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Abstract. The internal geometry of most modern consumer cameras is
not adequately described by the perspective projection. Almost all cam-
eras exhibit some radial lens distortion and are equipped with electronic
rolling shutter that induces distortions when the camera moves during
the image capture. When focal length has not been calibrated offline, the
parameters that describe the radial and rolling shutter distortions are
usually unknown. While for global shutter cameras, minimal solvers for
the absolute camera pose and unknown focal length and radial distortion
are available, solvers for the rolling shutter were missing. We present the
first minimal solutions for the absolute pose of a rolling shutter camera
with unknown rolling shutter parameters, focal length, and radial dis-
tortion. Our new minimal solvers combine iterative schemes designed for
calibrated rolling shutter cameras with fast generalized eigenvalue and
Gröbner basis solvers. In a series of experiments, with both synthetic
and real data, we show that our new solvers provide accurate estimates
of the camera pose, rolling shutter parameters, focal length, and radial
distortion parameters.

Keywords: rolling shutter, absolute pose, radial distortion, focal length,
minimal solver

1 Introduction

Estimating the six degree-of-freedom (6DOF) pose of a camera is one of the
fundamental problems in computer vision with many applications, including
camera calibration [7], Structure-from-Motion (SfM) [37,36], augmented reality
(AR) [33], and visual localization [34]. The task is to compute the camera pose in
the world coordinate system from 3D points in the world and their 2D projections
in an image.
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Solvers for the camera pose are usually used inside RANSAC-style hypothesis-
and-test frameworks [13]. For efficiency it is therefore important to employ min-
imal solvers that generate the solution with a minimal number of point cor-
respondences. The minimal number of 2D-to-3D correspondences necessary to
solve the absolute pose problem is three for a calibrated perspective camera.
The earliest solver dates back to 1841 [16]. Since then, the problem has been
revisited several times [18,6,13,17,23]. In many situations, however, the internal
camera calibration is unavailable, e.g. when working with crowd-sourced images.
Consequently, methods have been proposed to jointly estimate the camera pose
together with focal length [8,39,38,28]. These methods have been extended to
include also estimation of an unknown principal point [29], and unknown radial
distortion [22,28]. The latter is particularly important for the wide-angle lenses
commonly used in mobile phones and GoPro-style action cameras. The absolute
pose of fully uncalibrated perspective camera without radial distortion can be
estimated from six point correspondence using the well-known DLT solution [1].
All these solutions assume a perspective camera model and are not suitable for
cameras with rolling shutter (RS), unless the camera and the scene can be kept
static.

Rolling shutter is omnipresent from consumer phones to professional SLR
cameras. Besides technical advantages, like higher frame-rate and longer expo-
sure time per pixel, it is also cheaper to produce. The price to pay is that the rows
of an “image” are no longer captured synchronously, leading to motion-induced
distortions and in general to a more complicated imaging geometry.

Motivation: While several minimal solutions have been proposed for the abso-
lute pose of an RS camera with calibrated intrinsics [3,4,5,24], minimal solutions
for uncalibrated RS cameras are missing. One obvious way to circumvent that
problem is to first estimate the intrinsic and radial distortion parameters while
ignoring the rolling shutter effect, then recover the 3D pose and rolling shut-
ter parameters with an absolute pose solver for calibrated RS cameras [3,4,24].
Ignoring the deviation from the perspective projection in the first step can,
however, lead to wrong estimates. For example, if the image point distribution is
unfavourable, it may happen that RS distortion is compensated by an (incorrect)
change of radial distortion, see Figure 1.

Contribution: We present the first minimal solutions for two rolling shutter
absolute pose problems:

1. absolute pose estimation of an RS camera with unknown focal length from
7 point correspondences; and

2. absolute pose estimation of an RS camera with unknown focal length and
unknown radial distortion, also from 7 point correspondences.

The new minimal solvers combine two ingredients: a recent, iterative approach
introduced for pose estimation of calibrated RS cameras [24]; and fast polyno-
mial eigenvalue [12] and Gröbner basis solvers for comparatively simple, tractable
systems of polynomial equations [11,27]. In experiments with synthetic and real
data, we show that for uncalibrated RS cameras our new solvers find good es-
timates of camera pose, RS parameters, focal length, and radial distortion. We
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Fig. 1. Removing RS and radial distortion simultaneously using our minimal absolute
pose solver. The original image (left) with tentative correspondences (black) the inliers
captured by P4Pfr+R6P [4] (blue) and subsequent local optimization (red) compared
to inliers captured by the proposed R7Pfr (cyan) and subsequent local optimization
(green). The correction using R7Pfr without local optimization (right) is better than
by P4Pfr+R6P with local optimization (middle).

demonstrate that the new all-in-one solvers outperform alternatives that sequen-
tially estimate first perspective intrinsics, then RS correction and extrinsics.

2 Related work

The problem of estimating the absolute pose of a camera from a minimal number
of 2D-to-3D point correspondences is important in geometric computer vision.
Minimal solvers are often the main building blocks for SfM [37,36] and local-
ization pipelines [34]. Therefore, during the last two decades a large variety of
minimal absolute pose solvers for perspective cameras with or without radial
distortion have been proposed.

For estimating the absolute pose of a calibrated camera, three points are
necessary and the resulting system of polynomial equations can be solved in
a closed form [23]. If the camera intrinsics and radial distortion are unknown,
more point correspondences are required and the resulting systems of polynomial
equations become more complex. The most common approach to solve such
systems of polynomial equations is to use the Gröbner basis method [11] and
automatic generators of efficient polynomial solvers [25,27].

Most of the minimal absolute pose solvers have been developed using the
Gröbner basis method. These include four or 3.5 point minimal solvers (P4Pf or
P3.5Pf solvers) for the perspective camera with unknown focal length, and known
or zero radial distortion [8,39,38,28], four point (P4Pfr) solvers for perspective
cameras with unknown focal length and unknown radial distortion [22,9,28], and
P4.5Pfuv solver for unknown focal length and unknown principal point [29].

Recently, as RS cameras have become omnipresent, the focus has turned
to problems of estimating the camera absolute pose from images containing
RS effects. RS cameras motion models [32] result in more complex systems of
polynomial equations than perspective cameras models. Therefore, most of the
existing RS absolute pose solvers use some model relaxations [3,4,24], scene
assumptions such as planarity [2], additional information e.g. from IMU [5] or a
video sequence [20], and a non-minimal number of point correspondences [2,31].
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Moreover, all the existing solutions assume calibrated RS cameras, i.e., they
assume that the camera intrinsic as well as radial distortion are known.

The first minimal solution to the absolute pose problem for a calibrated RS
camera was presented in [3]. The proposed solver uses the minimal number of six
2D-to-3D point correspondences and the Gröbner basis method to generate an
efficient solver. The proposed R6P is based on the constant linear and angular
velocity model as in [2,31,21], but it uses the first order approximation to both
the camera orientation and angular velocity, and, therefore, it requires an ini-
tialization of the camera orientation, e.g., from P3P [14]. It is shown in [3] that
the proposed R6P solver significantly outperforms the P3P solver in terms of
camera pose precision and the number of inliers captured in the RANSAC loop.
The R6P solver was extended in [4] by linearizing only the angular velocity and
also by proposing a faster solution to the “double-linearized” model. The model
that linearizes only the angular velocity does not require any initialization of the
camera orientation, however it results in a slower and more complicated solver.
Moreover, it is shown in [4] that such solver usually produces similar results as
the “double-linearized” solver initialized with P3P [14,23].

The double-linearized model [3,4] results in a quite complex system of six
quadratic equations in six unknowns with 20 solutions. The fastest solver to
this problem presented in [4] runs 0.3ms and is not suitable for real-time appli-
cations. Therefore, a further simplification of the double-linearized model was
proposed [24]. The model in [24] is based on the assumption that after the
initialization with the P3P solver, the camera rotation is already close to the
identity, and that in real applications, the rolling shutter rotation during the
capture is usually small. Therefore, some nonlinear terms (monomials) in the
double-linearized model are usually small, sometimes even negligible. Based on
this assumption, a linear iterative algorithm was proposed in [24]. In the first
iteration, the algorithm substitutes negligible monomials with zeros. In each
subsequent iteration, it substitutes these monomials with the estimates from the
previous iteration. In this way, the original, complicated system of polynomial
equations is approximated with a system of linear equations. This new linear
iterative algorithm usually converges to the solutions of the original system in
no more than five iterations and an order of magnitude faster than [4].

Different from the above mentioned methods for calibrated RS cameras, we
combine the iterative scheme designed for calibrated RS cameras [24] with fast
generalized eigenvalue and Gröbner basis solvers [27] for specific polynomial
equation systems to solve the previously unsolved problem of estimating the
absolute pose of an uncalibrated RS camera (i.e., unknown RS parameters, focal
length, and radial distortion) from a minimal number of point correspondences.

3 Problem formulation

For perspective cameras with radial distortion, the projection equation can be
written as

αiu(xi, λ) = K[ R | C ]Xi, (1)
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where R ∈ SO(3) and C ∈ R3 are the rotation and translation bringing a 3D point

Xi = [xi, yi, zi, 1]
>

from the world coordinate system to the camera coordinate

system, xi = [ri, ci, 1]
>

are the homogeneous coordinates of a measured distorted
image point, u (·, λ) is an image undistortion function with parameters λ, and
αi ∈ R is a scalar.

Matrix K is a 3 × 3 matrix known as the calibration matrix containing the
intrinsic parameters of a camera. Natural constraints satisfied by most consumer
cameras with modern CCD or CMOS sensor are zero skew and the unit aspect
ratio [19]. The principal point [19] is usually also close to the image center
([px, py]> = [0, 0]>). Thus the majority of existing absolute pose solvers adhere
to those assumptions, and we do so, too. Hence, we adopt calibration matrix

K = diag (f, f, 1) . (2)

For cameras with lens distortion, measured image coordinates xi have to be
transformed into “pinhole points” with an undistortion function u(·, λ). For stan-
dard cameras, the radial component of the lens distortion is dominant, whereas
the tangential component is negligible at this stage. Therefore, most camera
models designed for minimal solvers consider only radial distortion5. A widely
used model represents radial lens distortion with a one-parameter division [15].
This model is especially popular with absolute pose solvers thanks to its com-
pactness and expressive power: it can capture even large distortions of wide-angle
lenses (e.g., GoPro-type action cams) with a single parameter. Assuming that
the distortion center is in the image center, the division model is

u (xi, λ) = u

rici
1

 , λ
 =

 ri
ci

1 + λ(r2i + c2i )

 . (3)

Unlike perspective cameras, RS cameras capture every image row (or column)
at a different time, and consequently, reveal the presence of relative motion
between the camera and the scene at a different position. Camera rotation R and
translation C are, therefore, functions of the image row ri (or column). Together
with the calibration matrix K of (2) and the distortion model (3), the projection
equation of RS cameras is

αiu(xi, λ) = αi

 ri
ci

1 + λ(r2i + c2i )

 =

f 0 0
0 f 0
0 0 1

 [R(ri) | C(ri)]Xi. (4)

Let R0 and C0 be the unknown rotation and translation of the camera at time
τ = 0, which denotes the acquisition time of the middle row r0 ∈ R. Then, for
the short time-span required to record all rows of a frame (typically < 50 ms), the
translation C(ri) can be approximated by a constant velocity model [3,35,31,32,21,2]:

C(ri) = C0 + (ri − r0)t, (5)

5 For maximum accuracy, tangential distortion can be estimated in a subsequent non-
linear refinement.
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with the translational velocity t.
The rotation R(ri), on the other hand, can be decomposed into two parts:

the initial orientation R0 of r0, and the change of the orientation relative to it:
Rw(ri − r0). In [31,3], it was established that for realistic motions it is usually
sufficient to linearize Rw(ri− r0) around the initial rotation R0 via the first-order
Taylor expansion. Thereby the RS projection (4) becomes

αi

 ri
ci

1 + λ(r2i + c2i )

 = K [(I + (ri − r0)[w]×) R0 | C0 + (ri − r0)t] Xi, (6)

where [w]× is the skew-symmetric matrix for the vector w = [w1, w2, w3]
>

.
The linearized model (6) is sufficient for all scenarios except for the most

extreme motions (which anyway present a problem due to motion blur that
compromises keypoint extraction).

Unfortunately, the system of polynomial equation (6) is rather complex even
with the linearized rolling shutter rotation. Already for calibrated RS camera
and assuming Cayley parametrization of R0, this model results in six equations
of degree three in six unknowns and 64 solutions [4].

Therefore, following [3,4], we employ another linear approximation to the
camera orientation R0 to have the double-linearized model:

αi

 ri
ci

1 + λ(r2i + c2i )

 = K [(I + (ri − r0)[w]×) (I + [v]×) | C0 + (ri − r0)t] Xi. (7)

This model leads to a simpler way of solving the calibrated RS absolute pose from
≥ six 2D-3D point correspondences than the model in [4]. However, the drawback
of this further simplification is the fact that, other than the relative intra-frame
rotation, the absolute rotation R0 can be of arbitrary magnitude, and therefore
far from the linear approximation. A practical solution for calibrated cameras is
to compute a rough approximate pose with a standard P3P solver [14,23], align
the object coordinate system to it so that the remaining rotation is close enough
to identity, and then run the full RS solver [3,4,24].

The double-linearized model (7) is simpler than the original one (6), but
still leads to a complex polynomial system (for calibrated RS cameras a system
of six quadratic equations in six unknowns with up to 20 real solutions), and
is rather slow for practical use. Therefore, further simplification of the double-
linearized model was proposed in [24]. That model uses the fact that both the
absolute rotation (after P3P initialisation) and the rolling shutter rotation w are
small. As a consequence [24] assumes that the nonlinear term [w]×[v]× in (7)
is sufficiently small (sometimes even negligible). With this assumption, one can
further linearize the nonlinear term [w]×[v]× in (7) by approximating [v]× with
[v̂]×, while keeping the remaining linear terms as they are; which leads to an
efficient iterative solution of the original system: solve a resulting linearized
system to estimate all unknowns including [v]×, and iterate with updated [v̂]× ←
[v]× until convergence. As initial approximation one can set [v̂]× = 0.
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Here we are interested in RS cameras with unknown focal length and ra-
dial distortion. In that, setting (7) leads to a much more complicated system of
polynomial equations that exceeds the capabilities of existing algebraic methods
such as Gröbner bases [11,27,25]. We adopt a similar relaxation as in [24] and
linearize [w]×[v]× by substituting with the preliminary value [v]× ← [v̂]×. With-
out loss of generality, let us assume that r0 = 0. Then, the projection equation
for this relaxed model is

αi

 ri
ci

1 + λ(r2i + c2i )

 = K [I + ri[w]× + [v]× + ri[w]×[v̂]× | C0 + rit] Xi. (8)

4 Minimal solvers

To develop efficient minimal solvers for uncalibrated RS cameras, we advance
the idea of the calibrated iterative RS solver of [24] by combining it with a
generalized eigenvalue and efficient Gröbner basis solvers for specific polynomial
equation systems.

We develop two new solvers. They both first pre-rotate the scene with a rota-
tion estimated using efficient perspective absolute pose solvers for uncalibrated
cameras, i.e. the P3.5Pf [28] and P4Pfr [28]/P5Pfr [26]. Then, they iterate two
steps: (i) solve the system of polynomial equations derived from (8), with fixed
preliminary v̂. (ii) update v̂ with the current estimates of the unknown param-
eters. The iteration is initialised with v̂ = 0. A compact summary in the form
of pseudo-code is given in Algorithm 1. Note that after solving the polynomial
system (8), we obtain, in general, more than one feasible solution (where “fea-
sible” means real and geometrically meaningful values, e.g., f > 0). To identify
the correct one among them, we evaluate the (normalized) residual error of the
original equations (7), and choose the one with the smallest error.

The described computational scheme of Algorithm 1 covers both the case
where the radial distortion is known and only the pose, focal length and RS pa-
rameters must be found, and the case where also radial distortion is unknown. In
the following, we separately work out the R7Pf solver for known radial distortion
and the R7Pfr solver for unknown radial distortion. Both the cases require seven
point correspondences.

4.1 R7Pf - RS absolute pose with unknown focal length

In the first solver, we assume that the camera has a negligible radial distortion
(since known, non-zero distortion can be removed by warping the image point
coordinates). This R7Pf solver follows the iterative procedure of Algorithm 1.
What remains to be specified is how to efficiently solve the polynomial system (8)
with λ = 0.

The R7Pf solver first eliminates the scalar values αi by left-multiplying equa-

tion (8) with the skew-symmetric matrix [xi]× for the vector xi =
[
ri ci 1

]>
.
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Algorithm 1 Iterative absolute pose solver for uncalibrated RS camera [with
unknown radial distortion]

Input: xi, Xi, {i = 1, . . . , 7}, kmax, εerr
Output: v, C0, w, t, f , [λ]
v0 ← 0, k ← 1
RGS, CGS, fGS ← P4Pf(xi, Xj) [28]
[RGS, CGS, fGS, λGS ← P4Pfr(xi, Xj) [28]]
Xi ← RGSXi
while k < kmax do

v̂← vk−1

errkmax ←∞
[λRS], vRS, C0RS, wRS, tRS, fRS, ← solve Eq. (8)
for j = 1 to #solutions of Eq. (8) do
errj ← Residual error of Eq. (7) evaluated on {vRSj , C0RSj , wRSj , tRSj , fRSj , [λRSj ]}

if errj < errmax then{
vk, Ck, wk, tk, fk,

[
λk

]}
← {vRSj , C0RSj , wRSj , tRSj , fRSj , [λRSj ]}

errkmax ← errj
end if

end for
if errkmax < εerr or

(
|errkmax − errk−1

max| < εerr & k > 1
)

then

return
{
vk, Ck, wk, tk, fk,

[
λk

]}
end if
k ← k + 1

end while
return

{
vk−1, Ck−1, wk−1, tk−1, fk−1,

[
λk−1

]}

Since the projection equation (8) is defined only up to scale, we multiply the
whole equation with q = 1

f (f 6= 0), resulting in 0 −1 ci
1 0 −ri
−ci ri 0

1 0 0
0 1 0
0 0 q

 [I + ri[w]× + [v]× + ri[w]×[v̂]× | C0 + rit] Xi = 0. (9)

(9) has 13 degrees of freedom (corresponding to 13 unknowns): v, w, C0, t, and
q = 1

f . Since each 2D–3D point correspondence gives two linearly independent

equations (only two equations in (9) are linearly independent due to the singu-
larity of the skew-symmetric matrix), we need 6 1

2 point correspondences for a
minimal solution.

Since half-points for which only one coordinate is known normally do not
occur, we present a 7-point solver and just drop out one of the constraints
in computing the camera pose, RS parameters, and focal length. The dropped
constraint can be further used to filter out geometrically incorrect solutions.

After eliminating the scalar values αi, the R7Pf solver starts with equations
corresponding to the 3rd row of (9) for i = 1, . . . , 7. These equations are linear in
ten unknowns and do not contain the unknown q = 1

f , indicating that they are

independent of focal length. Let us denote the elements of unknown vectors by
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v = [v1, v2, v3]
>

, w = [w1, w2, w3]
>

, C0 = [C0x, C0y, C0z]
>

, and t = [tx, ty, tz]
>

.
Then, the equations corresponding to the 3rd row of (9) for i = 1, . . . , 7 can be
written as

My = 0 (i = 1, . . . , 7), (10)

where M is a 7× 11 coefficient matrix and y is a 11× 1 vector of monomials: y =

[v1, v2, v3, w1, w2, w3, C0x, C0y, tx, ty, 1]
>

. For points in the general configuration,
the matrix M in (10) has a 4-dimensional null-space, so we can write the unknown
vector y as a linear combination of four 11× 1 basis vectors y1, y2, y3, and y4 of
that null-space:

y = β1y1 + β2y2 + β3y3 + β4y4, (11)

where βj (j = 1, . . . , 4) are new unknowns. One of these unknowns, e.g. β4,
can be eliminated (expressed as a linear combination of the remaining three
unknowns β1, β2, β3), using the constraint on the last element of y, which by
construction is 1.

In the next step, the parameterization (11) is substituted into the equa-
tions corresponding to the 1st (or 2nd) row of (9) for i = 1, . . . , 6. Note that
here we use only six of seven available equations. The substitution results in
six polynomial equations in six unknowns β1, β2, β3, C0z, tz, q, and 10 monomi-
als m = [β1q, β1, β2q, β2, β3q, β3, C0zq, tzq, q, 1]. This is a system of six quadratic
equations in six unknowns, which could be solved using standard algebraic meth-
ods based on Gröbner bases [10] and automatic Gröbner basis solver genera-
tors [27,25]. However, in this specific case, it is more efficient to transform it to
a generalized eigenvalue problem (GEP) of size 6× 6, by rewriting it as

qA1 [β1, β2, β3, C0z, tz, 1]
>

= A0 [β1, β2, β3, C0z, tz, 1]
>
, (12)

where A0 and A1 are 6×6 coefficient matrices. Equation (12) can be solved using
standard efficient eigenvalue methods [12]. Alternatively, one can simplify even
further by eliminating monomials C0zq and tzq, thereby also eliminating two
unknowns C0z and tz, and then solving a GEP of size 4 × 4. The remaining
unknowns are obtained by a back-substitution into (11).

4.2 R7Pfr - RS absolute pose with unknown focal length and
unknown radial distortion

The R7Pfr solver finds the solution of the minimal problem with unknown abso-
lute pose, RS parameters, focal length, and radial distortion. Compared to the
first solver, there is one additional degree of freedom (14 unknowns in total);
hence, we need seven 2D-to-3D point correspondences. R7Pfr follows the same
iterative approach.

After eliminating the scalar values αi by left-multiplying equation (8) with

the skew-symmetric matrix [u(xi, λ)]× for u(xi, λ) =
[
ri, ci, 1 + λ(r2i + c2i )

]>
,

and multiplying the complete system with q = 1
f (6= 0), we obtain 0 di ci

di 0 −ri
−ci ri 0

1 0 0
0 1 0
0 0 q

 [I + ri[w]× + [v]× + ri[w]×[v̂]× | C0 + rit] Xi = 0, (13)
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Table 1. Average numbers of inliers for different methods.

Dataset P4Pfr+R6P P4Pfr+R6P+LO P4Pfr+R7Pfr P4Pfr+R7Pfr+LO

Gopro drone 1 45 162 170 203

Gopro drone 2 124 130 126 131

Gopro rollerc. 130 137 132 137

Xiaomi wide 58 66 64 67

P4Pf+R6P P4Pf+R6P+LO P4Pf+R7Pf P4Pfr+R7Pf+LO

Xiaomi standard 72 95 44 110

with di = 1 + λ(r2i + c2i ) for i = 1, . . . , 7. The polynomial system (13) is more
complicated than that without radial distortion, but the third row remains un-
changed, as it is independent not only of focal length, but also of radial dis-
tortion. We can therefore proceed in the same way: find the 4-dimensional null
space of matrix M, eliminate β4, and substitute the parametrization (11) back
into the 1st (or 2nd) row of (13), to obtain a system of seven quadratic poly-
nomial equations in seven unknowns β1, β2, β3, C0z, tz, q, λ, and 14 monomials
m = [β1q, β1λ, β1, β2q, β2λ, β2, β3q, β3λ, β3, C0zq, tzq, q, λ, 1].

In the next step, we eliminate the monomials C0zq and tzq (and, conse-
quently, also two unknowns C0z and tz) by simple Gauss-Jordan elimination.
The resulting system of five quadratic equations in five unknowns β1, β2, β3, q, λ,
and 12 monomials has ten solutions. Different from the R7Pf case, this system
does not allow a straight-forward transformation to a GEP. Instead, we solve it
with the Gröbner basis method using the automatic solver generator [27].

To find a solver that is as efficient as possible, we follow the recent heuris-
tic [30]. We generate solvers for 1000 different candidate bases and select the
most efficient one among them. The winning solver performs elimination on a
26 × 36 matrix (compared to a 36 × 46 matrix if using the standard basis and
grevlex monomial ordering) and eigenvalue decomposition of a 10 × 10 matrix.
The remaining unknowns are again obtained by the back-substitution to (11).

5 Experiments

We evaluate the performance of both presented solvers on synthetic as well as
various real datasets. The main strength of the presented R7Pf and R7Pfr solvers
lies in the ability to handle uncalibrated data, which often occurs in the wild.

5.1 Data setup

Synthetic data: For the synthetic experiments, we generate random sets of
seven points in the cube with side one. We simulate a camera with 60 degrees
FOV at random locations facing the center of the cube at a distance between one
to four. We generate 1000 samples for each experiment, with 10 increment steps
for the parameters that are being varied. We generate the camera motion using
constant translational and rotational velocity model and the radial distortion
using the one parameter division model. Note that even though our solvers are



RS Absolute Pose with Unknown Focal Length and Radial Distortion 11

0 3 7 10 14 17 21 24 28

Rotational velocity [deg/frame]

0

1

2

3

4
R

e
l.
 c

a
m

e
ra

 p
o
s
it
io

n
 e

rr
o
r

 0 0.5 1 1.5 2

Translational velocity [1/frame] 10 -4

0 3 7 10 14 17 21 24 28

Rotational velocity [deg/frame]

0

10

20

30

40

50

60

70

80

C
a

m
e

ra
 o

ri
e

n
ta

ti
o

n
 e

rr
o

r 
[d

e
g

]

 0 0.5 1 1.5 2

Translational velocity [1/frame] 10 -4

0 3 7 10 14 17 21 24 28

Rotational velocity [deg/frame]

0

2

4

6

8

10

R
e
la

ti
v
e
 f
o
c
a
l 
le

n
g
th

 e
rr

o
r

10
-1  0 0.5 1 1.5 2

Translational velocity [1/frame] 10 -4

Fig. 2. Increasing camera motion on synthetic data with unknown focal length. P4Pf
struggles to estimate the correct pose and focal length in the presence of RS distortions
whereas R7Pf (gray-blue) and R7Pfr (magenta) are able to cope with RS effects.

based on these models, they use approximations to the RS motion and therefore
the data is never generated with identical model that is being solved for.
Real data: We use altogether five datasets. Three outdoor captured by Gopro
cameras, two of which are downloaded from Youtube and one was proposed in [4].
Two contain drone footage and one a handheld recording of a rollercoaster ride.
We have conducted an offline calibration of the internal parameters and lens
distortion of Gopro Hero 3 Black used in dataset Gopro drone 1 from [4] using
the Matlab Calibration Toolbox.

To create the ground truth we undistorted images grabbed from the entire
videos and used them all in an open source SfM pipeline COLMAP [36] to re-
construct a 3D model. Of course, the images containing significant RS distortion
were not registered properly or not at all, but the scene was sufficiently re-
constructed from the images where RS distortions were insignificant. We then
selected the parts of trajectory which have not been reconstructed well and reg-
istered the 2D features in those images to the 3D points in the reconstructed
scene. This was done for datasets Gopro Drone 2 and Gopro rollercoaster. For
Gopro drone 1 we had DSLR images of the scene and we could reconstruct the
3D model using those, which led to much better data overall.

Furthermore, we captured two dataset using the Xiaomi Mi 9 smartphone
with both the standard and the wide FOV camera. The standard FOV cam-
era contains virtually no radial distortion whereas the wide FOV camera has
moderate radial distortion. We reconstructed the scene using static images from
the standard camera and then registered sequences with moving camera to the
reconstruction.

5.2 Compared methods

When neither the focal length nor the radial distortion coefficients are known, the
state-of-the-art offers a 4-point solver to absolute pose, focal length (P4Pf) [28]
and radial distortion (P4Pfr) [28]. In the presence of RS distortions, one can
opt for the R6P algorithm [4] which, however, needs the camera calibration.
We solve the problem simultaneously for both the RS parameters, focal length,
and radial distortion, which until now could be emulated by running P4Pf or
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Fig. 3. Increasing radial distortion and unknown focal length. RS motion is kept con-
stant at a value of the middle of Figure 2. P4Pf and P4Pfr are not able to estimate good
pose and focal length under RS distortions, R7Pf slowly deteriorates with increasing
radial distortion and R7Pfr performs well across the entire range.

P4Pfr and subsequently R6P on the calibrated and/or undistorted data. That
combination is the closest viable alternative to our method, so we consider it as
the state-of-the-art and compare with it.

A common practice after robust estimation with a minimal solver and RANSAC
is to polish the results with local optimization using all inliers [4]. An impor-
tant question is whether a simpler model, in our case the baseline P4Pf/P4Pfr
followed by R6P could be enough to initialize that local optimization and reach
the performance of the direct solution with a more complex model, i.e., the
proposed R7Pf/R7Pfr. In our experiments we evaluate also the non-linear opti-
mization initialized by RANSAC and see if our solvers outperform the non-linear
optimization of the baseline approach.

5.3 Evaluation metrics

We use various metrics to compare with the state-of-the-art and to show the
benefits of our solvers. A common practice [3,5,24] is to use the number of
inliers identified by RANSAC as the criterion to demonstrate the performance
of minimal solvers on real data. We compare against both the state-of-the-art
RANSAC output and the polished result after local optimization.

To highlight the accuracy of the estimated radial distortion and the RS pa-
rameters, we use them to remove the radial distortion and the rotational rolling
shutter distortion from the images.

Due to the lack of good ground-truth for the camera poses, we evaluate
them in two ways. First, we move the camera in place inducing only rotations,
which resembles, e.g., an augmented or head-tracking scenario. In this case, the
computed camera centers are expected to be almost static and we can show the
standard deviation from the mean as a measure of the estimated pose error.
Second, we evaluate qualitatively the case where the camera moves along a
smooth trajectory.
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Fig. 4. (left) Original image distorted by radial and RS distortion. (middle) Image
undistorted by our R7Pfr. (right) Image undistortion by a 3-parametric model
estimated by Matlab Calibration Toolbox using a calibration board. We achieve com-
parable results as a method based on a calibration board.
Table 2. Standard deviations from mean position of camera centers. The camera was
purely rotating in these datasets; lower deviations mean more precise camera poses.

Dataset P4Pfr+R6P P4Pfr+R6P+LO P4Pfr+R7Pfr P4Pfr+R7Pfr+LO

Xiaomi wide 25 39 20 20

Xiaomi standard 12 14 14 10

5.4 Results

The experiments on synthetic data verify that the proposed solvers are able
to handle unknown focal length, radial distortion and RS distortions. Figure 2
shows results on data with unknown focal length and increasing camera motion.
The state-of-the-art P4Pf solver struggles to estimate the camera pose and the
focal length accurately as the RS camera rotational and translational velocity
increases, resulting in mean orientation errors up to 15 degrees and relative focal
length error of 40% when the motion is strongest. Given such poor initial focal
length estimate from P4Pfr, R6P is not able to recover the pose any better. In
contrast, both R7Pf and R7Pfr are able to estimate the pose and focal length
accurately, keeping the mean rotation error under 1.0 degree and the relative
focal length estimate error under 3% even for the strongest motions.

Next we evaluate the effect of increasing radial distortion and the perfor-
mance of our R7Pfr solver, see Figure 3. The magnitude of the RS motion is
kept constant through the experiment at the value of about the middle of the
previous experiment. First thing to notice is that P4Pfr is less stable under RS
distortion, providing worse estimates than P4Pf when radial distortion is close to
zero. As the radial distortion increases the performance of P4Pf becomes grad-
ually worse and is outperformed by P4Pfr in the end. R6P initialized by P4Pfr
is not able to improve the poor results of P4Pfr. R7Pf slowly deteriorates with
increasing radial distortion and R7Pfr provides good results under all conditions.

The mean number of inliers on real data is summarized in Table 1 and qual-
itative evaluation of image undistortion is shown in Figure 5. Camera center
precision is evaluated quantitatively in Table 2 and qualitatively in supplemen-
tary material. Our solvers achieve overall better performance in terms of number
of RANSAC inliers and R7Pfr followed by local optimization provides the best
results in all cases. The estimated radial distortion and camera motion is sig-
nificantly better than that of the baseline methods and can be readily used to
remove both radial and RS distortion as shown in Figures 5 and 4. Relative
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Table 3. Mean relative errors of estimated focal length w.r.t the ground truth focal
length fgt = 800px for the Gopro datasets for our method and the baseline and the
locally optimized variants (LO).

Dataset P4Pfr+R6P P4Pfr+R6P+LO P4Pfr+R7Pfr P4Pfr+R7Pfr+LO

Gopro drone 1 10% 6.5% 2.37% 1.5%

Gopro rollerc. 2.25% 1.75% 1.75% 1.5%

Fig. 5. Right image shows tentative matches (black), inliers found using P4Pfr followed
by R7Pfr (cyan) or R6P (blue) and the inliers after subsequent local optimization (LO)
of the R7Pfr result (green) and the R6P result (red). The middle image and right image
shows the RS and distortion removal using the R6P parameters after LO and the R7Pfr
parameters after LO respectively.

focal length error compared to ground truth available in dataset Gopro drone
1 in Table 3 shows a significant improvement when using R7Pfr solver. More
synthetic and real experiments are included in the supplementary material.

6 Conclusion

We address the problem of absolute pose estimation of an uncalibrated RS cam-
era, and present the first minimal solutions for the problem. Our two new mini-
mal solvers are developed under the same computational scheme by combining
an iterative scheme originally designed for calibrated RS cameras with fast gen-
eralized eigenvalue and efficient Gröbner basis solvers for specific polynomial
equation systems. The R7Pf solver estimates the absolute pose of a RS cam-
era with unknown focal length from 7 point correspondences. The R7Pfr solver
estimates the absolute pose of a RS camera with unknown focal length and un-
known radial distortion; also from 7 point correspondences. Our experiments
demonstrate the accuracy of our new solvers.
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A Appendix

A.1 Additional synthetic experiments

In this section we show additional evaluation of the proposed algorithms on
synthetic data. We show two more experiments demonstrating the practical ad-
vantages of using R7Pf and R7Pfr.

In these experiments we gradually increased rotational and translational ve-
locity to the same values as in the experiments in Figure 1 in the main paper,
e.g. rotation velocity up to 30 degrees/frame and relative translational velocity
up to 1/10 of the camera distance from the scene per the duration of a frame.
The difference from the experiments in the main paper is that this time the
camera orientation is not set to identity and, therefore, R7Pf and R7Pfr have to
be initialized by an initial rotation. We use the output rotation from P4Pf and
P4Pfr to initialize R7Pf and R7Pfr respectively.

The data in the first experiment was generated without radial distortion
whereas in the second experiment we used a fixed radial distortion of about half
the maximum value of the one used in experiment in Figure 3 in the main paper.
Figure 6 shows how R7P and R7Pfr should behave in a practical scenario with
a moderate RS distortion, unknown focal length and no radial distortion and
Figure 7 shows the case for radial distortion.
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Fig. 6. Performance of R7Pf and R7Pfr on data with increasing RS distortion and
unknown focal length, when the initial orientation is initialized by P4Pf and P4Pfr
respectively.

We can see that without radial distortion, the initialization by both P4Pf and
P4Pfr is good enough to ensure R7Pf and R7Pfr provide a significantly better
camera pose and focal length than the existing solutions. The P4Pfr+R7Pfr is
significantly less stable on data without radial distortion, which indicates that
the RS effect is being explained partially by the radial distortion. As expected
on data with radial distoriton, P4Pf+R7Pf performs significantly poorer which
indicates that radial distortion present in the image is being explained by some
RS distortions, similar effect as with R7Pfr on non-distorted data. This is also
visible in the extremely poor result of P4Pf+R6P. R7Pf initialized by P4Pfr on
average outperforms P4Pfr+R6P, but it is clear from the results of both, that the



16 Z. Kukelova et al.

0 3 7 10 14 17 21 24 28
0

1

2

3

4

5

R
e

l.
 c

a
m

e
ra

 p
o

s
it
io

n
 e

rr
o

r

 

0 3 7 10 14 17 21 24 28
0

20

40

60

80

100

120

140

160

180

C
a
m

e
ra

 o
ri
e
n
ta

ti
o
n
 e

rr
o
r 

[d
e
g
]

 

0 3 7 10 14 17 21 24 28
0

2

4

6

8

10

R
e
la

ti
v
e
 f
o
c
a
l 
le

n
g
th

 e
rr

o
r

10
-1  

Fig. 7. Performance of R7Pf and R7Pfr on data with increasing RS distortion, moder-
ate radial distortion and unknown focal length, when the initial orientation is initialized
by P4Pf and P4Pfr respectively.

radial distortion estimated by a solver without RS model (P4Pfr) is poor. R7Pfr
provides the best performance and significantly outperforms all alternatives.

A.2 Qualitative trajectory evaluation

Here we show an example of the camera poses obtained by the compared algo-
rithms. Figure 8 shows the camera centers calculated by P4Pfr+R7Pfr (cyan),
P4Pfr+R7Pfr+LO (green), P4Pfr+R6P (blue) and P4Pfr+R6P+LO (red) con-
nected by lines which form a continuous trajectory of a drone performing a fast
maneuver (bottom) and a rollercoaster performing a helix motion (top). One
can observe that our solutions provide significantly more stable pose especially
during fast motions. The baseline algorithms are prone to providing completely
wrong pose at multiple occasions and overall suffer from lower accuracy caused
by the lower number of detected inliers as well as interplay of the RS and radial
distortion parameters.
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Fig. 8. Reconstructed camera trajectories of the Gopro rollercoaster dataset (top) and
Gopro drone 2 (bottom). The P4Pfr+R7Pfr (cyan) and P4Pfr+R7Pfr+LO (green)
provide much more stable camera path than P4Pfr+R6P (blue) and P4Pfr+R6P+LO
(red) in the critical places where camera motion is high.
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