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Abstract. Cost volume is an essential component of recent deep models
for optical flow estimation and is usually constructed by calculating the
inner product between two feature vectors. However, the standard inner
product in the commonly-used cost volume may limit the representation
capacity of flow models because it neglects the correlation among differ-
ent channel dimensions and weighs each dimension equally. To address
this issue, we propose a learnable cost volume (LCV) using an elliptical
inner product, which generalizes the standard inner product by a positive
definite kernel matrix. To guarantee its positive definiteness, we perform
spectral decomposition on the kernel matrix and re-parameterize it via
the Cayley representation. The proposed LCV is a lightweight module
and can be easily plugged into existing models to replace the vanilla cost
volume. Experimental results show that the LCV module not only im-
proves the accuracy of state-of-the-art models on standard benchmarks,
but also promotes their robustness against illumination change, noises,
and adversarial perturbations of the input signals.

Keywords: Optical Flow; Cost Volume; Cayley Representation; Inner
Product

1 Introduction

Optical flow estimation is a fundamental computer vision task and has broad
applications, such as video interpolation [2], video prediction [21], video segmen-
tation [36,6], and action recognition [22]. Despite the recent progress made by
deep learning models, it is still challenging to accurately estimate optical flow
for image sequences with large displacements, textureless regions, motion blur,
occlusion, illumination changes, and non-Lambertian reflection.

Most deep optical flow models [33,23,12] adopt the idea of coarse-to-fine
processing via feature pyramids and construct cost volumes at different levels of
the pyramids. The cost volume stores the costs of matching pixels in the source
image with their potential matching candidates in the target image. It is typically
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Fig. 1: Standard inner product space v.s. elliptical inner product space.

constructed by calculating the inner product between the convolutional features
of one frame and those of the next frame, and then regressed to the estimated
optical flow by an estimation sub-network. The accuracy of the estimated optical
flow heavily relies on the quality of the constructed cost volume.

While the standard Euclidean inner product is widely used to build the cost
volume (a.k.a., vanilla cost volume) for optical flow, we argue that it limits the
representation capacity of the flow model for two reasons. First, the correlation
among different channel dimensions is not taken into consideration by the stan-
dard Euclidean inner product. As shown in Fig. 1, we use a simple 2D example
for illustration. Given two feature vectors f1 and f2 with positive correlation in
the standard inner product space, we are able to find a proper elliptical inner
product space to make these two feature vectors orthogonal to each other, which
gives a zero correlation. Therefore, the specific choice of the inner product space
influences the values of the matching costs, and thus should be further exploited.
Second, each feature dimension contributes equally to the vanilla cost volume,
which may give a sub-optimal solution to constructing the cost volume for flow
estimation. Ideally, dimensions corresponding to noises and random perturba-
tions should be suppressed, while those containing discriminative signals for flow
estimation should be kept or magnified.

To address these limitations, we propose a learnable cost volume (LCV) mod-
ule which accounts for the correlation among different channel dimensions and
re-weighs the contribution of each feature channel to the cost volume. The LCV
generalizes the Euclidean inner product space to an elliptical inner product space,
which is parameterized by a symmetric and positive definite kernel matrix. The
spectral decomposition of the kernel matrix gives an orthogonal matrix and a
diagonal matrix. The orthogonal matrix linearly transforms the features into a
new feature space, which accounts for the correlation among different channel
dimensions. The diagonal matrix multiplies each transformed feature by a pos-
itive scalar, which weighs each feature dimension differently. From a geometric
perspective, the orthogonal matrix rotates the axes and the diagonal matrix
stretches the axes so that the feature vectors are represented in a learned ellip-
tical inner product space, which generates more discriminative matching costs
for flow estimation.

However, directly learning a kernel matrix in an end-to-end manner cannot
guarantee the symmetry and positive definiteness of the kernel matrix, which is
required by the definition of inner product. To address this issue, we perform
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spectral decomposition on the kernel matrix and represent each component via
the Cayley transform. Specifically, the special orthogonal matrices that exclude
−1 as the eigenvalue can be bijectively mapped into the skew-symmetric matri-
ces, and the diagonal matrices can be similarly represented by the composition
of the Cayley transform and the arctangent function. In this way, all parameters
of the learnable cost volume can be inferred in an end-to-end fashion without
explicitly imposing any constraints.

The proposed learnable cost volume is a general version of the vanilla cost
volume, and thus can replace the vanilla cost volume in the existing networks.
We finetune the existing architectures equipped with LCV by initializing the
kernel matrix as the identity matrix and restoring other parameters from the
pre-trained models. Experimental results on the Sintel and KITTI benchmark
datasets show that the proposed LCV significantly improves the performance of
existing methods in both supervised and unsupervised settings. In addition, we
demonstrate that LCV is able to promote the robustness of the existing models
against illumination changes, noises, and adversarial attacks.

To summarize, we make the following contributions:

1. We propose a learnable cost volume (LCV) to account for correlations among
different feature dimensions and weight each dimension separately.

2. We employ the Cayley representation to re-parameterize the kernel matrix
in a way that all parameters can be learned in an end-to-end manner.

3. The proposed LCV can easily replace the vanilla cost volume and improve
the accuracy and robustness of the state-of-the-art models.

2 Related Work

Supervised Learning of Optical Flow. Inspired by the success of convolu-
tional neural networks (CNNs) on per-pixel predictions such as semantic segmen-
tation and single-image depth estimation, Dosovitski et al. propose FlowNet [8],
the first end-to-end deep neural network capable of learning optical flow. FlowNet
predicts a dense optical flow map from two consecutive image frames with an
encoder-decoder architecture. FlowNet2.0 [15] extends FlowNet by stacking mul-
tiple basic FlowNet modules for iterative refinement and its accuracy is fully on
par with those of the state-of-the-art methods at the time. Motivated by the
idea of coarse-to-fine refinement in traditional optical flow methods, SpyNet [29]
introduces a compact spatial pyramid network that warps images at multiple
scales to deal with displacements caused by large motions. PWC-Net [33] ex-
tracts feature through pyramidal processing and builds a cost volume at each
level from the warped and the target features to iteratively refine the estimated
flow. VCN [39] improves the cost volume processing by decoupling the 4D con-
volution into a 2D spatial filter and a 2D winner-take-all (WTA) filter, while
still retaining a large receptive field. HD3 [40] learns a probabilistic matching
density distribution at each scale and merges the matching densities at different
scales to recover the global matching density.
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Unsupervised Learning of Optical Flow. The advantage of unsupervised
methods is that it can sidestep the limitations of the synthetic datasets and
exploit the large number of training data in the realistic domain. In [17] and
[31], the flow guidance comes from warping the target image according to the
predicted flow and comparing against the reference image. The photometric
loss is adopted to ensure brightness constancy and spatial smoothness. In some
work [37,25], occluded regions are excluded from the photometric loss. As pixels
occluded in the target image are also absent in the warped one, enforcing match-
ing of the occluded pixels would misguide the training. Wang et al. [37] obtain
an occlusion mask from the range map inferred from the backward flow, while
UnFlow [25] relies on the forward-backward consistency to estimate the occlu-
sion mask. Unlike these two methods that predict the occlusion map in advance
with certain heuristic, Back2Future [16] estimates the occlusion and optical flow
jointly by introducing a multi-frame formulation and reasoning the occlusion in
a more advanced manner. DDFlow [23] performs knowledge distillation by crop-
ping patches from the unlabeled images, which provides flow guidance for the
occluded regions. SelFlow [24] hallucinates synthetic occlusions by perturbing
super-pixels where the occluded regions are guided by a model pre-trained from
non-occluded regions.

Correspondence Matching. Typically, stereo matching algorithms [32,11] in-
volve local correspondence extraction and smoothness regularization, where the
smoothness regularization is enforced by energy minimization. Recently, hand-
crafted features are replaced by deep features and minimization of the match-
ing cost is substituted by training convolutional neural networks [42,19]. Xu et
al. [38] construct a 4D cost volume using an adaptation of the semi-global
matching, and Yang et al. [39] reduce the computation overhead of processing
the 4D matching volume by factorizing into two separable filters.

Different from these approaches where the correspondence is represented by
a hand-crafted matching cost volume, we propose a learnable cost volume that
can capture the correlation among different channels by adapting the features
to an elliptical inner product space. Such a correlation is automatically learned
by optimizing the kernel matrix using the Cayley representation, which is more
flexible and effective in optical flow estimation and can be easily plugged into
the existing architectures. To our knowledge, this paper is the first one to use
the Cayley representation for learning correspondence in optical flow.

3 Learnable Correlation Volume

3.1 Vanilla Cost Volume

Let F 1,F 2 ∈ Rc×h×w be the convolutional feature of the first frame and the
warped feature of the second frame, respectively. The vanilla cost volume is
defined as the inner product between the query feature F 1

i,j and the potential
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match candidate F 2
k′,l′ , i.e.,

C(F 1,F 2)k,l,i,j = F 1>
i,j F

2
k′,l′ , (1)

which maps from the space Rc×h×w × Rc×h×w to Ru×v×h×w. Here, u and v
are usually odd numbers, indicating the displacement ranges in horizontal and
vertical directions, (i, j) denotes the spatial location of the feature map F 1, and
(k′, l′) = (i−(u−1)/2+k, j−(v−1)/2+ l) denotes that of F 2. For each location
(i, j) of the query feature F 1, the matching is performed against pixels of F 2

within a u×v search window centered by the location (i, j). Then, the cost volume
is either reshaped into uv × h × w and post-processed by 2D convolutions [33],
or kept as a 4D tensor on which the separable 4D convolutions [39] are applied.

3.2 Learnable Cost Volume

We generalize the standard Euclidean inner product to the elliptical inner prod-
uct, where the matching cost is computed as follows:

C(F 1,F 2)k,l,i,j = F 1>
i,j WF 2

k′,l′ . (2)

Here, W ∈ Rc×c is a learnable kernel matrix that determines the elliptical inner
product space, and other notations are the same as those in Eq. (1). According
to the definition of inner product,W should be a symmetric and positive definite
matrix. By spectral decomposition, we obtain

W = P>ΛP , (3)

where P is an orthogonal matrix, and Λ is a diagonal matrix with positive
entries, i.e., Λ = diag(λ1, · · · , λc) with λi > 0, ∀i ∈ {1, · · · , c}. The orthog-
onal matrix P actually rotates the coordinate axes and the diagonal matrix
Λ re-weights different dimensions, which directly address the two limitations
mentioned in Sec. 1.

3.3 Learning with the Cayley Representation

In the proposed LCV module, the entries of the kernel matrix W are the
only learnable parameters. However, the constraints of symmetry and positive-
definiteness hinders the gradient-based end-to-end learning of W . To address
this issue, we propose to optimize P and Λ instead of W .

One way to optimize P is to employ the Riemann gradient descent on the
Stiefel manifold, which is defined as

Vk(Rn) = {A ∈ Rn×k|A>A = Ik}. (4)

All orthogonal matrices lie in the Stiefel manifold. Specifically, P ∈ Vc(Rc).
Therefore, we can apply the Riemann gradient descent on the Stiefel matrix
manifold, where the projection and retraction formula [1] are given by

PX(Z) = (I −XX>)Z +X · skew(X>Z) (5)

RX(Z) = (X +Z)(I +Z>Z)−
1
2 , (6)
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where skew(X) := (X − X>)/2. However, to perform the Riemann gradient
descent, the projection and retraction operations are required in each training
step, and the matrix multiplication brings considerable computational overhead.

We can address this issue in a more elegant way using the Cayley Represen-
tation [5]. First, we define a set of matrices:

SO∗(n) := {A ∈ SO(n) : −1 6∈ σ(A)}, (7)

where σ(A) denotes the spectrum, i.e., all eigenvalues, of A. SO∗(n) is a subset
of the special orthogonal group SO(n) and the spectrum of its elements excludes
−1. Then, we have the following theorems:

Theorem 1 (Cayley Representation) Given any matrix P ∈ SO∗(n), there
exists a unique skew-symmetric matrix S, i.e., S> = −S, such that

P = (I − S)(I + S)−1. (8)

Theorem 2 The set of matrices SO∗(n) is connected.

By Theorem 1, we can initialize the matrix P in Eq. (3) as an identity matrix
I ∈ SO∗(c), and update S so as to update P using gradient-based optimizer. Let
P ∗ be the optimal orthogonal matrix, and we claim that it is possible to reach
P ∗ from initializing as the identity matrix P = I. This because SO∗(c) is a
connected set (Theorem 2), so there exists a continuous path joining I ∈ SO∗(c)
and any P ∈ SO∗(c), including P ∗.

Due to the positive definiteness of W , the constraint of the diagonal matrix
Λ = diag(λ1, . . . , λc) is λi > 0, ∀i = 1, . . . , c. Thus, we map R to R+ by applying
the composition of the Cayley transform and the arctangent function, i.e.,

λi =
π + 2 arctan ti
π − 2 arctan ti

, (9)

where ti ∈ R is free of constraint.

The above re-parameterization trick enables us to update the kernel matrix
W in an end-to-end manner using the SGD optimizer or its variants, which
alleviates the heavy computation brought by the projection and retraction and
makes the training process much easier.

3.4 Interpretation

To better understand the learnable cost volume, we analyze several cases here.

1. W = I. This degenerates into the vanilla cost volume, in which the standard
Euclidean inner product is adopted.
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2. W = Σ−1. Let Σ be the covariance matrix, i.e., Gram matrix, of the
convolutional feature, then the learnable cost volume is essentially a whitening
transformation. Let Q = Λ1/2P , and then Eq. (2) can be formulated as

C(F 1,F 2)k,l,i,j = F 1>
i,j P

>Λ1/2Λ1/2PF 2
k′,l′ = (QF 1

i,j)
>(QF 2

k′,l′), (10)

where QF 1
i,j represents the transformed feature of F 1

i,j after PCA [18] whitening.

Similarly, letting R = P>Λ1/2P , we can have

C(F 1,F 2)k,l,i,j = F 1>
i,j P

>Λ1/2PP>Λ1/2PF 2
k′,l′ = (RF 1

i,j)
>(RF 2

k′,l′), (11)

where RF 1
i,j is the transformed feature of F 1

i,j after ZCA [3] whitening. It has
been shown that the high-level styles can be removed with the contextual struc-
tures remained by whitening the convolutional features [20].

3. W = P>ΛP . The learnable cost volume shares a similar formula as the
whitening process, but W is learned over the whole training dataset rather than
statistics of two inputs, thus contains certain holistic information of the entire
training dataset. Because it has been verified that the certain holistic charac-
teristics of the underlying image can be captured by the Gram matrix along
the channel dimension [9,20]. The learnable cost volume performs as whiten-
ing features using the common information learned from all frames. Specifically,
the orthogonal matrix P re-arranges the information across the channel dimen-
sion, while the diagonal matrix Λ filters out insignificant signals, making the
correlation more robust to the illumination changes abd noises. (See Sec. 4.4.)

It should also be pointed out that the whitening matrix R in Eq. (11) could
be viewed as a 1 × 1 conv functioning on the feature, but directly applying a
1×1 conv with learnable parameters on features before computing the standard
cost volume cannot replace the proposed learned cost volume. Because R>R
only gives a positive semi-definite matrix even when R is full-rank, which does
not meet the positive definiteness property of an inner product.

3.5 Relation with the Weighted Sum of Squared Difference

The learnable cost volume can be also formulated by re-thinking the simplest
matching criterion for comparing two features, i.e., the weighted sum of squared
difference (WSSD): ∑

i

λi
(
Gi(F

2)−Gi(F 1)
)2
, (12)

where G : Rc → Rc denotes a transformation function on the features F i ∈
Rc, i = 1, 2, and Gi(F ) indicates the ith element of G(F ).

By the Taylor series expansion, we have∑
i

λi
(
Gi(F

2)−Gi(F 1)
)2 ≈∑

i

λi
(
∇Gi(F 1)>∆F

)2
= ∆F>W∆F , (13)
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where ∆F=F 2−F 1 is the feature difference andW =
∑
i λi∇Gi(F 1)∇Gi(F 1)>

is the auto-correlation matrix. Here, W coincides with the kernel matrix of the
proposed LCV module in Eq. (2). When λi = 1(i = 1, . . . , c) and G is an
identity map, then W = I, which corresponds to the vanilla cost volume. If we
further expand Eq. (13), we can see the connection with the proposed learnable
correlation volume as follows:

∆F>W∆F = (F 2 − F 1)>W (F 2 − F 1)

= (F 2>WF 2 + F 1>WF 1)− 2F 1>WF 2,
(14)

where the last term shares the same formula with the proposed learnable cost
volume. This implies that the proposed learnable cost volume is inversely corre-
lated with WSSD. As WSSD measures the discrepancy between two features, the
learnable cost volume characterizes a certain kind of similarity between them.

4 Experiments

In this section, we present the experimental results of optical flow estimation in
both supervised and unsupervised settings to demonstrate the effectiveness of the
proposed learnable cost volume. Also, we carry out ablation studies to show that
the LCV module performs favorably against other counterparts. Moreover, we
analyze the behavior of LCV and find it beneficial to handling three challenging
cases. More results can be found in the supplementary material and the source
code and trained models will be made available to the public.

Training Process. It is well-known that the deep optical flow estimation
pipeline consists the following stages in the supervised settings [34]: 1) train the
model on the FlyingChairs [7] dataset; 2) finetune the model on the FlyingTh-
ings3D [28] dataset; and 3) finetune the model on the Sintel [4] and KITTI [27,26]
training sets. Besides, there are lots of tricks such as data augmentation and
learning rate disruption, making the training process more complicated.

To avoid the tedious training procedure over multiple datasets, we adopt
a more efficient way to train the model equipped with LCV. As mentioned in
Sec. 3.4, the vanilla cost volume is a special case of the learnable cost volume
when W = I, which means that the learnable cost volume is more general and
backward compatible with vanilla cost volume. Therefore, we initialize the kernel
matrixW as the identity matrix and other parameters are directly restored from
the pre-trained models without using LCV. After that, we finetune the model
with LCV on the Sintel or KITTI datasets using the same loss function. This
training process not only significantly reduces training time but also plays a
crucial role in the success under the unsupervised settings. (See Sec. 4.2.) This
approach can also be viewed as fixing the kernal matrix as W = I in the first
three training stages, and let W be learnable in the final stage.
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Table 1: Results of the supervised methods on the MPI Sintel and KITTI 2015
optical flow benchmarks. All reported numbers indicate the average endpoint
error (AEPE) except for the last two columns, where the percentage of outliers
averaged over all groundtruth pixels (Fl-all) are presented. “-ft” means finetun-
ing on the relative MPI Sintel or KITTI training set and the numbers in the
parenthesis are results that train and test on the same dataset. Missing entries
(-) indicate that the results are not reported for the respective method. The best
result for each metric is printed in bold.

Methods

Sintel KITTI 2015
Clean Final AEPE Fl-all (%)

train test train test train train test

FlowNet2 [15] 2.02 3.96 3.14 6.02 10.06 30.37 -
FlowNet2-ft [15] (1.45) 4.16 (2.01) 5.74 (2.30) (8.61) 10.41
DCFlow [38] - 3.54 - 5.12 - 15.09 14.83
MirrorFlow [13] - - - 6.07 - 9.93 10.29
SpyNet [29] 4.12 6.69 5.57 8.43 - - -
SpyNet-ft [29] (3.17) 6.64 (4.32) 8.36 - - 35.07
LiteFlowNet [12] 2.52 - 4.05 10.39 - - -
LiteFlowNet+ft [12] (1.64) 4.86 (2.23) 6.09 (2.16) - 10.24
PWC-Net [33] 2.55 - 3.93 - 10.35 33.67 -
PWC-Net-ft [33] (2.02) 4.39 (2.08) 5.04 (2.16) (9.80) 9.60
PWC-Net+-ft [34] (1.71) 3.45 (2.34) 4.60 (1.50) (5.30) 7.72
IRR-PWC-ft [14] (1.92) 3.84 (2.51) 4.58 (1.63) (5.30) 7.65
HD3 [40] 3.84 - 8.77 - 13.17 23.99 -
HD3-ft [40] (1.70) 4.79 (1.17) 4.67 (1.31) (4.10) 6.55
VCN [39] 2.21 - 3.62 - 8.36 25.10 8.73
VCN-ft [39] (1.66) 2.81 (2.24) 4.40 (1.16) (4.10) 6.30
RAFT [35] 1.09 2.77 1.53 3.61 (1.07) (3.92) 6.30
RAFT (warm start) [35] 1.10 2.42 1.61 3.39 - - -

VCN+LCV (1.62) 2.83 (2.22) 4.20 (1.13) (3.80) 6.25
RAFT+LCV (0.94) 2.75 (1.31) 3.55 (1.06) (3.77) 6.26
RAFT+LCV (warm start) (0.99) 2.49 (1.47) 3.37 - - -

4.1 Supervised Optical Flow Estimation

First, we incorporate the learnable cost volume in the VCN [39] and RAFT [35]
framework, and compare them with other existing methods. As shown in Table 1,
our method performs favorably against other state-of-the-art methods on the
Sintel Clean/Final pass and the KITTI 2015 benchmark.

The proposed LCV module improves the performance of VCN and RAFT
by transforming the features of video frames to a whitened space to obtain a
clean and robust matching correlation. This could account for the performance
improvement on the Sintel Final pass, where the scenarios are much harder.
As shown in Fig. 2, the flow estimation error for the snow background at the
right side is smaller than other methods. This is a challenging case because the
front person’s arm renders occlusion to part of the snow background and the
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Inputs

AEPE

PWC-Net

36.322

HD3

35.499

VCN

32.545

VCN+LCV

28.257

Fig. 2: Visual results on “Ambush 1” from the Sintel test final pass. The number
under each method denotes the average end-point error (AEPE). Left: estimated
flow; right: error map (increases from black to white).

background is nearly all white, providing few clues for matching. However, the
LCV module exploits more information from the correlation among different
channels, which assists in obtaining the coherent flow estimation in the snow
background. The LCV module also has an edge over the vanilla cost volume
under the circumstance of light reflection and occlusion. As shown in Fig. 3, the
prediction error of our method is smaller around the light reflection region and
the rightmost traffic sign.

Although we do not report the model parameters in the table, the proposed
LCV module only makes a very slight increase in the model size. The additional
parameters come from the kernel matrices W ∈ Rc×c at different pyramid levels.
Taking VCN+LCV as an example, there are five kernel matrices in total, whose
channel dimensions are 64, 64, 128, 128, and 128, respectively. The LCV module
only takes up 642×2+1282×3 = 57, 344 parameters, which is negligible compared
with the entire VCN model of around 6.23M parameters.
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Inputs

Fl-all(%)

PWC-Net

7.99

HD3

7.17

VCN

6.66

VCN+LCV

6.00

Fig. 3: Visual results on the KITTI 2015 test set. The number under each method
name denotes the Fl-all score on the given frames. Left: estimated flow; right:
error map (increases from blue to red).

4.2 Unsupervised Optical Flow Estimation

We also test the LCV module in unsupervised settings on the KITTI 2015
benchmark. We replace the vanilla cost volume with the LCV module in the
DDFlow [23] model, and compare it with other unsupervised methods. As shown
in Table 2, our model outperforms the DDFlow baseline, and even performs fa-
vorably against SelFlow [24], an improved version of DDFlow.

The training process is crucial to the success of the LCV module in the unsu-
pervised methods. Different from the supervised training of optical flow models,
there is no ground truth for direct supervision. Instead, most unsupervised meth-
ods use the photometric loss as a proxy loss. Specifically, the training of DDFlow
consists of two stages: 1) pre-train a non-occlusion model with census trans-
form [10], and 2) train an occlusion model by distillation from the non-occlusion
model. If we directly follow the same procedure, the training of DDFlow+LCV
will run into trivial solutions, as the photometric loss does not give a strong
supervision for the correspondence learning, especially when the LCV module
increases the dimension of the solution space. To prevent from trivial solutions,
we fix the kenrel matrix as W = I in the pre-train stages, and update W in the
distillation stage.
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Table 2: Results of the unsupervised methods on the KITTI 2015 optical flow
benchmark. Missing entries (-) indicate that the results are not reported for the
respective method. The best result for each metric is printed in bold.

Methods

KITTI 2015
train test

AEPE Fl-bg (%) Fl-fg (%) Fl-all (%)

DSTFlow [31] 16.79 - - 39
GeoNet [41] 10.81 - - -
UnFlow [25] 8.88 - - 28.95
DF-Net [43] 7.45 - - 22.82
OccAwareFlow [37] 8.88 - - 31.20
Back2FutureFlow [16] 6.59 22.67 24.27 22.94
SelFlow [24] 4.84 12.68 21.74 14.19
DDFlow [23] 5.72 13.08 20.40 14.29

DDFlow+LCV (Ours) 5.15 12.98 19.83 14.12

Table 3: Ablation study of different variants of VCN on the KITTI 2015 dataset.

Methods VCN VCN (ct) VCN (W , ct) VCN (Λ, ct) VCN (P , ct) VCN(1x1 conv) VCN + LCV

AEPE/Fl-all 3.9/1.144 4.2/1.204 4.1/1.193 3.8/1.136 3.9/1.129 3.9/1.163 3.8/1.132

4.3 Ablation Study

We evaluate multiple variants of the LCV module based on the VCN baseline:

– VCN: the original VCN baseline.
– VCN (ct): continue training the existing VCN using a small learning rate for

more epochs.
– VCN (W , ct): remove the symmetry and positive definiteness constraint of
W , i.e., , not using the Cayley representation. We restore the weights from
the pre-trained VCN and continue training the model with free W .

– VCN (Λ, ct): fix P to be an identity matrix and make the diagonal matrix
Λ learnable.

– VCN (P , ct): fix Λ to be an identity matrix and make the orthogonal matrix
P learnable.

– VCN (1x1 conv): replace the positive definite W with R>R, where R is a
1 × 1 conv operating on features with input and output dimensions equal.
R>R is only a positive semi-definite matrix.

– VCN+LCV: employ the Cayley representation to ensure the symmetry and
positive definiteness of W .

We randomly split the 200 images with ground truth from the KITTI 2015
training set into the training and validation set by a ratio of 4:1. As shown in
Table 3, we report the AEPE/Fl-all scores on the validation set. We observe
that continuing training of the VCN model does not bring any benefit, which
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(a) Illumination change (γ = 0.5)

(b) Noise (std=0.001)

(c) Adversarial patch (radius=50)

Fig. 4: Visual results of three challenging cases, i.e., illumination change, noise,
and adversarial patch. Top left: the first input frame; bottom left/right: flow by
VCN / VCN+LCV; top right: flow difference between two methods.

indicates that the best VCN model is not obtained at the very end of the train-
ing. Another interesting observation is that VCN (W , ct) performs better than
VCN (ct), showing the benefit of increasing the model capacity. However, it does
not outperform VCN, not even VCN+LCV, confirming the importance of using
a valid inner product space. Comparing the result of VCN (1x1 conv), we can
further conclude that ensuring the positive definiteness via the Cayley represen-
tation is crucial to the performance. We can also find that VCN (Λ, ct) gets a
lower AEPE and VCN (P , ct) gets a lower Fl-all compared with vanilla VCN.
VCN+LCV combines the advantages of both axis rotation and re-weighting,
aiming to address two limitations mentioned in the paper.

4.4 Robustness Analysis

To further understand the effect of the LCV module, we evaluate the flow esti-
mation performance under three challenging cases, i.e., 1) illumination changes:
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Table 4: Results on three challenging cases (numbers: AEPE/Fl-all scores).
(a) Illumination change

γ 0.2 0.3 0.4 0.5 0.7 1.0 2.0 3.0

VCN 16.8/3.240 9.9/1.891 5.9/1.306 3.8/0.995 2.7/0.834 2.5/0.805 2.6/0.819 2.6/0.826

VCN+LCV 17.1/3.232 9.8/1.866 5.9/1.273 3.7/0.967 2.6/0.804 2.4/0.775 2.4/0.790 2.5/0.804

(b) Noise

Standard deviation 0.0001 0.001 0.01 0.1

VCN 2.6/0.816 2.9/0.868 5.0/1.157 19.6/3.213

VCN+LCV 2.4/0.785 2.7/0.838 4.7/1.107 18.9/3.043

(c) Adversarial patch

Patch size 50 100 150 200

VCN 3.5/0.981 5.6/1.419 8.5/2.048 11.9/2.880

VCN+LCV 3.4/0.949 5.5/1.384 8.3/2.004 11.6/2.801

we adjust the illumination of the input frames by changing the value of γ, where
γ = 1.0 is the original image, γ < 1.0 is for a darker image, and γ > 1.0 is for a
brighter image. 2) adding noises: we adjust the standard deviation to control the
noise magnitude. and 3) inserting adversarial patches: we borrow the universal
adversarial patch [30] that can perform a black-box attack for all optical flow
models, and insert patches of different sizes to the input frames.

We compare the VCN model and its variant equipped with LCV. Both two
models are trained on the KITTI 2015 training set. For qualitative comparison,
we perform the above three types of processing on 194 images with the flow
groundtruth from the KITTI 2012 as our test set. As shown in Table 4(a),
VCN+LCV consistently outperforms the VCN baseline in all three challenging
cases. For better illustration, we visualize the effect on an image from KITTI
2015 test set as shown in Fig. 4. It can be seen that the LCV module can help
stabilize the flow prediction around the background trees at the top left corner
of the frame under the cases of dark illumination and random noise injection.
In the third example, the outline of the car body near the patch circle is better
preserved by our model. (See the difference map for details.)

5 Conclusions

In this work, we introduce a learnable cost volume (LCV) module for optical flow
estimation. The proposed LCV module generalizes the standard Euclidean inner
product into an elliptical inner product with a symmetric and positive definite
kernel matrix. To keep its symmetry and positive definiteness, we use the Cayley
representation to re-parameterize the kernel matrix for end-to-end training. The
proposed LCV is a lightweight module and can be easily plugged into any existing
networks to replace the vanilla cost volume. Experimental results show that the
proposed LCV module improves both the accuracy and the robustness of state-
of-the-art optical flow models.
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A Proofs of Theorems

A.1 Proof of Theorem 1

The Theorem of Cayley representation was first given by Cayley in his paper [5].
However, the old paper is not available online. For convenience, we give a simple
proof here.

Proof. First, we validate that the P is a orthogonal matrix. The condition that
S ∈ SO∗(n) ensures that (I + S) is invertible. Since S is skew-symmetric, so
S>S = −S2 = SS>. Hence we have

P>P = (I + S)−>(I − S)>(I − S)(I + S)−1 (15)

= (I + S>)−1(I − S>)(I − S)(I + S)−1 (16)

= (I − S)−1(I − S> − S − S>S)(I + S)−1 (17)

= (I − S)−1(I − S> − S − SS>)(I + S)−1 (18)

= (I − S)−1(I − S)(I − S>)(I + S)−1 (19)

= (I − S>)(I + S)−1 (20)

= (I + S)(I + S)−1 (21)

= I. (22)

Next, we need to show the uniqueness of the Cayley representation.

P = (I − S)(I + S)−1 (23)

⇐⇒ P (I + S) = I − S (24)

⇐⇒ P + PS = I − S (25)

⇐⇒ S + PS = I − P (26)

⇐⇒ (I + P )S = I − P (27)

⇐⇒ S = (I + P )−1(I − P ) (28)

Therefore, the skew-symmetric matrix S is uniquely represented by P , which
concludes the proof. ut

A.2 Proof of Theorem 2

Before giving the proof, we would like to recall the definition of connectedness.

Definition 1 (Connectedness) A set of matrices G is said to be connected if
for all A and B in G, there exists a continuous path A(t), 0 ≤ t ≤ 1, lying with
A(0) = A and A(1) = B.

The above definition of connectedness is actually path connectedness in topol-
ogy. Now we begin our proof of Theorem 2.
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Proof. Since the identity matrix I ∈ SO∗(n), it suffices to prove that for any
X ∈ SO∗(n), there exists a continuous path A(t), 0 ≤ t ≤ 1, such that A(0) = I
and A(1) = X. For any X ∈ SO∗(n), we have its spectral decomposition

X = P>diag(K1, . . . ,Kq, 1, . . . , 1)P , (29)

where the P ∈ O(n) and 0 ≤ q ≤ n/2, and

Kλ =

(
cos(θλ) − sin(θλ)
sin(θλ) cos(θλ)

)
, θλ ∈ [−π, π), λ = 1, . . . , q. (30)

If we put

Kλ(t) =

(
cos(tθλ) − sin(tθλ)
sin(tθλ) cos(tθλ)

)
, (31)

then the path required is

A(t) = P>diag(K1(t), . . . ,Kq(t), 1, . . . , 1)P . (32)

ut

B More Results

B.1 Ranking on Sintel and KITTI 2015 Benchmark

The ranking results on the Sintel and KITTI 2015 benchmark can be found at
http://sintel.is.tue.mpg.de/results and http://www.cvlibs.net/datasets/

kitti/eval_scene_flow.php?benchmark=flow. Here we capture the screen-
shot of the ranking results by March 8, 2020.

http://sintel.is.tue.mpg.de/results
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
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(a) Sintel Final

(b) Sintel Clean

Fig. 5: Ranking results on Sintel and KITTI 2015 benchmark.
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(c) KITTI 2015 - Supervised

(d) KITTI 2015 - Unsupervised

Fig. 5: Ranking results on Sintel and KITTI 2015 benchmark.
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B.2 More Visualization Results

As shown in Fig. 6 and 7, we compare our method with other methods under
the supervised settings. We can observe that the flow boundary of the dragon in
Fig. 6, which is predicted by VCN+LCV, is better than the other methods and
the flow prediction near the tree (in front of the car) and fence by our method in
Fig. 7 is more accurate compared with those of the others. The flow prediction
for these pixels are are challenging due to the occlusion. LCV explores more
information among channel dimensions, which could help alleviate the problem
of occlusion to some extent.

Inputs

AEPE

PWC-Net

18.948

HD3

19.542

VCN

14.294

VCN+LCV

14.176

Fig. 6: More visualization results on “Market 4” from the Sintel test final pass.
The number under each method name denotes the average end-point error
(AEPE) on the given frames. The estimated flow and error maps are presented on
the left and right sides, respectively. In the error map, the error of the estimated
flow increases from black to white.
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Inputs

Fl-all(%)

PWC-Net

13.87

HD3

6.79

VCN

6.09

VCN+LCV

5.70

Fig. 7: More visualization results on the KITTI 2015 test set. The number under
each method name denotes the Fl-all score on the given frames. The estimated
flow and error maps are presented on the left and right sides, respectively. From
blue to red, the error of the estimated flow increases in the error map.

B.3 More Visualization Result on Challenging Cases

We provide three videos showing the effectiveness of our method in three types
of challenging cases: 1) illumination change; 2) noise; and 3) adversarial patches.
The test videos are from the training set in the KITTI tracking benchmark. We
compare the flow results under the normal setting with those under challenging
settings. We can observer that the flow results of our model in either one of three
challenging cases are temporarily consistent and reasonably good.

B.4 Visualization of the Learned Features

We visualize the feature maps for different eigenvalues in Fig. 8. We find that
boundaries of (moving) objects are salient in the feature map corresponding to
the max eigenvalue while the min eigenvalue mainly corresponds to background
information, which results in more discriminative cost volume and more accurate
flow estimation.
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(a) frame

(b) feature (max eigenvalue)

(c) feature (min eigenvalue)

Fig. 8: The feature maps corresponding to the largest the smallest eigenvalues.


