Skip to main content

DDGCN: A Dynamic Directed Graph Convolutional Network for Action Recognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12365))

Abstract

We propose a Dynamic Directed Graph Convolutional Network (DDGCN) to model spatial and temporal features of human actions from their skeletal representations. The DDGCN consists of three new feature modeling modules: (1) Dynamic Convolutional Sampling (DCS), (2) Dynamic Convolutional Weight (DCW) assignment, and (3) Directed Graph Spatial-Temporal (DGST) feature extraction. Comprehensive experiments show that the DDGCN outperforms existing state-of-the-art action recognition approaches in various testing datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD workshop, Seattle, WA, vol. 10, pp. 359–370 (1994)

    Google Scholar 

  2. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., Gould, S.: Dynamic image networks for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3034–3042 (2016)

    Google Scholar 

  3. Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z.: Point cloud skeletons via laplacian based contraction. In: Shape Modeling International (SMI 2010), pp. 187–197. IEEE (2010)

    Google Scholar 

  4. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  5. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  6. Herath, S., Harandi, M., Porikli, F.: Going deeper into action recognition: a survey. Image Vis. Comput. 60, 4–21 (2017)

    Article  Google Scholar 

  7. Iwana, B.K., Uchida, S.: Dynamic weight alignment for temporal convolutional neural networks. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3827–3831. IEEE (2019)

    Google Scholar 

  8. Kamel, A., Sheng, B., Yang, P., Li, P., Shen, R., Feng, D.D.: Deep convolutional neural networks for human action recognition using depth maps and postures. IEEE Trans. Syst. Man Cybern. Syst. 49(9), 1806–1816 (2018)

    Article  Google Scholar 

  9. Kar, A., Rai, N., Sikka, K., Sharma, G.: AdaScan: adaptive scan pooling in deep convolutional neural networks for human action recognition in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3376–3385 (2017)

    Google Scholar 

  10. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  11. Ke, Q., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: A new representation of skeleton sequences for 3D action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4570–4579 (2017)

    Google Scholar 

  12. Kim, T.S., Reiter, A.: Interpretable 3D human action analysis with temporal convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1623–1631. IEEE (2017)

    Google Scholar 

  13. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Actional-structural graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3595–3603 (2019)

    Google Scholar 

  14. Mandal, D., et al.: Out-of-distribution detection for generalized zero-shot action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9985–9993 (2019)

    Google Scholar 

  15. Peng, X., Zou, C., Qiao, Yu., Peng, Q.: Action recognition with stacked fisher vectors. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 581–595. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_38

    Chapter  Google Scholar 

  16. Piergiovanni, A., Ryoo, M.S.: Representation flow for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9945–9953 (2019)

    Google Scholar 

  17. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+ D: a large scale dataset for 3D human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)

    Google Scholar 

  18. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7912–7921 (2019)

    Google Scholar 

  19. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12026–12035 (2019)

    Google Scholar 

  20. Si, C., Chen, W., Wang, W., Wang, L., Tan, T.: An attention enhanced graph convolutional LSTM network for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1227–1236 (2019)

    Google Scholar 

  21. Si, C., Jing, Y., Wang, W., Wang, L., Tan, T.: Skeleton-based action recognition with spatial reasoning and temporal stack learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 106–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_7

    Chapter  Google Scholar 

  22. Sun, S., Kuang, Z., Sheng, L., Ouyang, W., Zhang, W.: Optical flow guided feature: a fast and robust motion representation for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1390–1399 (2018)

    Google Scholar 

  23. Tang, Y., Tian, Y., Lu, J., Li, P., Zhou, J.: Deep progressive reinforcement learning for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5323–5332 (2018)

    Google Scholar 

  24. Tran, D.V., Navarin, N., Sperduti, A.: On filter size in graph convolutional networks. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1534–1541. IEEE (2018)

    Google Scholar 

  25. Wang, D., Yuan, Y., Wang, Q.: Early action prediction with generative adversarial networks. IEEE Access 7, 35795–35804 (2019)

    Article  Google Scholar 

  26. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  27. Wang, J., Jiao, J., Bao, L., He, S., Liu, Y., Liu, W.: Self-supervised spatio-temporal representation learning for videos by predicting motion and appearance statistics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4006–4015 (2019)

    Google Scholar 

  28. Wang, L., Gao, C., Yang, L., Zhao, Y., Zuo, W., Meng, D.: PM-GANs: discriminative representation learning for action recognition using partial-modalities. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 389–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_24

    Chapter  Google Scholar 

  29. Wu, D., Chen, J., Sharma, N., Pan, S., Long, G., Blumenstein, M.: Adversarial action data augmentation for similar gesture action recognition. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  30. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  31. Yao, B., Jiang, X., Khosla, A., Lin, A.L., Guibas, L., Fei-Fei, L.: Human action recognition by learning bases of action attributes and parts. In: 2011 International Conference on Computer Vision, pp. 1331–1338. IEEE (2011)

    Google Scholar 

  32. Zadghorban, M., Nahvi, M.: An algorithm on sign words extraction and recognition of continuous persian sign language based on motion and shape features of hands. Pattern Anal. Appl. 21(2), 323–335 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zhang, C., Tian, Y., Guo, X., Liu, J.: DAAL: deep activation-based attribute learning for action recognition in depth videos. Comput. Vis. Image Underst. 167, 37–49 (2018)

    Article  Google Scholar 

  34. Zhang, H.B., et al.: A comprehensive survey of vision-based human action recognition methods. Sensors 19(5), 1005 (2019)

    Article  Google Scholar 

  35. Zhao, R., Wang, K., Su, H., Ji, Q.: Bayesian graph convolution LSTM for skeleton based action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6882–6892 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korban, M., Li, X. (2020). DDGCN: A Dynamic Directed Graph Convolutional Network for Action Recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12365. Springer, Cham. https://doi.org/10.1007/978-3-030-58565-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58565-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58564-8

  • Online ISBN: 978-3-030-58565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics