Skip to main content

Video Object Detection via Object-Level Temporal Aggregation

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12359))

Included in the following conference series:

Abstract

While single-image object detectors can be naively applied to videos in a frame-by-frame fashion, the prediction is often temporally inconsistent. Moreover, the computation can be redundant since neighboring frames are inherently similar to each other. In this work we propose to improve video object detection via temporal aggregation. Specifically, a detection model is applied on sparse keyframes to handle new objects, occlusions, and rapid motions. We then use real-time trackers to exploit temporal cues and track the detected objects in the remaining frames, which enhances efficiency and temporal coherence. Object status at the bounding-box level is propagated across frames and updated by our aggregation modules. For keyframe scheduling, we propose adaptive policies using reinforcement learning and simple heuristics. The proposed framework achieves the state-of-the-art performance on the Imagenet VID 2015 dataset while running real-time on CPU. Extensive experiments are done to show the effectiveness of our training strategies and justify the model designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  2. Chen, K., et al.: Optimizing video object detection via a scale-time lattice. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7814–7823 (2018)

    Google Scholar 

  3. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  4. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: keypoint triplets for object detection. arXiv preprint arXiv:1904.08189 (2019)

  5. Feichtenhofer, C., Pinz, A., Zisserman, A.: Detect to track and track to detect. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3038–3046 (2017)

    Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  8. Han, W., et al.: Seq-NMS for video object detection. arXiv preprint arXiv:1602.08465 (2016)

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2014)

    Google Scholar 

  12. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  13. Huang, C., Lucey, S., Ramanan, D.: Learning policies for adaptive tracking with deep feature cascades. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 105–114 (2017)

    Google Scholar 

  14. Huang, L., Zhao, X., Huang, K.: Got-10k: a large high-diversity benchmark for generic object tracking in the wild. arXiv preprint arXiv:1810.11981 (2018)

  15. Kang, K., Ouyang, W., Li, H., Wang, X.: Object detection from video tubelets with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 817–825 (2016)

    Google Scholar 

  16. Lao, D., Sundaramoorthi, G.: Minimum delay object detection from video. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5097–5106 (2019)

    Google Scholar 

  17. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  18. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Light-head R-CNN: in defense of two-stage object detector. arXiv preprint arXiv:1711.07264 (2017)

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, M., Zhu, M.: Mobile video object detection with temporally-aware feature maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5686–5695 (2018)

    Google Scholar 

  21. Liu, M., Zhu, M., White, M., Li, Y., Kalenichenko, D.: Looking fast and slow: memory-guided mobile video object detection. arXiv preprint arXiv:1903.10172 (2019)

  22. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  23. Luo, H., Xie, W., Wang, X., Zeng, W.: Detect or track: towards cost-effective video object detection/tracking. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8803–8810 (2019)

    Google Scholar 

  24. Mahasseni, B., Todorovic, S., Fern, A.: Budget-aware deep semantic video segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1029–1038 (2017)

    Google Scholar 

  25. Mao, H., Yang, X., Dally, W.J.: A delay metric for video object detection: what average precision fails to tell. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 573–582 (2019)

    Google Scholar 

  26. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Proceedings of the International Conference on Machine Learning, pp. 1928–1937 (2016)

    Google Scholar 

  27. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  28. Redmon, J.: Darknet: open source neural networks in C (2013–2016). http://pjreddie.com/darknet/

  29. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  30. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  32. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

  33. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  34. Supancic III, J., Ramanan, D.: Tracking as online decision-making: learning a policy from streaming videos with reinforcement learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 322–331 (2017)

    Google Scholar 

  35. Wang, S., Zhou, Y., Yan, J., Deng, Z.: Fully motion-aware network for video object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 557–573. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_33

    Chapter  Google Scholar 

  36. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. In: arXiv preprint arXiv:1904.07850 (2019)

  37. Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 850–859 (2019)

    Google Scholar 

  38. Zhu, X., Dai, J., Zhu, X., Wei, Y., Yuan, L.: Towards high performance video object detection for mobiles. arXiv preprint arXiv:1804.05830 (2018)

  39. Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for video object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 408–417 (2017)

    Google Scholar 

  40. Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2349–2358 (2017)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the NSF CAREER Grant #1149783.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Han Yao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 69310 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, CH., Fang, C., Shen, X., Wan, Y., Yang, MH. (2020). Video Object Detection via Object-Level Temporal Aggregation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58568-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58567-9

  • Online ISBN: 978-3-030-58568-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics