Skip to main content

URVOS: Unified Referring Video Object Segmentation Network with a Large-Scale Benchmark

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12360))

Abstract

We propose a unified referring video object segmentation network (URVOS). URVOS takes a video and a referring expression as inputs, and estimates the object masks referred by the given language expression in the whole video frames. Our algorithm addresses the challenging problem by performing language-based object segmentation and mask propagation jointly using a single deep neural network with a proper combination of two attention models. In addition, we construct the first large-scale referring video object segmentation dataset called Refer-Youtube-VOS. We evaluate our model on two benchmark datasets including ours and demonstrate the effectiveness of the proposed approach. The dataset is released at https://github.com/skynbe/Refer-Youtube-VOS.

S. Seo—This work was done during an internship at Adobe Research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use Res5 and Res4 feature maps in our model.

  2. 2.

    For each spatial grid (hw), \(\mathbf {s}_p\) = [\(h_{\text {min}}\), \(h_{\text {avg}}\), \(h_{\text {max}}\), \(w_{\text {min}}\), \(w_{\text {avg}}\), \(w_{\text {max}}\), \(\frac{1}{H}\), \(\frac{1}{W}\)], where \(h_{*}, w_{*} \in [-1, 1]\) are relative coordinates of the grid. H and W denotes the height and width of the whole spatial feature map.

  3. 3.

    \(\mathbf {\widetilde{s}}_{tp} = [t_{\text {min}}, t_{\text {avg}}, t_{\text {max}}, h_{\text {min}}, h_{\text {avg}}, h_{\text {max}}, w_{\text {min}}, w_{\text {avg}}, w_{\text {max}}, \frac{1}{T}, \frac{1}{H}, \frac{1}{W}]\).

References

  1. Benard, A., Gygli, M.: Interactive video object segmentation in the wild. arXiv preprint arXiv:1801.00269 (2017)

  2. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: CVPR (2017)

    Google Scholar 

  3. Caelles, S., et al.: The 2018 davis challenge on video object segmentation. arXiv preprint arXiv:1803.00557 (2018)

  4. Chen, Y., Pont-Tuset, J., Montes, A., Van Gool, L.: Blazingly fast video object segmentation with pixel-wise metric learning. In: CVPR (2018)

    Google Scholar 

  5. Fan, C., Zhang, X., Zhang, S., Wang, W., Zhang, C., Huang, H.: Heterogeneous memory enhanced multimodal attention model for video question answering. In: CVPR (2019)

    Google Scholar 

  6. Gavrilyuk, K., Ghodrati, A., Li, Z., Snoek, C.G.: Actor and action video segmentation from a sentence. In: CVPR (2018)

    Google Scholar 

  7. Goel, V., Weng, J., Poupart, P.: Unsupervised video object segmentation for deep reinforcement learning. In: NIPS (2018)

    Google Scholar 

  8. Hu, R., Rohrbach, M., Darrell, T.: Segmentation from natural language expressions. In: ECCV (2016)

    Google Scholar 

  9. Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.J.: Towards understanding action recognition. In: CVPR (2013)

    Google Scholar 

  10. Khoreva, A., Rohrbach, A., Schiele, B.: Video object segmentation with language referring expressions. In: ACCV (2018)

    Google Scholar 

  11. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: CVPR (2019)

    Google Scholar 

  12. Li, R., et al.: Referring image segmentation via recurrent refinement networks. In: CVPR (2018)

    Google Scholar 

  13. Li, S., Seybold, B., Vorobyov, A., Lei, X., Jay Kuo, C.C.: Unsupervised video object segmentation with motion-based bilateral networks. In: ECCV (2018)

    Google Scholar 

  14. Li, X., Change Loy, C.: Video object segmentation with joint re-identification and attention-aware mask propagation. In: ECCV (2018)

    Google Scholar 

  15. Li, Z., Tao, R., Gavves, E., Snoek, C.G., Smeulders, A.W.: Tracking by natural language specification. In: CVPR (2017)

    Google Scholar 

  16. Liu, C., Lin, Z., Shen, X., Yang, J., Lu, X., Yuille, A.: Recurrent multimodal interaction for referring image segmentation. In: ICCV (2017)

    Google Scholar 

  17. Maninis, K.K., Caelles, S., Pont-Tuset, J., Van Gool, L.: Deep extreme cut: From extreme points to object segmentation. In: CVPR (2018)

    Google Scholar 

  18. Margffoy-Tuay, E., Pérez, J.C., Botero, E., Arbeláez, P.: Dynamic multimodal instance segmentation guided by natural language queries. In: ECCV (2018)

    Google Scholar 

  19. Mun, J., Yang, L., Ren, Z., Xu, N., Han, B.: Streamlined dense video captioning. In: CVPR (2019)

    Google Scholar 

  20. Nagaraja, V.K., Morariu, V.I., Davis, L.S.: Modeling context between objects for referring expression understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 792–807. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_48

    Chapter  Google Scholar 

  21. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Fast user-guided video object segmentation by interaction-and-propagation networks. In: CVPR (2019)

    Google Scholar 

  22. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: ICCV (2019)

    Google Scholar 

  23. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra r-cnn: towards balanced learning for object detection. In: CVPR (2019)

    Google Scholar 

  24. Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: CVPR (2017)

    Google Scholar 

  25. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)

    Google Scholar 

  26. Tokmakov, P., Alahari, K., Schmid, C.: Learning video object segmentation with visual memory. In: ICCV (2017)

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  28. Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: Feelvos: fast end-to-end embedding learning for video object segmentation. In: CVPR (2019)

    Google Scholar 

  29. Wang, H., Deng, C., Yan, J., Tao, D.: Asymmetric cross-guided attention network for actor and action video segmentation from natural language query. In: ICCV (2019)

    Google Scholar 

  30. Wang, W., et al.: Learning unsupervised video object segmentation through visual attention. In: CVPR (2019)

    Google Scholar 

  31. Wug Oh, S., Lee, J.Y., Sunkavalli, K., Joo Kim, S.: Fast video object segmentation by reference-guided mask propagation. In: CVPR (2018)

    Google Scholar 

  32. Xu, C., Hsieh, S.H., Xiong, C., Corso, J.J.: Can humans fly? action understanding with multiple classes of actors. In: CVPR (2015)

    Google Scholar 

  33. Xu, N., et al.: Youtube-vos: sequence-to-sequence video object segmentation. In: ECCV (2018)

    Google Scholar 

  34. Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: CVPR (2018)

    Google Scholar 

  35. Ye, L., Rochan, M., Liu, Z., Wang, Y.: Cross-modal self-attention network for referring image segmentation. In: CVPR (2019)

    Google Scholar 

  36. Yu, L., et al.: Mattnet: modular attention network for referring expression comprehension. In: CVPR (2018)

    Google Scholar 

  37. Zhou, T., Wang, S., Zhou, Y., Yao, Y., Li, J., Shao, L.: Motion-attentive transition for zero-shot video object segmentation. In: AAAI (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) [2017-0-01779, 2017-0-01780].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohyung Han .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 38143 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seo, S., Lee, JY., Han, B. (2020). URVOS: Unified Referring Video Object Segmentation Network with a Large-Scale Benchmark. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics