates. The
graph topology, represented by the connectivity weights between landmarks, are
learned during the training phase.

By modeling landmarks as a graph and processing it with GCNs, our method
is able to effectively exploit the structural knowledge and allow rich informa-
tion exchange among landmarks for accurate coordinate estimation. The graph
topology learned for landmark detection task is capable of revealing reasonable
landmark relationships for the given task. It also reduces the need for manu-
ally defining landmark relations (or grouping), making our method to be easily
adopted for different tasks. By incorporating shape features into graph signal in
addition to the local image feature, our model can learn and exploit the land-
mark shape prior to achieve high robustness against large appearance variations
(e.g., occlusions). In summary, our main contributions are four-fold:

1. By representing the landmarks as a graph and detecting them using GCNs,
our method effectively exploits the structural knowledge for landmark co-
ordinate regression, closes the performance gap between coordinate- and
heatmap-based landmark detection methods.

2. Our method automatically reveals physically meaningful relationships among
landmarks, leading to a task-agnostic solution for exploiting structural knowl-
edge via step-wise graph transformations.

3. Our model combines both visual contextual information and spatial posi-
tional information into the graph signal, allowing structural shape prior to
be learned and exploited.
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4. Comprehensive quantitative evaluations and qualitative visualizations on six
datasets across both facial and medical image domains demonstrate the con-
sistent state-of-the-art performance and general applicability of our method.

2 Related Work

A large number of studies have been reported in this domain including the clas-
sic Active Shape Models [B7JI312], Active Appearance Models [I1/46/33], Con-
straind Local Models [T4)3I45I3T], and more recently the deep learning based
models which can be further categorized into heatmap or regression based mod-
els.

Heatmap Based Landmark Detection: These methods [60/385T49/39/T0]
generate localized predictions of likelihood heatmaps for each landmark and
achieve encouraging performances. A preliminary work by Wei et al. [60] intro-
duce a Convolutional Pose Machine (CPM) which models the long-range depen-
dency with a multistage network. Newell et al. [38] propose a Stacked Hourglass
model leveraging the repeated bottom-up and top-down structure and intermedi-
ate supervision. Tang et al. [51] investigate a stacked U-Net structure with dense
connections. Lately, Sun et al. [49] present a deep model named High-Resolution
Network (HRNet18) which extracts feature maps in a joint deep and high reso-
lution manner via conducting multi-scale fusions across multiple branches under
different resolutions. Based on these models, other methods also integrate ad-
ditional supervision cues such as the object structure constraints [64I78], the
variety of image, and object styles [I8J42] to solve specific tasks.

Coordinate Based Landmark Detection: Another common approach
directly locates landmark coordinates from input images [53I50I54I36I75134/48].
Most of these methods consist of multiple steps to progressively update pre-
dictions based on visual signals, widely known as Cascaded-Regression. Toshev
et al. [53] and Sun et al. [50] adopt cascaded Convolutional Neural Networks
(CNNs) to predict landmark coordinates. Trigeorgis et al. [54] model the cas-
caded regression process using a Recurrent Neural Network (RNN) based deep
structure. Lv et al. [36] propose a two-stage regression model with global and
local reinitializations. From different perspectives, Zhu et al. [75] investigate the
methods of optimal initialization by searching the object shape space; Valle et al.
[65] present a combined model with a tree structured regressor to infer landmark
locations based on heatmap prediction results; Wu et al. [63] leverage uniqueness
and discriminative characteristics across datasets to assist landmark detection.

Landmark Detection with Graphs: The structure of landmarks can be
naturally modeled as a graph considering the landmark locations and landmark
to landmark relationships [73I67/45I68/75]. Zhou et al. [73] propose a Graph-
Matching method which obtains landmark locations by selecting the set of land-
mark candidates that would best fit the shape constraints learned from the
examplars. Yu et al. [68] describe a two-stage deformable shape model to first
extract a coarse optimum by maximizing a local alignment likelihood in the re-
gion of interest then refine the results by maximizing an energy function under
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Fig. 1: Overview of the proposed Deep Adaptive Graph (DAG). Initial graph is
initialized with the mean value computed from training data. We first deform
the landmark graph through a perspective transformation predicted by GCN-
global and then precisely shift the graph by GCN-local through iterations. The
visual features and shape features are re-interpolated from feature map and re-
calculated after each GCN module, respectively.

shape constraints. Later, Yu et al. [67] present a hierarchical model to extract
semantic features by constructing intermediate graphs from bottom-up node
clustering and top-down graph deconvolution operations, leveraging the graph
layout information. Zou et al. [78] introduce a landmark structure construction
method with covering set algorithm. While their method is based on heatmap
detection results, we would like to directly regress landmark locations from raw
input image to avoid potential errors incurred from heatmap detections.

Recently, Ling et al. [32] propose a fast object annotation framework, where
contour vertices are regressed using GCN to perform segmentation, indicating
the benefit of position prediction with iterative message exchanges. In their task,
each point is considered with the same semantics towards coarse anonymous
matching which is not appropriate for precise targeted localization tasks like
landmark detection. Adaptively learning graph connectivities instead of em-
ploying a fixed graph structure based on prior knowledge should be explored
to improve the model’s generalizability to different tasks.

3 Method

Our method adopts the cascaded-regression framework, where given the input
image and initial landmarks (from the mean shape), the predicted landmark co-
ordinates are updated in multiple steps. Yet differently, we feature the cascaded-
regression framework with a graph representation of the landmarks, denoted by
G = (V,E,F), where V = {v;} denotes the landmarks, F = {e;;} denotes the
learned connectivity between landmarks and F = {f;} denotes graph signals
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capturing appearance and shape information. The graph is processed by cas-
caded GCNs to progressively update landmark coordinates. An overview of our
method is shown in Figure [I] Details of the cascaded GCNs, graph signal and
learned connectivity are presented in Section Section [3.2] and Section [3.3
respectively. The training scheme of our method can be found in Section

3.1 Cascaded GCNs

Given a graph representation of landmarks G = (V, E, F'), two-stage cascaded
GCN modules are employed to progressively update the landmark coordinates.
The first stage, GCN-global, estimates a global transformation to coarsely move
the landmarks to the targets. The second stage, GCN-local, estimates local land-
mark coordinate offsets to iteratively move the landmarks toward the targets.
Both modules employ the same GCN architecture (weights not shared) and the
same learnable graph connectivity.

Graph Convolution: Given a graph connectivity £ and a graph feature
F, the k-th graph convolution operation updates the i-th node feature f] by
aggregating all node features weighted by the connectivity:

fin = Wil +) ey Wof] (1)
i

where W; and W, are learnable weight matrices. The graph convolutions can
be seen as the mechanism of information collection among the neighborhoods.
The connectivity E serves as pathways for information flow from one landmark
to another.

Global Transformation GCN: Previous work [27J36] learn an affine trans-
formation with a deep neural network by predicting a two by three affine trans-
formation matrix which deforms the image to the satisfied posture. Inspired by
this work, we employ a GCN on the initial landmarks to coarsely move them to
the targets. Considering our graph is more flexible that does not have to main-
tain the parallelism and respective ratios among the edges, we model the global
transformation using a perspective transformation [I7]. A perspective transfor-
mation can be parameterized by 9 scalars M = [a,b,c,d, e, f,g,h,i]T € R9*!
with the operation written as:

z’ ro’ abe T
Y=y |=def] |y (2)
1 r ghi 1

Given a target image, we initialize landmark locations V° using the mean
shape of landmarks in the training set, and placed it at the center of the image.
The graph is processed by the GCN-global to estimate a perspective transfor-
mation to bring the initial structure closer to the target.

Specifically, a graph isomorphism network (GIN) [66] is employed to process
the graph features {f}} produced by the GCN to output a 9-dimensional vector
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representing the perspective transformation:
f¢ = MLP (CONCAT (READOUT ({fi|i € G}) |k =0,1,...,K)), (3)

where the READOUT operator sums the features from all the nodes in the graph
G. The transformation matrix M is obtained by transforming and reshaping f¢
into a 3 by 3 matrix. We then apply this transformation matrix on the initial
landmark node coordinates to obtain the aligned landmark coordinates:

Vi={vi} = {Mv}} (4)

Local Refinement GCN: Given the transformed landmarks, we employ
GCN-local to further shift the graph in a cascaded manner. GCN-local employs
the same architecture as GCN-global, with a difference that the last layer pro-
duces a 2-dimensional vector for each landmark, representing the coordinate
offset of the landmark. The updated landmark coordinates can be written as:

AR ) )

where Av! = (Az!, Ayl) is the output of the GCN-local at the ¢-th step. In all
our experiments, we perform T = 3 iterations of the GCN-local. Note that the
graph signal is re-calculated after each GCN-local iteration.

3.2 Graph signal with appearance and shape information

We formulate a graph signal F' as a set of node features f;, each associated with
a landmark v;. The graph signal contains a visual feature to encode local image
appearance and a shape feature to encode the global landmark shape.

Visual Feature: Specifically, given a feature map H with D channels pro-
duced by a backbone CNN, visual features, denoted by p; € R”, are extracted
by interpolating H at the landmark coordinates v;. The interpolation is per-
formed via a differentiable bi-linear interpolation [27]. In this way, visual feature
of each landmark is collected from the feature map, encoding the appearance of
its neighborhood.

Shape Feature: While the visual feature encodes the appearance in a neigh-
borhood of the landmark, it does not explicitly encode the global shape of the
landmarks. To incorporate this structural information into the graph signal, for
each landmark, we compute its displacement vectors to all other landmarks, de-
noted as q; = {v; — v}z € R2*(N=1) where N is the number of landmarks.
Such shape feature allows structural information of the landmarks to be ex-
ploited to facilitate landmark detection. For example, when the mouth of a face
is occluded, the coordinates of the mouth landmarks can be inferred from the
eyes and nose. Wrong landmark detection results that violate the shape prior
can also be avoided when the shape is explicitly captured in the graph signal.

The graph signal F' is then constructed for each landmark by concatenating
the visual feature p; and the shape feature q; (flattened), resulting in a feature
vector f; € RPT2(N-1),
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3.3 Landmark graph with learnable connectivity

The graph connectivity determines the relationship between each pair of land-
marks in the graph and serves as the information exchange channel in GCN.
In most existing applications of GCN [MII3272I56/61], the graph connectivity
is given based on the prior knowledge of the task. In our landmark detection
application, it is non-trivial to manually define the optimal underlying graph
connectivity for the learning task. Therefore, relying on hand-crafted graph con-
nectivity would introduce a subjective element into the model, which could lead
to sub-optimal performance. To address this limitation, we learn task-specific
graph connectivities during the training phase in an end-to-end manner. The
connectivity weight e;; behaves as information propagation gate in graph con-
volutions (Eqn. . We treat the connectivity {e;;}, represented as an adjacency
matrix, as a learnable parameter that is trained with the network during the
training phase. In this way, the task-specific optimal graph connectivity is ob-
tained by optimizing the performance of the target landmark detection task,
allowing our method to be applied to different landmark detection tasks without
manual intervention.

Graph connectivity learning has been studied before by the research com-
munity. One notable example is Graph Attention Networks [56], which employs
a self-attention mechanism to adaptively generate connectivity weights during
the model inference. We conjugate that in structured landmark detection prob-
lems, the underlying relationship between the landmarks remains the same for
a given task, instead of varying across individual images. Therefore, we share
the same connectivity across images on the same task, and directly optimize the
connectivity weights during the training phase.

3.4 Training

GCN-global: Since the perspective transformation estimated by GCN-global
has limited degree of freedom, directly penalizing the distance between the pre-
dicted and the ground truth landmarks will lead to unstable optimization behav-
ior. As the goal of GCN-global is to coarsely locate the landmarks, we propose
to use a margin loss on the L distance, written as:

L 1
Lgiobal = (N Z Z Vi — Vz|> - m] (6)
iEN z,y +
where [u]4 := maz(0,u). vi = (x},y}) and v; = (z;,y;) denote the predicted

and ground truth landmark coordinates for the i-th landmark. m is a hyper-
parameter representing a margin which controls how well we want the alignment
to be. Following this procedure, we aim to obtain a high robustness of the coarse
landmark detection, while forgive small errors.

GCN-local: To learn a precise localization, we directly employ L1 loss on
all predicted landmark coordinates after the GCN-local, written as:

Elocal = % Z Z |V;F - Vi| (7)

i€EN x,y
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where v!' is the T-th step (the last step) coordinate predictions, and v; is the
ground truth coordinate for the i-th landmark.
The overall loss to train DAG is a combination of the above two losses:

L= )\lﬁglobal + )\2['local (8)

where )y is the weight parameter for each loss.

4 Experiments

4.1 Datasets

We conduct evaluations on three public facial image and three medical image
datasets:

WFLW [62] dataset contains 7,500 facial images for training and 2,500 facial
images for testing. The testing set is further divided into 6 subsets focusing
on particular challenges in the images namely large pose set, expression set,
illumination set, makeup set, occlusion set, and blur set. 98 manually labeled
landmarks are provided for each image.

300W [44] dataset consists of 5 facial datasets namely LFPW, AFW, HELEN,
XM2VTS and IBUG. They are split into a training set with 3,148 images, and
a testing set with 689 images where 554 images are from LFPW and HELEN,
135 from IBUG. Each image is labeled with 68 landmarks.

COFW [6] dataset contains 1,345 facial images for training and 507 for testing,
under different occlusion conditions. Each image is originally labeled with 29
landmarks and re-annotated with 68 landmarks [22]. We follow previous studies
[62I42] to conduct inferences on the re-annotated COFW-68 dataset to test our
model’s cross-dataset performance which is trained on 300W dataset.
Cephalometric X-ray [57] is a public dataset originally for a challenge in
IEEE ISBI-2015. It contains 400 X-ray Cephalometric images with resolution of
1,935 x 2,400, 150 images are used as training set, the rest 150 images and 100
images are used as validation and test sets. Each cephalometric image contains
19 landmarks. In this paper, we only focus on the landmark detection task.
Hand X-ray [35] is a real-world medical dataset collected by a hospital. The
X-ray images are taken with different hand poses with resolutions in 1,500s x
2,000s. In total, 471 images are randomly split into a training set (80%, N=378)
and a testing set (20%, N=93). 30 landmarks are manually labeled for each
image.

Pelvic X-ray [(9/9] another real-world medical dataset collected by the same
hospital. Images are taken over patient’s pelvic bone with resolutions in 2, 500s x
2,000s. The challenges in this dataset is the high structural and appearance vari-
ation, caused by bone fractures and metal prosthesis. In total, 1,000 imagesare
randomly splited into a training set (80%, N=800) and a testing set (20%,
N=200). 16 landmarks are manually labeled for each image.
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Fig.2: Visualization of landmark detection results. Pairs of reseults are dis-
played side by side. For each pair, Left image: detection result from a SOTA
method [49]. Right image: result produced by our method. Green dot: pre-
dicted landmark location. Red dot: groundtruth landmark location.

4.2 Experiment Settings

Evaluation Metrics: We evaluate the proposed method following two sets of
metrics. For the facial image datasets, we employ the widely adopted Normalized
Mean Error (NME), Area Under the Curve (AUC), Failure Rate for a maximum
error of 0.1 (FR@0.1) and Cumulative Errors Distribution (CED) curve (supple-
mentary material). To compare with previous methods, we conduct both ”inter-
ocular” (outer-eye-corner-distance) and ”inter-pupil” (eye-center-distance) nor-
malizations on the detected landmark coordinates.

For the Cephalometric X-ray images, we follow the original evaluation proto-
col to compare two sets of metrics: Mean Radial Error (MRE) which computes
the average of Euclidean Distances of predicted coordinates and ground truth
coordinates of all the landmarks; the corresponding Successful Detection Rate
(SDR) under 2mm, 2.5mm, 3mm and 4mm. For the Hand and Pelvic X-rays,
we compute MRE, Hausdorff Distance (HD) and Standard Deviations (STD).
Recall that Hausdorff Distance measures the maximum value of the minimum
distances between two sets of points. In our case, we aim to evaluate the error
upper-bound for the detected landmarks.

Implementation Details: Following previous studies, we crop and resize facial
images into 256 x 256 based on the provided bounding boxes. We follow [10] to
resize the Cephalometric X-rays to 640 x 800. For the Hand and Pelvic X-rays, we
resize each image into 512 x 512 preserving the original height and width ratio by
padding zero values to the empty regions. The proposed model is implemented in
PyTorch and is experimented on a single NVIDIA Titan V GPU. We choose A\; =
A2 = 1 for different parts in the overall loss function. HRNet18 [49] pretrained on
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Table 1: Evaluation on the WFLW dataset (98 Landmarks). *: focus on loss
function. #: focus on data augmentation.

Metric Method Test Pose Expression Illumination Make-up Occlusion Blur
CFSS [75]  9.07 21.36  10.09 8.30 8.74 1176 9.96
DVLN 6.08 11.54 6.78 5.73 5.98 7.33 6.88
LAB 5.27 10.24 5.51 5.23 5.15 6.79 6.32
SAN [I8] # 522 10.39 5.71 5.19 5.49 6.83 5.80
/ o G
Mean Error % NG 2] % 511 875 5.36 1.93 5.41 6.37  5.81
HRNet18 [49] 4.60  7.94 4.85 4.55 4.29 5.44 5.42
STYLE [2] # 4.39 8.42 4.68 4.24 4.37 5.60 4.86
AWING [58] * 4.36  7.38 4.58 4.32 4.27 5.19 4.96
Ours 4.21  7.36 4.49 4.12 4.05 4.98  4.82
CFSS [75] 2056 66.26  23.25 17.34 21.84 3288  23.67
DVLN [63] 19.84 46.93  11.15 7.31 11.65  16.30  13.71
LAB 7.56  28.83 6.37 6.73 7.77 13.72  10.74
. , SAN [18] # 6.32 2791 7.01 4.87 6.31 11.28  6.60
: ate @O0.
Failwre Rate @01 worvG mry+ 600 2270 4.78 4.30 777 1250 776
HRNet18 [49] 4.64 23.01 3.50 4.72 2.43 8.29 6.34
STYLE [2] # 4.08 18.10 4.46 2.72 4.37 7.74 4.40
AWING * 2.84 13.50 2.23 2.58 2.91 598  3.75
Ours 3.04 1595 2.86 2.72 1.45 5.29 401

CFSS [75]  0.3659 0.0632  0.3157 0.3854 0.3691  0.2688 0.3037
DVLN 0.4551 0.1474  0.3889 0.4743 0.4494  0.3794 0.3973
HRNet18 [49] 0.5237 0.2506  0.5102 0.5326 0.5445  0.4585 0.4515
LAB 0.5323 0.2345  0.4951 0.5433 0.5394  0.4490 0.4630
SAN [I8] # 0.5355 0.2355  0.4620 0.5552 0.5222  0.4560 0.4932
WING [2I] * 0.5504 0.3100  0.4959 0.5408 0.5582  0.4885 0.4932
AWING [58] * 0.5719 0.3120  0.5149 0.5777 0.5715  0.5022  0.5120
STYLE [42] # 0.5913 0.3109  0.5490 0.6089 0.5812  0.5164 0.5513
Ours 0.5893 0.3150 0.5663 0.5953 0.6038 0.5235 0.5329

AUC @0.1

ImageNet is used as our backbone network to extract visual feature maps for its
parallel multi-resolution fusion mechanism and deep network design which fits
our need for both high resolution and semantic feature representation. The last
output after fusion is extracted as feature map of dimension H € R256x64x64,
We employ 4 residual GCN blocks [32I30] in GCN-global and GCN-local and
perform 3 iterations of GCN-local. Adjacency matrix values are initialized to
1/N so that the total weight for each node is 1 to avoid message explosion.

4.3 Comparison with the SOTA methods

WFLW: WFLW is a comprehensive public facial landmark detection dataset
focusing on multi-discipline and difficult detection scenarios. Summary of re-
sults is shown in Table [I| Following previous works, three evaluation metrics
are computed: Mean Error, FRQ0.1 and AUC@QO0.1. Our model achieves 4.21%
mean error which outperforms all the strong state-of-the-art methods including
AWING [58] which adopts a new adaptive loss function, SAN [I8] and STYLE
[42] which leverage additional generated images for training. The most signif-
icant improvements lie in Make-up and Occlusion subsets, where only partial
landmarks are visible. Our model is able to accurately infer those hard cases
based on the visible landmarks due to the benefit of preserving and leveraging
graph structural knowledge. This can be further illustrated by examining the
visualization results for the occlusion scenarios in Figure [2]
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Table 2: Evaluation on 300W Com- Table 3: Evaluation on 300W and

mon set, Challenge set and Fullset. COFW-68 testsets with the model
Inter-Pupil Normalization trained on 300W training set.
Method Year Comm. Challenge Full. 300W
CFAN [70] 2014 5.50 16.78  7.69 Method Year AUC@0.1 FR@0.1
ESR [7] 2014 528  17.00 7.58 Deng et al. 2016 0.4752 5.50
SDM 2013 5.57 1540 7.52 Fan et al. 2016 0.4802 14.83
3DDFA [76] 2016 6.15  10.59 7.01 DensReg+DSM [I] 2017 0.5219 3.67
LBF m 2014 495 1198 632 J]\/IFAE-E 2019 0.5485 1.00
LAB [62] 2018 0.5885 0.83
CFSS [5] 2015 473 998  5.76 HRNet18 [A9] 2019  0.6041 0.66
SeqMT [Z5] = 2018 4.84 995 5.7d AWING [BS] * 2019  0.6440 0.33
TCDCN [7I] 2015 4.80 8.60 5.54 Ours 2020 0.6361 0.33
RCON [26] 2016 4.67 844  5.41
TSR 2017 4.36  7.56  4.99 COFW-68
DVLN 2017 3.94 7.62  4.66 Method Year Mean Error % FR@0.1
HG-HSLE [8] 2019 3.94  7.24  4.59 CFSS [E) 2015 6.28 007
DCFE [55] 2018 3.83  7.54 455 HRNet18 9] 2019  5.06 3.35
STYLE [42] # 2019 3.98 721 4.54 LAB 2018 4.62 2.17
AWING [58] * 2019 3.77 6.52 431 STYLE [2] # 2019 4.43 2.82
LAB [62] 2018 3.42  6.98 4.12 Ours 2020  4.22 0.39

WING [21] * 2018 3.27  7.18 4.04

Ours 2020 364 688 427 Table 4: Evaluations on the hand X-

ray and pelvic X-ray images.

Inter-Ocular Normalization

Method Year Comm. Challenge Full. Hand X-ray Dataset
PCD-CNN [29] 2018 3.67 762  4.44 Method  Year MRE (pix) Hausdorff STD
ODN [74] 2019 3.56  6.67 4.17 HRNet18 [9) 2019 1279 26.36  6.07
CPM+SBR [19] 2018 3.28 7.58  4.10 Chen et al. [T0] 2019 7.14 18.71  14.43
SAN [18] # 2018 3.34 6.60  3.98 Payer et al. [40] 2019 6.11 16.55  4.01
STYLE [42] # 2019 3.21 6.49  3.86 Ours 2020  5.57 14.83 3.63

LAB [62] 2018 2.98 519  3.49 Pelvic X-ray Dataset
HRNet18 9] 2019 2.91 511  3.34 Method  Year MRE (pix) Hausdorff STD

HG-HSLE [78] 2019 2.85 5.03  3.28

LUVLi m 2020 2.76 5.16 3.93 HRNet18 [49] 2019  24.77 7131  19.98

Payer et al. [40] 2019  20.96 68.19  21.93

AWING [58] * 2019 2.72  4.52  3.07 Chen et al. [I0) 2019 20.10  50.92 20.14
Ours 2020 2.62 477 3.04 Ours 2020 18.39  56.72 17.67

300W: There are two evaluation protocols, namely inter-pupil and inter-ocular
normalizations. In this paper, we conduct experiments under both settings on
the detection results in order to comprehensively evaluate with the other state-
of-the-arts. As can be seen from Table [2] our model achieves competitive results
in both evaluation settings comparing to the previous best models, STYLE [42],
LAB [62] and AWING [58] which are all heatmap-based. Comparing to the
latest coordinate-based model ODN [74] and DVLN [63], our method achieves
improvements in large margins (27% and 8% respectively) which sets a remark-
able milestone for coordinate-based models, closing the gap between coordinate-
and heatmap-based methods.

COFW-68 and 300W testset: To verify the robustness and generalizability
of our model, we conduct inference on images from COFW-68 and 300W testset
using the model trained on 300W training set and validated on 300W fullset.
Results summarized in Table[3]indicating our model’s superior performance over
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Table 5: Evaluation on the public Cephalometric dataset.

Model Year Validation set Test set
MRE 2mm 2.5mm 3mm 4mm MRE 2mm 2.5mm 3mm 4mm
Arik et al. [2] 2017 - 75.37 80.91 84.32 88.25 67.68 74.16 79.11 84.63

HRNet18 [49] 2019 1.59 78.11 86.81 90.88 96.74 1.84 69.89 78.95 85.16 92.32
Payer et al. [40] 2019 1.34 81.47 89.36 93.15 97.01 1.65 69.94 78.84 85.74 93.89
Chen et al. [I0] 2019 1.17 86.67 92.67 95.54 98.53 1.48 75.05 82.84 88.53 95.05

Ours - 1.04 88.49 93.12 95.72 98.42 1.43 76.57 83.68 88.21 94.31

most of the other state-of-the-art methods in both datasets. In particular for the
COFW-68 dataset, the Mean Error and FR@O0.1 are significantly improved (5%
and 86%) comparing to the previous best model, STYLE [42], demonstrating a
strong cross-dataset generalizability of our method.

Cephalometric X-rays: We further applied our model on a public Cephalo-
metric X-ray dataset and compare with HRNet18 [49] and three domain specific
state-of-the-art models on this dataset, Arik et al. [2], Payer et al. [40] and Chen
et al. [10]. As is shown in Table our model significantly outperforms Arik et al.,
HRNet18 [49] and Payer et al. [40] in all metrics. Comparing to Chen et al. [10],
we also achieve improved overall accuracy evaluated under MRE. A closer look
at the error distribution reveals that our model is able to achieve more precise
localization under smaller error ranges, i.e., 2mm and 2.5mm.

Hand and Pelvic X-rays: As shown in Table[d] our model achieves susbstantial
performance improvements comparing to the HRNet18 [49], Payer et al. [40] and
Chen et al. [10] on both the Hand and Pelvic X-ray datasets. On Hand X-ray,
where the bone structure can vary in different shapes depending on the hand
pose, our method still achieves largely reduced Hausdorff distance as well as its
standard deviation, reveling DAG’s ability in capturing landmark relationships
under various situations toward robust landmark detection.

4.4 Graph Structure Visualization

To better understand learning outcomes, we look into the visualization on the
learned graph structure. As shown in Figure[3] the learned structures in different
domains are meaningful indicating strong connections between 1) spatially close
landmarks, and 2) remote but related landmarks that move coherently, e.g. sym-
metrical body parts. We believe the mechanism behind our algorithm is relying
on these locations to provide reliable inductions when it makes movement pre-
dictions, such as similar movements by neighbors, or fixed spatial relationships
by the symmetrical body parts (e.g., eyes, pelvis). With the learnable graph
connectivity, we are able to capture the underlying landmarks relationships for
different objects.

4.5 Ablation Studies

In this section, we examine the performance of the proposed methods by con-
ducting ablation studies on the 300W fullset. We analyze: 1) the overall effect
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Fig. 3: Graph structure visualization. Red lines: edges. Green dots: landmarks.
Deeper red means higher edge weights. [Leftmost column]: the constructed
graphs (3 highest weighted edges for each landmark). [Right 5 columns]: for
the 5 landmarks, the most related neighbors (10 highest weighted edges).

of using the proposed DAG to regress landmark coordinates, 2) the individual
effect of learning the graph connectivity, 3) the individual effect of incorporating
shape feature into the graph signal. More ablation studies can be found in the
supplementary material.

Overall effect of the proposed DAG: We analyze the effect of using
DAG to regress landmark coordinates in comparison with two baselines, namely
1) Global feature: The last feature map of the backbone network is global av-
erage pooled to produce a feature vector, which connects to a fully connected
layer to regress landmark coordinates. This approach is similar to previous co-
ordinate regression based methods, e.g. [63I71]. 2) Local feature: The feature
vectors are interpolated at each landmark’s initial location on the last feature
map of the backbone CNN. Then each landmark’s feature vector is connected
to a fully connected layer to regress the landmark’s coordinate. To decouple the
effect of the backbone strength, each experiment is conducted on four popu-
lar landmark detection backbone networks, namely VGG16 [47], ResNet50 [24],
StackedHourGlass4 [38], HRNet18 [49]. Results are listed in Table [f| By com-
paring different regression methods with the same backbone (columnwise), DAG
achieves the best results indicating the proposed framework’s strong localization
ability. By comparing DAG’s results under different backbones (last row), we ob-
serve DAG’s consistent performance boost demonstrating its effectiveness and
promising generalizability.



14 Li et al.

Table 6: Ablation studies on the effectiveness of the proposed method DAG.
VGG16 ResNet50 StackedHG4 HRNet18

Global feature  4.66 4.33 4.31 4.30
Local feature 4.42 4.10 3.96 3.72
Proposed DAG 3.66 3.65 3.07 3.04

Table 7: Ablation study on graph connectivity and shape feature.

w.o Shape Feature w. Shape Feature
Self 3.31 3.16
Uniform 3.16 3.12
Learned 3.08 3.04

Individual effect of learning graph connectivity: We study three kinds
of graph connectivity schemes, namely 1) Self-connectivity: The landmarks only
connect to themselves and no other landmarks. 2) Uniform connectivity: The
landmarks connects to all other landmarks using the same edge weight. 3)
Learned connectivity: learned edge weights as proposed. As summarized in Ta-
ble [7] regardless of using shape feature or not, using uniform connectivity per-
forms results in better performance than self-connectivity, demonstrating the
importance of allowing information exchange on the graph. The learned connec-
tivity performance the best, further demonstrating that learned edge weights
further improve the effectiveness of information exchange on the graph. In-
dividual effect of incorporating shape feature: We analyze the effect of
incorporating the shape feature using self, uniformed and learned connectivities,
respectively. As shown in Table[7] on all three types of connectivities, incorporat-
ing the proposed shape feature into graph signal results in improved performance
especially for self-connective graphs, where the shape feature adds the missing
global structure information.

5 Conclusion

In this paper, we introduce a robust and accurate landmark detection model
named Deep Adaptive Graph (DAG). The proposed model deploys an initial
landmark graph, and then deforms and progressively updates the graph by
learning the adjacency matrix. Graph convolution operations follow the strong
structural prior to enable effective local information exchange as well as global
structural constraints for each step’s movements. The superior performances on
three public facial image datasets and three X-ray datasets prove both the ef-
fectiveness and generalizability of the proposed method in multiple domains.
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1722847, NIH through the Morris K. Udall Center of Excellence in Parkinson’s
Disease Research. The main work was done when Weijian Li was a research
intern at PAII Inc.
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6 Additional discussions with related works:

Though some recent works [62/8/40] propose to model landmark relationship,
our problem/method has large differences from them. Tompson et al. [52] pro-
pose to use spatial information in a post-processing step to filter outliers, while
we leverage visual-spatial joint features for landmark regression. Also, the PAF
proposed by Cao et al. [8] focuses on a different task of assembling detected key
points for multi-person parsing. Zhao et al. [72] focus differently on predicting
3D poses from 2D joints. Their 2D joints are generated by a pre-trained 2D pose
estimation network. Besides, their network structure is predefined by a fixed ad-
jacency matrix while we actively learn the structures. Payer et al. [40], propose
a spatial configuration branch to disambiguate candidates from the heatmap
predictions. There is no explicit landmark structure modeling. In contrast, we
explicitly model shape through a graph representation with learnable connectiv-
ity.

Among the SOTA, WING [21] is pure coordinate-based, while LAB [62] and
AWING [58] integrate face boundary information via heatmap, which is their key
contributions. The gap between WING and AWING is significant on WFLW,
which is a more challenging dataset than 300W in terms of dataset scale, pose
variations, occlusions, etc. Our method performs significantly better than WING
on WFLW by reducing the failure rate by 50%, and is competitive to AWING. In
addition, WING focuses on loss design, which is orthogonal and complementary
to our novelty. By employing WING loss in our method, our performance can
be further improved (e.g., on 300W, inter-pupil NME from 4.27 to 4.21 and
inter-ocular NME from 3.04 to 3.01). While LAB and AWING utilize global
representation, human knowledge on face structure via a boundary heatmap is
injected, leading to task-specific solutions. In contrast, our method is a general
landmark detection method to model the structural information via a self-learned
graph structure.

7 CED Curve:

Following previous works [6242], we report Cumulative Errors Distribution
(CED) curve result on cross-evaluations of COFW-68 test set. Recall that the
success rate measures the proportion of images that have a localization error be-
low a certain threshold [22]. Thus, given a range of thresholds, the corresponding
success rates will form a distribution which is considered as Cumulative Error
Distribution (CED). For clearer comparison, we include both Normalized Mean
Error (Error) as well as the Failure Rate (i.e. 1 — SuccessRate) (Failure) at
threshold of 0.1. As we can see from Figure [} our model outperforms previ-
ous methods by a large margin, especially in Failure Rate which is reduced to
0.39% for the first time. The comparison of numerical NME and Failure Rate
values with the other state-of-the-arts can be found in Table 3 in our submitted
ECCV-20 main paper.
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Fig.4: Cumulative Errors Distribution (CED) curve results on the COFW-68
test set.

8 Ablation Studies

Here we conduct three more types of ablation studies, namely: (1) The compar-
ison of the transformation method used in GCN-global. (2) The effectiveness of
the proposed GCN modules.(3) The comparison of different number of regression
steps used in GCN-local. Results are recorded in Table

Choice of transformations: We experiment two types of GCN-global choices:
(1) Adopt Affine Transformation. In this case, the performance of our GCN-
global module drops to 3.13.(2) Adopt Perspective Transformation. We achieve
the best result as 3.04 which is also reported in our main paper. This indicates
that GCN-global can better locates ROIs with the more flexible perspective
transformation.

Effectiveness of GCN modules: We examine the effectiveness of the pro-
posed GCN modules by: (1) Replacing GCN-global with a CNN block: we replace
the GCN-global module with a 2-layer CNN (Conv/BN/ReLU) with Global
Average Pooling predicting 9 transformation parameters. The average error in-
creased from 3.04 to 3.12. (2) Replacing GCN-local with a MLP block: we remove
the connectivity used in GCN-local, making it a simple MLP (FC/ReLU). The
average error increased from 3.04 to 3.18. These indicating the importance of
the proposed GCN modules.
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Table 8: Ablation studies on the proposed model with 300W fullset under Inter-
Ocular normalization.

Different Transformations Affine Transformation Perspective Transformation (Ours)

NME 3.13 3.04
Effectivenes of GCN modules|Replace GCN-global with CNN| Replace GCN-local with MLP
NME 3.12 3.18
Different GCN Steps Step=1 Step=3 (Ours) Step=>5 Step=7

NME 3.24 3.04 3.07 3.11

Number of steps: We analyze different choices of steps for GCN-local.
Results are shown in Table[8] The overall performance improves as the number of
steps increases indicating the benefit of cascading multiple regressions. The best
performance is achieved when GCN-local is implemented with three iterations.

9 More Settings:

We describe more settings for training the model. Adam optimizer is adopted
with initial learning rate {r = 0.0001. The learning rate decreases at every 100
epochs. L2 penalty is applied to the training parameters with rate 0.0001. Margin
for training GCN-global is set to m = 0.1 for Face300W, m = 0.15 for WFLW,
m = 0.15 for three Medical datasets. All data augmentations we used: (1) Rotate
input image with a random angle in [-30, 30]. (2) Random flip the input image
horizontally. (3) Scale input image with a random factor in [0.75, 1.25].
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