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Abstract. The 2D virtual try-on task has recently attracted a great in-
terest from the research community, for its direct potential applications
in online shopping as well as for its inherent and non-addressed scien-
tific challenges. This task requires fitting an in-shop cloth image on the
image of a person, which is highly challenging because it involves cloth
warping, image compositing, and synthesizing. Casting virtual try-on
into a supervised task faces a difficulty: available datasets are composed
of pairs of pictures (cloth, person wearing the cloth). Thus, we have no
access to ground-truth when the cloth on the person changes. State-of-
the-art models solve this by masking the cloth information on the person
with both a human parser and a pose estimator. Then, image synthesis
modules are trained to reconstruct the person image from the masked
person image and the cloth image. This procedure has several caveats:
firstly, human parsers are prone to errors; secondly, it is a costly pre-
processing step, which also has to be applied at inference time; finally, it
makes the task harder than it is since the mask covers information that
should be kept such as hands or accessories. In this paper, we propose a
novel student-teacher paradigm where the teacher is trained in the stan-
dard way (reconstruction) before guiding the student to focus on the
initial task (changing the cloth). The student additionally learns from
an adversarial loss, which pushes it to follow the distribution of the real
images. Consequently, the student exploits information that is masked
to the teacher. A student trained without the adversarial loss would not
use this information. Also, getting rid of both human parser and pose
estimator at inference time allows obtaining a real-time virtual try-on.

Keywords: Virtual try-on. Teacher-student. Model distillation.

1 Introduction

A photo-realistic virtual try-on system would provide a significant improvement
for online shopping. Whether used to create catalogs of new products or to
propose an immersive environment for shoppers, it could impact e-commerce
and open the door for automated image-editing possibilities.

Earlier work addresses this challenge using 3D measurements and model-
based methods [9,11,28]. However, these are, by nature, computationally inten-
sive and require expensive material, which would not be acceptable at scale
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Reference Target Human CP-VTON T-WUTON S-WUTON
person cloth parsing (ours) (ours)

Fig. 1: Typical failure cases of the human parser. On the two first rows, it does not
segment the person properly. On the third row, it masks the handbag which we would
like to preserve in a virtual try-on. CP-VTON and our T-WUTON, which rely on
the parsing information, are not robust to a bad parsing. However, the student model
S-WUTON which is distilled from the human parser, pose estimator and T-WUTON,
can preserve the person’s attributes and does not rely on the parsing information.

for shops. Recent works aim to leverage deep generative models to tackle the
virtual try-on problem [6,13,19,38]. CAGAN [19] is a U-net based Cycle-GAN
[17] approach. However, this method fails to generate realistic results since such
networks cannot handle large spatial deformations. In VITON [13], the authors
recast the virtual try-on as a supervised task. They propose to use a human
parser and a pose estimator to mask the cloth in the person image and construct
an agnostic person representation p?. The human parser allows segmenting the
upper-body and the cloth, while the pose estimator locates the keypoints (i.e.
shoulders, wrists, etc.) of the person. Then, with p? and the image of the original
cloth c on a white background, they train a model in a fully supervised fashion
to reconstruct p. Namely, they propose a coarse-to-fine synthesis strategy with
shape context matching algorithm [3] to warp the cloth on the target person.
To improve this model, CP-VTON [38] incorporates a convolutional geometric
matcher [31], which learns geometric deformations (i.e. thin-plate spline trans-
form [4]) that align the cloth with the person. State-of-the-art models are based
on the supervised formulation of the virtual try-on task, which has some draw-
backs. Human parsers and pose estimators are trained on other datasets and thus
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fail in some situations (see Fig. 1, two first rows). Retraining them on fashion
datasets would require similar labels of semantic segmentation or unsupervised
domain adaptation methods. Even though they would still be imperfect. More-
over, for a virtual try-on, one wants to preserve person’s attributes like handbags
or jewels. When constructing p?, these person’s attributes are masked and can
not be preserved, such as the partially masked handbag on the third row of Fig.
1. Finally, the human parsing and pose estimation are the wall clock bottleneck
of the pipeline.

In our work, we distill [15] the standard pipeline of virtual try-on composed
of human parser, pose estimator, and synthesis modules in the synthesis mod-
ules. Namely, we train a student synthesizer with the outputs of a pre-trained
standard virtual try-on pipeline. To force the student to use information that is
masked to the teacher, we also train the student with an adversarial loss. The
distillation process allows us to remove the need for human parsing and pose
estimation at inference time, which improves image quality and speeds up the
computations from 6FPS to 77FPS. In Fig. 1, we show visual results of a baseline
CP-VTON, our teacher model T-WUTON and our student model S-WUTON.
Since S-WUTON does not rely on human parsing, it is robust to parsing errors
and preserves a person’s attributes such as fingers or handbags.

Additionally, to build an efficient teacher model, we propose an improved ar-
chitecture for virtual try-on, a Warping U-Net for a Virtual Try-On (WUTON).
Our architecture is composed of two modules: a convolutional geometric matcher
[31] and a U-net generator with a siamese encoder, where the former warps the
feature maps of the latter. The architecture is trained end-to-end, which leads
to high-quality synthesized images.

We demonstrate the benefit of our method with several experiments on a
virtual try-on dataset, with quantitative and visual results, and a user study.

2 Problem statement and related work

Given the 2D images p ∈ Rh×w×3 of a person and c ∈ Rh×w×3 of a clothing
item, we want to generate the image p̃ ∈ Rh×w×3 where a person p wears the
cloth c. The task can be separated in two parts : the geometric deformation
T required to align c with p, and the refinement that fits the aligned cloth
c̃ = T (c) on p. These two sub-tasks can be modelled with learnable neural
networks, i.e. spatial transformers networks STN [18,31] that output parameters
θ = STN(p, c) of geometric deformations, and conditional generative networks
G that give p̃ = G(p, c, θ).

Because it would be costly to construct a dataset with {(p, c), p̃} triplets,
previous works [13,38] propose to use an agnostic person representation p? ∈
Rh×w×c where the clothing items in p are hidden but identity and shape of
the persons are preserved. p? is built with pre-trained human parsers and pose
estimators : p? = h(p). These triplets {(p?, c), p} allow to train for reconstrution.
(p?, c) are the inputs, p̃ the output and p the ground-truth. We finally have the
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conditional generative process :

p̃ = G( h(p)︸︷︷︸
agnostic person

, c︸︷︷︸
cloth

, STN(h(p), c)︸ ︷︷ ︸
geometric transform

) (1)

Although it eases the training of G, h is a bottleneck in the virtual try-on
pipeline. We will show that we can train a student model with synthetic triplets
{(p, c), p̃}, where p̃ comes from our pre-trained teacher generative model in Eq. 1.
This allows to remove the need for h at inference time for the student model:

p̂ = Gs( p︸︷︷︸
original person

, c︸︷︷︸
cloth

, STNs(p, c)︸ ︷︷ ︸
geometric transform

) (2)

where Gs and STNs are the student modules and p̂ the generated image.

Conditional image generation. Generative models for image synthesis have
shown impressive results with adversarial training [8]. Combined with deep net-
works [29], this approach has been extended to conditional image generation in
[27] and performs increasingly well on a wide range of tasks, from image-to-image
translation [17,45] to video editing [34]. However, as noted in [26], these models
cannot handle large spatial deformations and fail to modify the shape of objects,
which is necessary for a virtual try-on.

Appearance transfer. Close to the virtual try-on task, some research focus on
human appearance transfer. Given two images of different persons, the goal is to
transfer the appearance of a part of the person A on the person B. Approaches
using pose and appearance disentanglement [24,25] fit this task but others are
specifically designed for it. SwapNet [30] is a dual path network which generates
a new human parsing of the reference person and region of interest pooling to
transfer the texture. In [40], the method relies on DensePose information [1],
which provides a 3D surface estimation of a human body, to perform a warping
and align the two persons. The transfer is then done with segmentation masks
and refinement networks. However, the warping relies on matching source and
target pose, which is not feasible for the virtual try-on task.

Virtual try-on. Most of the approaches for a virtual try-on system come from
computer graphics and rely on 3D measurements or representations. Drape [9]
learns a deformation model to render clothes on 3D bodies of different shapes. In
[11], Hahn et al. use subspace methods to accelerate physics-based simulations
and generate realistic wrinkles. ClothCap [28] aligns a 3D cloth-template to each
frame of a sequence of 3D scans of a person in motion. However, the use of 3D
scans is expensive and thus not doable for online users.

The task we are interested in is the one introduced in CAGAN [19] and further
studied by VITON [13] and CP-VTON [38], which we defined in the problem
statement. In CAGAN [19], Jetchev et al. propose a cycle-GAN approach that
requires three images as input: the reference person, the cloth worn by the person



A Parser-Free Virtual Try-On 5

and the target in-shop cloth. Thus, it limits its practical uses. To facilitate the
task, VITON [13] introduces the supervised formulation of the virtual try-on, as
described above. Their pipeline separates the task in sub-tasks: constructing the
agnostic person representation (i.e. mask the area to replace but preserve body
shape), warping the cloth and compositing the final image. Based on the agnostic
person representation p? and the cloth image c, the VITON model performs
a generative composition between the warped cloth and a coarse result. The
warping is done with a non-parametric geometric transform [3]. To improve this
model, CP-VTON [38] incorporates a learnable geometric matcher STN [31].
The STN is trained to align c on p with a L1 loss on paired images. However,
the L1 loss is overwhelmed with the white background and the solid color parts of
clothes. Thus, it faces difficulties to align patterns and to preserve inner structure
of the cloth. In VTNFP [42] and ClothFlow [12], a module generating the new
human parsing is added. It allows to better preserve body parts and edges, but
at an increased computational cost. Moreover, ClothFlow [12] replaces the TPS
warping by a dense flow from the target cloth to the person. All these recent
works [13,38,12,42] rely on pre-trained human parser and pose estimator.

Recent work MG-VTON [6] extends the task to a multi-pose virtual try-on
system, where they also change the pose of the reference person. Similarly to
[5,42,6], they add a module generating the new human parsing, based on input
and target pose information.

3 Our approach

Our task is to build a virtual try-on system that is able to fit a given in-shop
cloth on a reference person. In this work, we build a virtual try-on that does not
rely on a human parser nor a pose estimator for inference. To do so, we use a
teacher-student approach to distill the standard virtual try-on pipeline composed
of human parser, pose estimator, and synthesis module in the synthesis module.

In Section 3.1, we detail the architecture of our synthesis module WUTON.
It is trainable end-to-end and composed of two existing modules: a convolutional
geometric matcher STN [31] and a U-net [32] with siamese encoder whose skip
connections from the cloth encoder to the decoder are deformed by STN . We
then explain its training procedure in the standard supervised setting, which
gives the teacher T-WUTON.

We finally explain our distillation process. Once the first generative model
is trained, the pipeline {h,T-WUTON} becomes a teacher model for a student
model S-WUTON by constructing synthetic triplets {(p, c), p̃}. These serve to su-
pervise the training of S-WUTON, which hence does not need a human parser to
pre-process the image and construct the agnostic person representation. Impor-
tantly, S-WUTON also learns from an adversarial loss so it does not only follow
the teacher’s distribution and it can learn to preserve a person’s attributes.
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Fig. 2: The teacher T-WUTON : our proposed end-to-end warping U-net architecture.
Dotted arrows correspond to the forward pass only performed during training. Green
arrows are the human parser, red ones are the loss functions. The geometric transforms
share the same parameters but do not operate on the same spaces. The different training
procedure for paired and unpaired pictures is explained in Section 3.2.

3.1 WUTON architecture

Our warping U-net is composed of two connected modules, as shown in Fig. 2.
The first one is a convolutional geometric matcher, which has a similar archi-
tecture as [31,38]. It outputs the parameters θ of a geometric transformation,
a TPS transform in our case. This geometric transformation aligns the in-shop
cloth image with the reference person. However, in contrast to previous work
[6,13,38], we use the geometric transformation on the feature maps of the gener-
ator rather than at a pixel-level. Thus, we learn to deform the feature maps that
pass through the skip connections of the second module, a U-net [32] generator
which synthesizes the output image p̃.

The architecture of the convolutional geometric matcher is taken from CP-
VTON [38], which reuses the generic geometric matcher from [31]. It is com-
posed of two feature extractors F1 and F2, which are standard convolutional
neural networks. The local vectors of feature maps F1(c) and F2(p?) are then
L2-normalized and a correlation map C is computed as follows:

Cijk = F1i,j (c) · F2m,n
(p?) (3)

where k is the index for the position (m, n). This correlation map captures
dependencies between distant locations of the two feature maps, which is useful
to align the two images. C is the input of a regression network, which outputs the
parameters θ and allows to perform the geometric transformation Tθ. We use
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TPS transformations [4], which generate smooth sampling grids given control
points. Each scale of the U-net is transformed with the same parameters θ.

The input of the U-net generator is also the tuple of pictures (p?, c). Since
these two images are not spatially aligned, we cannot simply concatenate them
and feed a standard U-net. To alleviate this, we use two different encoders E1

and E2 processing each image independently and with non-shared parameters.
Then, the feature maps of the in-shop cloth E1(c) are transformed at each scale i:
Ei1(c) = Tθ(E

i
1(c)). Then, the feature maps of the two encoders are concatenated

and feed the decoder at each scale. With aligned feature maps, the generator is
able to compose them and to produce realistic results. Feature maps warping was
also proposed in [5,35]. We use instance normalization in the U-net generator,
which is more effective than batch normalization [16] for image generation [37].

3.2 Training procedure of the teacher model

We will now detail the training procedure of T-WUTON, i.e. the data represen-
tation and the different loss functions of the teacher model.

While previous works use a rich person representation with more than 20
channels representing human pose, body shape and the RGB image of the head,
we only mask the upper-body of the reference person. Our agnostic person rep-
resentation p? is thus a 3-channel RGB image with a masked area. We compute
the upper-body mask from pose and body parsing information provided by a pre-
trained neural network from [23]. Precisely, we mask the areas corresponding to
the arms, the upper-body cloth and a bounding box around the neck.

Using the dataset from [6], we have pairs of in-shop cloth image ca and a
person wearing the same cloth pa. Using a human parser and a human pose
estimator, we generate p?a. From the parsing information, we can also isolate
the cloth on the image pa and get ca,p, the cloth worn by the reference person.
Moreover, we get the image of another in-shop cloth cb. The inputs of our network
are the two tuples (p?a, ca) and (p?a, cb). The outputs are respectively (p̃a, θa) and
(p̃b, θb).

The cloth worn by the person ca,p allows us to guide directly the geometric
matcher with a L1 loss:

Lwarp = ‖Tθa(ca)− ca,p‖1 (4)

The image pa of the reference person provides a supervision for the whole
pipeline. Similarly to CP-VTON [38], we use two different losses to guide the
generation of the final image p̃a, the pixel-level L1 loss ‖p̃a − pa‖1 and the per-
ceptual loss [20]. We focus on L1 losses since they are known to generate less
blur than L2 for image generation [44]. The latter consists of using the features
extracted with a pre-trained neural network, VGG [36] in our case. Specifically,
our perceptual loss is:

Lperceptual =

5∑
i=1

‖φi(p̃a)− φi(pa)‖1 (5)
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where φi(I) are the feature maps of an image I extracted at the i-th layer of the
VGG network. Furthermore, we exploit adversarial training to train the network
to fit cb on the same agnostic person representation p?a, which is extracted from
a person wearing ca. This is only feasible with an adversarial loss, since there is
no available ground-truth for this pair (p?a, cb). Thus, we feed the discriminator
with the synthesized image p̃b and real images of persons from the dataset. This
adversarial loss is also back-propagated to the convolutional geometric matcher,
which allows to generate much more realistic spatial transformations. We use
the relativistic adversarial loss [21] with gradient-penalty [2,10], which trains the
discriminator to predict relative realness of real images compared to synthesized
ones. Finally, we optimize with Adam [22] the following objective function:

L = λwLwarp + λpLperceptual + λL1
L1 + λadvLadv (6)

3.3 Training procedure of the student model

Pre-trained
T-WUTON	

Unpaired	
cloth	��

Agnostic
person		�⋆

�

Reference
��

S-WUTON
Final	image

	loss
Perceptual	loss
Adversarial

loss

�1

Warped	cloth
	loss�1

�̃ �

�̂ �

( )�� ��

( )�� ��

Fig. 3: S-WUTON: our training scheme
allowing to remove the need for a human
parser at inference time. We use human
parser and pre-trained T-WUTON to gen-
erate synthetic ground-truth for a student
model S-WUTON.

We propose to use a teacher-student
approach to distill the pipeline com-
posed of {h,T-WUTON} in a single
student WUTON (S-WUTON). In-
deed, our pre-trained T-WUTON is
able to generate realistic images and
geometric deformations of clothes on
images pre-processed by h. We lever-
age it and use it as a way to con-
struct generated triplets {(pa, cb), p̃b},
where p̃b is the image synthesized
by T-WUTON. With this pre-trained
model, we can supervise the train-
ing of a student model S-WUTON.
This allows to train the student model
on the initial task of changing the
cloth rather than reconstructing the
upper-body. The student model has
the exact same architecture than T-
WUTON but different inputs and
ground-truth. Hence, its inputs are
(pa, cb), where pa is the non-masked image of a person. Having this non-
masked image as input, the student model does not need a human parser for
pre-processing images. The ground-truth of S-WUTON are the outputs of T-
WUTON, for both the warped cloth Tθ(cb) and the final synthesized image p̃b.
The training scheme of the student model S-WUTON is shown in Fig. 3.

More precisely, let us define the inputs-outputs of the teacher and student
model: (p̂b, φ) = S-WUTON(pa, cb) and (p̃b, θ) = T-WUTON(h(pa), cb). Then,
the loss functions of S-WUTON are:

Lwarp = ‖Tφ(cb)− Tθ(cb)‖1 (7)
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Lperceptual =

5∑
i=1

‖φi(p̂b)− φi(p̃b)‖1 (8)

L1 = ‖p̂b − p̃b‖1 (9)

Finally, the total loss of the student model is:

L = λwLwarp + λpLperceptual + λL1
L1 + λadvLadv (10)

The adversarial loss Ladv is independant from T-WUTON. Here, we also use
the relativistic loss with gradient penalty on the discriminator. The real data
consists of images of persons from the dataset pa, and the fake data corresponds
to the synthesized images p̂b. Notice that without the adversarial loss, it would be
a standard teacher-student setting, where the student is only guided by the out-
puts of the teacher. In our case, the discriminator (i.e. Ladv) helps S-WUTON to
be close to the real data distribution, and not only to the teacher’s distribution.
As shown by the ablation study in Section 4.6, it is an important component
and is necessary to make S-WUTON exploit the components that are masked
from T-WUTON (e.g. hands).

4 Experiments and analysis

We first describe the dataset. We then compare our approach with CP-VTON
[38], a current state-of-the-art for the virtual try-on task. We present visual and
quantitative results proving that S-WUTON achieves state-of-the-art results,
and that the distillation process allows to improve image quality. We show that
this stands for several metrics, and with a user study. We then provide a com-
parison of the runtime of virtual try-on algorithms on a Tesla NVIDIA V100
GPU. The teacher-student distillation allows to decrease the runtime by an or-
der of magnitude. Finally, we outline the importance of the adversarial loss in
our teacher-student setting.

We also show some visual comparisons with recent work VTNFP [42]. Im-
ages are taken from their paper. However, since their model is not available, we
could not compute the other metrics. We provide more visual comparisons with
VTNFP and ClothFlow [12] in supplementary material.

4.1 Dataset

For copyright issues, we can not use the dataset from VITON [13] and CP-VTON
[38]. Instead, we leverage the Image-based Multi-pose Virtual try-on dataset. This
dataset contains 35,687/13,524 person/cloth images at 256x192 resolution. 4175
pairs are kept for test so the cloth was not seen during training. A random shuffle
of these pairs produces the unpaired person/cloth images. For each in-shop cloth
image, there are multiple images of a model wearing the given cloth from different
views and in different poses. We remove images tagged as back images since the
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Ref. Target CP- T-WUT-S-WUTON Ref. Target CP- VTNFP S-WUTON
person cloth VTON ON(ours) (ours) person cloth VTON (ours)

Fig. 4: On the left side, comparison of our method with CP-VTON [38]. For fairness,
the two methods are trained on the same dataset and on the same agnostic person
representation p?. More examples are provided in supplementary material. On the right
side, comparison with recent work VTNFP. Except for S-WUTON’s column, images
are taken from their paper.

in-shop cloth image is only from the front. We process the images with a neural
human parser and pose estimator, specifically the joint body parsing and pose
estimation network [7,23].

4.2 Visual results

Visual results of our method and CP-VTON are shown in Fig. 4. On the left
side, images are computed from models trained on MG-VTON dataset, with
p?t−wuton representation for T-WUTON and CP-VTON for fairness. On the right
side, images are taken from VTNFP paper [42]. There, CP-VTON and VTNFP
were trained on the original dataset from VITON, and CP-VTON uses p?cp−vton.
More images from S-WUTON are provided in Fig. 1 and Fig. 6.

CP-VTON has trouble to realistically deform and render complex patterns
like stripes or flowers. Control points of the Tθ transform are visible and lead
to unrealistic curves and deformations on the clothes. Also, the edges of cloth
patterns and body contours are blurred.

Firstly, our proposed T-WUTON architecture allows to improve the baseline
CP-VTON. Indeed, our method generates spatial transformations of a much
higher visual quality, which is specifically visible for stripes (1st row). It is able
to preserve complex visual patterns of clothes and produces sharper images than
CP-VTON and VTNFP on the edges. Secondly, we can observe the importance
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of our distillation process with the visual results from S-WUTON. Since it has
a non-masked image as input, it is able to preserve body details, especially the
hands. Moreover, as shown in Fig. 1, S-WUTON is robust to a bad parsing and
preserves a person’s attributes that are important for the virtual try-on task.

Generally, our method generates results of high visual quality while preserv-
ing the characteristics of the target cloth and of the person. However, VTNFP
can surpass S-WUTON when models are crossing arms (4th row, right side),
which is sometimes a failure case of our method. Note that this is not general,
since on (3rd row, right side) and (4th row, left side) in Fig. 4 and on the two
last columns in Fig. 5, models are crossing arms and S-WUTON manages to
nicely compose the arms with the occluded cloth.

4.3 Quantitative results

Method LPIPS SSIM IS FID

Real data 0 1 3.135 0

CP-VTON on p?cp−vton 0.182 ± 0.049 0.679 ± 0.073 2.684 37.237
CP-VTON on p?t−wuton 0.131 ± 0.058 0.773 ± 0.088 2.938 16.843
T-WUTON 0.101 ± 0.047 0.799 ± 0.089 3.114 9.877
S-WUTON NA NA 3.154 7.927

VTNFP? NA 0.803 2.784 NA
ACGPN? NA 0.845 2.829 NA

Table 1: Quantitative results on paired setting (LPIPS and SSIM) and on unpaired
setting (IS and FID). For LPIPS and FID, the lower is the better. For SSIM and IS,
the higher is the better. ± reports std. dev. The two last lines (methods with ?) are
the results presented in ACGPN [41]. However, it has to be taken carefully since the
experiments are performed on another dataset.

To further evaluate our method, we use four different metrics. Two are de-
signed for the paired setting, that does not allow us to evaluate S-WUTON
(because the input image is not masked), and one is for the unpaired setting.
The first one for the paired setting is the linear perceptual image patch similar-
ity (LPIPS) developed in [43], a state-of-the-art metric for comparing pairs of
images. It is very similar to the perceptual loss we use in training (see Section
3.2) since the idea is to use the feature maps extracted by a pre-trained neu-
ral network to quantify the perceptual difference between two images. Different
from the basic perceptual loss, they first unit-normalize each layer in the channel
dimension and then learn a rescaling that match human perception.

Such as previous works, we also use the structural similarity (SSIM) [39] in
the paired setting, inception score (IS) [33] and Fréchet Inception Distance (FID)
[14] in the unpaired setting. We evaluate CP-VTON [38] on their agnostic person
representation p?cp−vton (20 channels with RGB image of head and shape/pose
information) and on p?t−wuton. Results are reported in Table 1.
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4.4 User study

We perform A/B tests on 7 users. Each one has to vote 100 times between CP-
VTON and S-WUTON synthesized images, given reference person and target
cloth. The user is asked to choose for the most realistic image, that preserves
both person and target cloth details. The selected 100 images are a random
subset of the test set in the unpaired setting. This subset is sampled for each
user and is thus different for each user. There is no time limit for the users.

Let us denote p the probability that an image from S-WUTON is preferable
to an image from CP-VTON. The users choose our method 88% of the time.
In terms of statistical significance, it means that we can say p > 0.85 with a
confidence level of 98.7%.

ClothFlow and VTNFP also performed user studies where they compare to
CP-VTON. The authors respectively report that users prefer their method 81.2%
and 77.4% of the time. Note that the experiment was not performed in the same
setting (dataset, number of users, number of pictures per user).

4.5 Runtime analysis

CP-VTON VTNFP ClothFlow T-WUTON S-WUTON

Parsing + pose 168ms 168ms 168ms 168ms 0ms

Try-on 9ms >9ms >0ms 13ms 13ms

Total 177ms >177ms >168ms 181ms 13ms

Table 2: Comparison of runtime of state-of-the-art architectures for virtual try-on.
The time is computed on a NVIDIA Tesla V100 GPU.

In Table 2, we compare the runtime of our method to CP-VTON, ClothFlow
and VTNFP. Note that the running times are estimated on a NVIDIA V100
GPU. For the human parsing and pose estimation networks, we use state-of-the-
art models from [7,23]. These are based on shared neural backbones for the two
tasks, which accelerates the computations.

The try-on architecture of T-WUTON and S-WUTON is slightly slower than
that of CP-VTON, due to the non-shared encoder and the warping at each scale
of the U-Net. However, with S-WUTON we remove the wall clock bottleneck of
virtual try-on system, which is the human parsing and pose estimation. Doing so,
we decrease by an order of magnitude the runtime of virtual try-on algorithms,
from 6FPS to 77FPS.

We include comparisons with VTNFP and ClothFlow in the Table 2. Indeed,
both models use human parsing and pose estimation. For VTNFP, they add a
module on top of CP-VTON architecture, so their try-on architecture takes at
least 9ms per image. For ClothFlow, the use of human parser and pose estimator
gives a lower bound on the total runtime.
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4.6 The impact of adversarial loss in the teacher-student setting

Reference

Target cloth

S-WUTON w/o adv.

S-WUTON

Fig. 5: Visual comparison of the student model with and without the adversarial loss.
Interestingly, the student model without the adversarial loss can not exploit information
that is masked to the teacher, e.g. arms and hands.

S-WUTON S-WUTON
w/o adv.

IS 2.912 3.154
FID 12.620 7.927

Table 3: Comparison of IS and FID
scores of S-WUTON and S-WUTON
without the adversarial loss.

We show the impact of the adversar-
ial loss on S-WUTON. We train a vari-
ant student model S-WUTON without
the adversarial loss. We provide a com-
parison of synthesized images in Fig. 5,
and IS and FID scores in Table 3. The
adversarial loss on the student model is
a constraint to make the student model
closer to the real data distribution and to
not only follow the teacher’s distribution.
Without the adversarial loss, the student
model does not preserve person’s attributes, even though they are not masked.

5 Conclusion

In this work, we propose a teacher-student setting to distill the standard virtual
try-on pipeline and refocus on the initial task: changing the cloth of a non-
masked person. This leads to a significant computational speed-up and largely
improves image quality. Importantly, this allows to preserve person’s attributes
such as hands or accessories, which is necessary for a virtual try-on.
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Fig. 6: Our student model S-WUTON generates high-quality images and preserves
both person’s and cloth’s attributes.
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6 Appendix

6.1 Implementation details

Convolutional geometric matcher. To extract the feature maps, we apply
five times one standard convolution layer followed by a 2-strided convolution
layer which downsamples the maps. The depth of the feature maps at each
scale is (16,32,64,128,256). The correlation map is then computed and feeds a
regression network composed of two 2-strided convolution layers, two standard
convolution layers and one final fully connected layer predicting a vector θ ∈ R50.
We use batch normalization [16] and relu activation. The parameters of the two
feature maps extractors are not shared.

Siamese U-net generator. We use the same encoder architecture as in
the convolutional geometric matcher, but we store the feature maps at each
scale. The decoder has an architecture symmetric to the encoder. There are five
times one standard convolution layer followed by a 2-strided deconvolution layer
which upsamples the feature maps. After a deconvolution, the feature maps are
concatenated with the feature maps passed through the skip connections. In the
generator, we use instance normalization, which shows better results for image
and texture generation [37], with relu activation.

Discriminator. We adopt the fully convolutional discriminator from Pix-
2-Pix [17], but with five downsampling layers instead of three in the original
version. Each of it is composed of: 2-strided convolution, batch normalization,
leaky relu, 1-strided convolution, batch normalization, leaky relu.

Adversarial loss. We use the relativistic formulation of the adversarial loss
[21]. In this formulation, the discriminator is trained to predict that real images
are more real than synthesized ones, rather than trained to predict that real
images are real and synthesized images are synthesized. We also use gradient
penalty on the discriminator.

Optimization. We use the Adam optimizer [22] with β1 = 0.5, β2 = 0.999,
a learning rate of 10e−3 and a batch size of 8. Also, we use λp = λL1 = λw =
λadv = 1.

Hardware. We use a NVIDIA Tesla V100 with 16GB of RAM. The training
takes around 2 days for T-WUTON, and around 3 days for S-WUTON. For
inference, S-WUTON processes ∼77 frames per second.

6.2 More results from S-WUTON

We show more results from S-WUTON model in Fig. 7. It shows the abilities of
our model to preserve complex cloth patterns (stripes, text or textures) and body
details. It is robust across a wide range of human pose. On the antepenultimate
column, we show a common failure case of our method, when sleeves of the
source person are too large.
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Cloth/Person

Fig. 7: More visual results from S-WUTON.
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6.3 More visual examples on the importance of distillation

In Fig. 8, we show more visual results proving the soundness of our teacher-
student approach.

Visually, our student model solves two kinds of problems: it is robust to
human parser errors; it preserves important information that is masked to the
standard virtual try-ons (hands, skin, handbags).
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Reference Target Human CP-VTON T-WUTON S-WUTON
person cloth parsing (ours) (ours)

Fig. 8: Visual results proving the importance of the student-teacher approach. It is
robust to parsing errors and preserves person’s attributes such as arms, hands, and
handbags.



22 T. Issenhuth et al.

6.4 Comparisons with VTNFP [42]

In Fig. 8, we show visual comparisons between CP-VTON, VTNFP, T-WUTON
and S-WUTON. Images from all columns except T-WUTON and S-WUTON
are taken from their paper, which explains the low resolution. Note that they
trained their model on the original VITON dataset, that is now forbidden due to
copyright issues. As mentioned in the paper, our model is trained on the dataset
released in MG-VTON [6].

Results show that S-WUTON produces sharper images, with body details
better preserved (especially the hands). Cloth patterns are also better rendered
with S-WUTON (e.g. row 2). However, their model handles better difficult poses,
when models are crossing arms (e.g rows 5,6,8). Note that our model performs
well on persons crossing arms on MG-VTON dataset (see paper and Fig. 8 of
Appendix).

In terms of computational cost at inference time, our S-WUTON is at least
13 times faster than their model. Moreover, since their pipeline relies on human
parsing and pose estimation, it is also sensitive to the errors exhibited in our
paper and in Fig. 8 of the Appendix.

Reference Target CP-VTON VTNFP T-WUTON S-WUTON
person cloth
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Reference Target CP-VTON VTNFP T-WUTON S-WUTON
person cloth

Fig. 8: Comparisons of S-WUTON and VTNFP. Images are taken from VTNFP’s
paper, except for T-WUTON’s and S-WUTON’s columns.
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6.5 Comparisons with images from ClothFlow [12] paper

In Fig. 9, we show visual comparisons between CP-VTON, ClothFlow, T-WUTON
and S-WUTON. Images from all columns except T-WUTON and S-WUTON are
taken from their paper. Note that they trained their model on the original VI-
TON dataset, that is now forbidden due to copyright issues. As mentioned in
the paper, our model is trained on the dataset released in MG-VTON [6].

We can observe that S-WUTON preserves better the shape of the hands of
the person (rows 6,7,12).

Compared to ClothFlow, S-WUTON handles as well complex geometric de-
formations. S-WUTON seems to be slightly better on stripes (rows 4 and 11).
Indeed, ClothFlow uses a dense flow to warp clothes, which means the warping
module warps from the source to the target pixel-by-pixel. It has thus difficulties
to keep the stripes straight.

In terms of computational cost at inference time, our S-WUTON is at least
13 times faster than their model. Moreover, since their pipeline relies on human
parsing and pose estimation, it is also sensitive to the errors exhibited in our
paper and in Fig. 9 of the Appendix.

Reference Target CP-VTON ClothFlow T-WUTON S-WUTON
person cloth
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Reference Target CP-VTON ClothFlow T-WUTON S-WUTON
person cloth
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Reference Target CP-VTON ClothFlow T-WUTON S-WUTON
person cloth

Fig. 9: Comparisons of S-WUTON and ClothFlow. Images are taken from ClothFlow’s
paper, except for T-WUTON’s and S-WUTON’s columns.
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6.6 Ablation studies on T-WUTON

Reference Target CP-VTON T-WUTONT-WUTON w.T-WUTONT-WUTON not
person cloth (ours) paired Ladv w/o Ladv end-to-end

Fig. 10: Impact of loss functions on T-WUTON: The unpaired adversarial loss function
improves the performance of T-WUTON in the case of significant shape changes from
the source cloth to the target cloth. Specifically, when going from short sleeves to long
sleeves, it tends to gum the shape of the short sleeves. With the paired adversarial
loss, we do not observe this phenomenon since the case never happens during training.
Without the adversarial loss, images are blurry and less sharp. Finally, the end-to-end
training is key to realistic geometric deformations (see last column).

To investigate the effectiveness of T-WUTON’s components, we perform sev-
eral ablation studies. In Fig. 10, we show visual comparisons of CP-VTON and
different variants of our approach: T-WUTON; T-WUTON with an adversarial
loss on paired data (i.e. the adversarial loss is computed with the same syn-
thesized image as the L1 and VGG losses); T-WUTON without the adversarial
loss; T-WUTON without back-propagating the loss of the synthesized images
(L1, Lperceptual, Ladv) to the geometric matcher.

The results in Fig. 10 as well as FID and LPIPS metrics in Table 4 show
the importance of our end-to-end learning of geometric deformations. When the
geometric matcher only benefits from Lwarp, it only learns to align c with the
masked area in p?. However, it does not preserve the inner structure of the cloth.
Back-propagating the loss computed on the synthesized images p̃ alleviates this
issue. The quantitative results of IS and SSIM scores on the not end-to-end
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Method T-WUTON W/o Ladv Paired Ladv Not end-to-end

Paired Ladv X
Unpaired Ladv X X
End-to-end X X X
LPIPS 0.101 ± 0.047 0.107 ± 0.049 0.099 ± 0.046 0.112 ± 0.053
SSIM 0.799 ± 0.089 0.799 ± 0.088 0.800 ± 0.089 0.799 ± 0.089
IS 3.114 ± 0.118 2.729 ± 0.091 3.004 ± 0.091 3.102 ± 0.077
FID 9.877 13.020 8.298 11.125

Table 4: Ablation studies on T-WUTON. Quantitative metrics on paired setting
(LPIPS and SSIM) and on unpaired setting (IS and FID). For LPIPS and FID, the
lower is the better. For SSIM and IS, the higher is the better. ± reports std. dev.

variant show that these metrics are less suited to the virtual try-on task than
LPIPS.

The adversarial loss generates sharper images and improves the contrast. This
is confirmed by the LPIPS, IS and FID metrics in Table 4 and with visual results
in Fig. 10. With the unpaired adversarial setting, the system better handles large
variations between the shape of the cloth worn by the person and the shape of the
new cloth. On metrics in the paired setting (LPIPS and SSIM), the best model
is the variant using adversarial loss on paired data, which is logical. However,
visual investigation suggests that the unpaired adversarial loss is better in the
real use case of our work (see Fig. 10).
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