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Abstract. We address the challenging problem of image captioning
by revisiting the representation of image scene graph. At the core of
our method lies the decomposition of a scene graph into a set of sub-
graphs, with each sub-graph capturing a semantic component of the
input image. We design a deep model to select important sub-graphs, and
to decode each selected sub-graph into a single target sentence. By using
sub-graphs, our model is able to attend to different components of the
image. Our method thus accounts for accurate, diverse, grounded and
controllable captioning at the same time. We present extensive exper-
iments to demonstrate the benefits of our comprehensive captioning
model. Our method establishes new state-of-the-art results in caption
diversity, grounding, and controllability, and compares favourably to lat-
est methods in caption quality. Our project website can be found at
http://pages.cs.wisc.edu/~yiwuzhong/Sub-GC.html.
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1 Introduction

It is an old saying that “A picture is worth a thousand words”. Complex and
sometimes multiple ideas can be conveyed by a single image. Consider the exam-
ple in Fig. 1. The image can be described by “A boy is flying a kite” when
pointing to the boy and the kite, or depicted as “A ship is sailing on the river”
when attending to the boat and the river. Instead, when presented with regions
of the bike and the street, the description can be “A bike parked on the street”.
Humans demonstrate remarkable ability to summarize multiple ideas associated
with different scene components of the same image. More interestingly, we can
easily explain our descriptions by linking sentence tokens back to image regions.

Despite recent progress in image captioning, most of current approaches are
optimized for caption quality. These methods tend to produce generic sentences
that are minorly reworded from those in the training set, and to “look” at regions
that are irrelevant to the output sentence [10,46]. Several recent efforts seek to
address these issues, leading to models designed for individual tasks including
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(a) Ayoung boy is flying (b)A is
a kite. sailing on the

Fig. 1. An example image with multiple scene components with each described by a
distinct caption. How can we design a model that can learn to identify and describe
different components of an input image?

diverse [55,12], grounded [17,67] and controllable captioning [35,7]. However, no
previous method exists that can address diversity, grounding and controllability
at the same time—an ability seemingly effortless for we humans.

We believe the key to bridge the gap is a semantic representation that can
better link image regions to sentence descriptions. To this end, we propose to
revisit the idea of image captioning using scene graph—a knowledge graph that
encodes objects and their relationships. Our core idea is that such a graph can
be decomposed into a set of sub-graphs, with each sub-graph as a candidate
scene component that might be described by a unique sentence. Our goal is thus
to design a model that can identify meaningful sub-graphs and decode their cor-
responding descriptions. A major advantage of this design is that diversity and
controllability are naturally enabled by selecting multiple distinct sub-graphs to
decode and by specifying a set of sub-graphs for sentence generation.

Specifically, our method takes a scene graph extracted from an image as
input. This graph consists of nodes as objects (nouns) and edges as the relations
between pairs of objects (predicates). Each node or edge comes with its text and
visual features. Our method first constructs a set of overlapping sub-graphs from
the full graph. We develop a graph neural network that learns to select meaning-
ful sub-graphs best described by one of the human annotated sentences. Each of
the selected sub-graphs is further decoded into its corresponding sentence. This
decoding process incorporates an attention mechanism on the sub-graph nodes
when generating each token. Our model thus supports backtracking of generated
sentence tokens into scene graph nodes and its image regions. Consequently, our
method provides the first comprehensive model for generating accurate, diverse,
and controllable captions that are grounded into image regions.

Our model is evaluated on MS-COCO Caption [6] and Flickr30K Entities [42]
datasets. We benchmark the performance of our model on caption quality, diver-
sity, grounding and controllability. Our results suggest that (1) top-ranked cap-
tions from our model achieve a good balance between quality and diversity,
outperforming state-of-the-art methods designed for diverse captioning in both
quality and diversity metrics and performing on par with latest methods opti-
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mized for caption quality in quality metrics; (2) our model is able to link the
decoded tokens back into the image regions, thus demonstrating strong results
for caption grounding; and (3) our model enables controllable captioning via the
selection of sub-graphs, improving state-of-the-art results on controllability. We
believe our work provides an important step for image captioning.

2 Related Work

There has recently been substantial interest in image captioning. We briefly
review relevant work on conventional image captioning, caption grounding, diverse
and controllable captioning, and discuss related work on scene graph generation.
Conventional Image Captioning. Major progress has been made in image
captioning [18]. An encoder-decoder model is often considered, where Convo-
lutional Neural Networks (CNNs) are used to extract global image features,
and Recurrent Neural Networks (RNNs) are used to decode the features into
sentences [21,53,14,57,64,34,15,32]. Object information has recently been shown
important for captioning [63,54]. Object features from an object detector can be
combined with encoder-decoder models to generate high quality captions [2].

Several recent works have explored objects and their relationships, encoded
in the form of scene graphs, for image captioning [62,61]. The most relevant work
is [62]. Their GCN-LSTM model used a graph convolutional network (GCN) [24]
to integrate semantic information in a scene graph. And a sentence is further
decoded using features aggregated over the full scene graph. Similar to [62], we
also use a GCN for an input scene graph. However, our method learns to select
sub-graphs within the scene graph, and to decode sentences from ranked sub-
graphs instead of the full scene graph. This design allows our model to produce
diverse and controllable sentences that are previously infeasible [62,61,2].
Grounded Captioning. A major challenge of image captioning is that recent
deep models might not focus on the same image regions as a human would
when generating each word, leading to undesirable behaviors, e.g., object hal-
lucination [46,10]. Several recent work [57,2,47,67,37,20,60] has been developed
to address the problem of grounded captioning—the generation of captions and
the alignment between the generated words and image regions. Our method fol-
lows the weakly supervised setting for grounded captioning, where we assume
that only the image-sentence pairs are known. Our key innovation is to use a
sub-graph on an image scene graph for sentence generation, thus constraining
the grounding within the sub-graph.

Our work is also relevant to recent work on generating text descriptions of
local image regions, also known as dense captioning [20,60,22]. Both our work
and dense captioning methods can create localized captions. The key difference is
that our method aims to generate sentence descriptions of scene components that
spans multiple image regions, while dense captioning methods focused on gen-
erating phrase descriptions for local regions [20,60] or pairs of local regions [22].
Diverse and Controllable Captioning. The generation of diverse and con-
trollable image descriptions has also received considerable attention. Several
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approaches have been proposed for diverse captioning [18,28,8,52,55,12,3]. Wang
et al. [55] proposed a variational auto-encoder that can decode multiple diverse
sentences from samples drawn from a latent space of image features. This idea
was further extended by [3], where every word has its own latent space. More-
over, Deshpande et al. [12] proposed to generate various sentences controlled by
part-of-speech tags. There is a few recent work on controllable captioning. Lu et
al. [35] proposed to fill a generated sentence template with the concepts from an
object detector. Cornia et al. [7] selected object regions using grounding anno-
tations and then predicted textual chunks to generate diverse and controllable
sentences. Similar to [7], we address diversity and controllability within the same
model. Different from [7], our model is trained using only image-sentence pairs
and can provide additional capacity of caption grounding.

Scene Graph Generation. Image scene graph generation has received consid-
erable attention, partially driven by large-scale scene graph datasets [26]. Most
existing methods [33,66,56,9,30,59,29,65] start from candidate object regions
given by an object detector and seek to infer the object categories and their
relationships. By using a previous approach [65] to extract image scene graphs,
we explore the decomposition of scene graphs into sub-graphs for generating
accurate, diverse, and controllable captions. Similar graph partitioning prob-
lems have been previously considered in vision for image segmentation [19,10]
and visual tracking [50,49], but has not been explored for image captioning.

3 Method

Given an input image I, we assume an image scene graph G = (V, E) can be
extracted from I, where V represents the set of nodes corresponding to the
detected objects (nouns) in I, and F represents the set of edges corresponding
to the relationships between pairs of objects (predicates). Our goal is to generate
a set of sentences C = {C} to describe different components of I using the scene
graph G. To this end, we propose to make use of the sub-graphs {G§ = (V*, E?)}
from G, where V; C V and E; C E. Our method seeks to model the joint
probability P(S;; = (G, G}, C;)|I), where P(S;;|I) = 1 indicates that the sub-
graph G¥ can be used to decode the sentence C;. Otherwise, P(S;;|I) = 0. We
further assume that P(S;;|) can be decomposed into three parts, given by

P(Sy|I) = P(GII)P(G;|G, 1) P(C5|G7, G, ). (1)

Intuitively, P(G|I) extracts scene graph G from an input image I. P(G{|G, I)
decomposes the full graph G into a diverse set of sub-graphs {G7} and selects
important sub-graphs for sentence generation. Finally, P(C;|G$,G,I) decodes
a selected sub-graph G into its corresponding sentence Cj, and also associates
the tokens in C; to the nodes V;* of the sub-graph G¢ (the image regions in I).
Fig. 2 illustrates our method. We now present details of our model.
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Fig. 2. Overview of our method. Our method takes a scene graph extracted from an
input image, and decomposes the graph into a set of sub-graphs. We design a sub-graph
proposal network (sGPN) that learns to identify meaningful sub-graphs, which are
further decoded by an attention-based LSTM for generating sentences and grounding
sentence tokens into sub-graph nodes (image regions). By leveraging sub-graphs, our
model enables accurate, diverse, grounded and controllable image captioning.

3.1 Scene Graph Detection and Decomposition

Our method first extracts scene graph G from image I (P(G|I)) using MotifNet
[65]. MotifNet builds LSTMs on top of object detector outputs [44] and produces
a scene graph G = (V, E') with nodes V' for common objects (nouns) and edges E
for relationship between pairs of objects (predicates), such as “holding”, “behind”
or “made of”. Note that G is a directed graph, i.e., an edge must start from a
subject noun or end at an object noun. Therefore, the graph G is defined by a
collection of subject-predicate-object triplets, e.g., kid playing ball.

We further samples sub-graphs {G{} from the scene graph G by using neigh-
bor sampling [25]. Specifically, we randomly select a set of seed nodes {S;} on
the graph. The immediate neighbors of the seed nodes with the edges in-between
define a sampled sub-graph. Formally, the sets of sub-graph nodes and edges are
Ve = S, U{N()lv € S;} and Ef = {(v,u)|lv € S;,u € N(v)} respectively,
where N(v) denotes the immediate neighbors of node v. Identical sub-graphs
are removed to obtain the final set of sub-graphs {G§ = (V;*, E7)}, which covers
potential scene components in the input image I.

3.2 Sub-graph Proposal Network

Our next step is to identify meaningful sub-graphs that are likely to capture
major scene components in the image (P(G%|G, I)). Specifically, our model first
combines visual and text features on the scene graph G, followed by an integra-
tion of contextual information within G using a graph convolutional network,
and finally a score function learned to rank sub-graphs G?.

Scene Graph Representation. Given a directed scene graph G = (V, E), we
augment its nodes and edges with visual and text features. For a node v € V| we
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use both its visual feature extracted from image regions and the word embedding
of its noun label. We denote the visual features as =¥ € R% and text features as
x¢ € R For an edge e € E, we only use the embedding of its predicate label
denoted as x¢ € R%. Subscripts are used to distinguish node (v) and edge (e)
features and superscripts to denote the feature type, i.e., visual features or text
embedding. Visual and text features are further fused by projecting them into a
common sub-space. This is done separately for node and edge features by

z] = ReLU(W}z, + Wil), =l =W, (2)

where Wf1 € Rdsxdv, Wf € Rérxde and W3 € R4 %4 are learned projections.
Graph Convolutional Network (GCN). After feature fusion and projection,
we further model the context between objects and their relationships using a
GCN. The GCN aggregates information from the neighborhood within the graph
and updates node and edge features. With an proper ordering of the nodes
and edges, we denote the feature matrix for nodes and edges as X/ = [z]] €
REXIVE and X7I = [z]] € RY*IFI respectively. The update rule of a single
graph convolution is thus given by

X/ = X! + ReLUW,: X! A,s) + ReLU(W,, X! A,,),

“f _ xf f f (3)
X! = X! + ReLU(W,, X{ A.,) + ReLU(W,, X{ A,,),

where Wy, Wy, W, W, € R% %ds are learnable parameters that link subject
or object features (nouns) with predicate features. For example, W,,s connects
between predicate features and subject features. A,s, A,, € RIZXIVI are the
normalized adjacency matrix (defined by G) between predicates and subjects,
and between predicates and objects, respectively. For instance, a non-zero ele-
ment in A, suggests a link between a predicate and a subject on the scene graph
G. Similarly, A,,, A, € RIVIXIEl are the normalized adjacency matrix between
subjects and predicates, and between objects and predicates. Aps # Azp due to
the normalization of adjacency matrix.

Our GCN stacks several graph convolutions, and produces an output scene

graph with updated node and edge features. We only keep the final node fea-
tures (XY = [x¥],v € V) for subsequent sub-graph ranking, as the predicate
information has been integrated using GCN.
Sub-graph Score Function. With the updated scene graph and the set of
sampled sub-graphs, our model learns a score function to select meaningful sub-
graphs for generating sentence descriptions. For each sub-graph, we index its
node features as X7 = [x%],v € V¥ and construct a score function

si = o(f(2(X7))), (4)

where () is a sub-graph readout function [58] that concatenates the max-pooled
and mean-pooled node features on the sub-graph. f(-) is a score function realized
by a two-layer multilayer perceptron (MLP). And o(+) is a sigmoid function that
normalizes the output score into the range of [0,1].

Learning the Score Function. The key challenge of learning the score function
f is the training labels. Our goal is to rank the sampled sub-graphs and select the
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best ones to generate captions. Thus, we propose to use ground-truth captions
provided by human annotators to guide the learning. A sub-graph with most of
the nodes matched to one of the ground-truth sentences should be selected. To
this end, we recast the learning of the score function f as training a binary clas-
sifier to distinguish between “good” (positive) and “bad” (negative) sub-graphs.
Importantly, we design a matching score between a ground-truth sentence and
a sampled sub-graph to generate the target binary labels.

Specifically, given a sentence C; and a scene graph G, we extract a reference
sub-graph on G by finding the nodes on the graph G that also appears in the
sentence C; and including their immediate neighbor nodes. This is done by
extracting nouns from the sentence C; using a part-of-speech tag parser [5],
and matching the nouns to the nodes on G using LCH score [27] derived from
WordNet [39]. This matching process is given by M(C;, G). We further compute
the node Intersection over Union (IoU) score between the reference sub-graph
M(Cj, G) and each of the sampled sub-graph G by

_ lGin M(C5,G)|

ToU(GE C3) = G (. 6

(5)
where N and U are the intersection and union operation over sets of sub-graph
nodes, respectively. The node IoU provides a matching score between the refer-
ence sentence C; and the sub-graph G7 and is used to determine our training
labels. We only consider a sub-graph as positive for training if its IoU with any
of the target sentences is higher than a pre-defined threshold (0.75).

Training Strategy. A major issue in training is that we have many negative
sub-graphs and only a few positive ones. To address this issue, a mini-batch of
sub-graphs is randomly sampled to train our sGPN, where positive to negative
ratio is kept as 1:1. If a ground-truth sentence does not match any positive sub-
graph, we use the reference sub-graph from M(C};, G) as its positive sub-graph.

3.3 Decoding Sentences from Sub-graphs

Our final step is to generate a target sentence using features from any selected
single sub-graph (P(C;|G?,G,I)). We modify the attention-based LSTM [2] for
sub-graph decoding, as shown in Fig. 2 (top right). Specifically, the model couples
an attention LSTM and a language LSTM. The attention LSTM assigns each
sub-graph node an importance score, further used by the language LSTM to
generate the tokens. Specifically, at each time step ¢, the attention LSTM is
given by hi* = LSTM 44 ([hl |, e, x5]), where hE | is the hidden state of the
language LSTM at time ¢ — 1. e; is the word embedding of the input token at
time ¢ and x; is the sub-graph feature. Instead of averaging all region features
as [2,62], our model uses the input sub-graph feature, given by xf = g(®(X7)),
where g(+) is a two-layer MLP, &(+) is the same graph readout unit in Eq. 4.
Based on hidden states h;' and the node features X = [z!] in the sub-
graph, an attention weight a,: at time ¢ for node v is computed by a,; =
wltanh(W,z" + Whh{‘) with learnable weights W,,, W}, and w,. A softmax
function is further used to normalize a; into a; defined on all sub-graph nodes
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at time ¢. We use a; to backtrack image regions associated with a decoded token
for caption grounding. Finally, the hidden state of the attention LSTM hf and
the attention re-weighted sub-graph feature V;, = > a, ,x} are used as the
input of the language LSTM—a standard LSTM that decodes the next word.

3.4 Training and Inference

We summarize the training and inference schemes of our model.

Loss Functions. Our sub-graph captioning model has three parts: P(G|I),
P(G3|G,I), P(C,|G, G, I), where the scene graph generation (P(G|I)) is trained
independently on Visual Genome [26]. For training, we combine two loss func-
tions for P(G{|G,I) and P(C;|Gj,G,I). Concretely, we use a binary cross-
entropy loss for the sub-graph proposal network (P(G|G,I)), and a multi-way
cross-entropy loss for the attention-based LSTM model to decode the sentences
(P(C;|G%,G,I)). The coefficient between the two losses is set to 1.

Inference. During inference, our model extracts the scene graph, samples sub-
graphs and evaluates their sGPN scores. Greedy Non-Mazimal Suppression (NMS)
is further used to filter out sub-graphs that largely overlap with others, and
to keep sub-graphs with high sGPN scores. The overlapping between two sub-
graphs is defined by the IoU of their nodes. We find that using NMS during
testing helps to remove redundant captions and to promote diversity.

After NMS, top-ranked sub-graphs are decoded using an attention-based
LSTM. As shown in [36], an optional top-K sampling [15,43] can be applied
during the decoding to further improve caption diversity. We disable top-K sam-
pling for our experiments unless otherwise noticed. The final output is thus a set
of sentences with each from a single sub-graph. By choosing which sub-graphs to
decode, our model can control caption contents. Finally, we use attention weights
in the LSTM to ground decoded tokens to sub-graph nodes (image regions).

4 Experiments

We now describe our implementation details and presents our results. We start
with an ablation study (4.1) for different model components. Further, we eval-
uate our model across several captioning tasks, including accurate and diverse
captioning (4.2), grounded captioning (4.3) and controllable captioning (4.4).

Implementation Details. We used Faster R-CNN [44] with ResNet-101 [17]
from [2] as our object detector. Based on detection results, Motif-Net [65] was
trained on Visual Genome [26] with 1600/20 object/predicate classes. For each
image, we applied the detector and kept 36 objects and 64 triplets in scene graph.
We sampled 1000 sub-graphs per image and removed duplicate ones, leading to
an average of 255/274 sub-graphs per image for MS-COCO [6]/Flickr30K [12].
We used 2048D visual features for image regions and 300D GloVe [11] embed-
dings for node and edge labels. These features were projected into 1024D, fol-
lowed by a GCN with depth of 2 for feature transform and an attention LSTM
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Table 1. Ablation study on sub-graph/sentence ranking functions, the NMS thresholds
and the top-K sampling during decoding. We report results for both accuracy (B4 and
C) and diversity (Distinct Caption, 1/2-gram). Our model is trained on the train set
of COCO caption and evaluated on the the validation set, following M-RNN split [38].

Ranking Top-K Distinct 1-gram 2-gram

Model Function NMS Sampling B4 Caption (Best 5) (Best 5)
Sub-GC-consensus consensus 0.75 N/A 33.0107.6 59.3%  0.25 0.32
Sub-GC-sGPN sGPN 0.75 N/A 33.4108.7 59.3%  0.28 0.37

Sub-GC sGPN+consensus| 0.75 N/A 34.3112.9 59.3%  0.28 0.37
Sub-GC-consensus consensus 0.55 N/A 32.5105.6 70.5%  0.27 0.36
Sub-GC-sGPN sGPN 0.55 N/A 33.4108.7 70.5% 0.32 0.42
Sub-GC sGPN+consensus| 0.55 N/A 3411123 70.5%  0.32 0.42
Sub-GC-S sGPN+-consensus| 0.55 |[T=0.6,K=3(31.8 108.7 96.0%  0.39 0.57
Sub-GC-S sGPN+consensus| 0.55 | T=0.6,K=5|30.9 106.1 97.5%  0.41 0.60
Sub-GC-S sGPN+consensus| 0.55 |T=1.0,K=3|28.4 100.7 99.2%  0.43 0.64

(similar to [2]) for sentence decoding. For training, we used Adam [23] with ini-
tial learning rate of 0.0005 and a mini-batch of 64 images and 256 sub-graphs.
Beam search was used in decoding with beam size 2, unless otherwise noted.

4.1 Ablation Study

We first conduct an ablation study of our model components, including the
ranking function, the NMS threshold and the optional top-K sampling. We now
describe the experiment setup and report the ablation results.

Experiment Setup. We follow the evaluation protocol from [52,55,12,3] and
report both accuracy and diversity results using the M-RNN split [38] of MS-
COCO Caption dataset [6]. Specifically, this split has 118,287/4,000/1,000 images
for train/val/test set, with 5 human labeled captions per image. We train the
model on the train set and report the results on the wval set. For accuracy, we
report top-1 accuracy out of the top 20 output captions, using BLEU-4 [10] and
CIDEr [51]. For diversity, we evaluate the percentage of distinct captions from
20 sampled output captions, and report 1/2-gram diversity of the best 5 sampled
captions using a ranking function. Beam search was disabled for this ablation
study. Table 1 presents our results and we now discuss our results.

Ranking function is used to rank output captions. Our sGPN provides a socre
for each sub-graph and thus each caption. Our sGPN can thus be re-purposed as
a ranking function. We compare sGPN with consensus re-ranking [13,38] widely
used in the literature [55,12,3]. Moreover, we also experiment with applying
consensus on top-scored captions (e.g., top-4) from sGPN (sGPN+-consensus).
Our sGPN consistently outperforms consensus re-ranking for both accuracy
and diversity (+1.1 CIDEr and +12% l-gram with NMS=0.75). Importantly,
consensus re-ranking is computational expensive, while our sGPN incurs little
computational cost. Further, combining our sGPN with consensus re-ranking
(sGPN+consensus) improves top-1 accuracy (+4.2 CIDEr with NMS=0.75).
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sGPN+consensus produces the same diversity scores as sGPN, since only one
ranking function (sGPN) is used in diversity evaluation.

NMS threshold is used during inference to eliminate similar sub-graphs (see
Section 3.4). We evaluate two NMS thresholds (0.55 and 0.75). For all ranking
functions, a lower threshold (0.55) increases diversity scores (+8%/+14% 1-gram
for consensus/sGPN) and has comparable top-1 accuracy, expect for consensus
re-ranking (-2.0 CIDEr). Note that for our sGPN, the top-1 accuracy remains
the same as the top-ranked sub-graph stays unchanged.

Top-K sampling is optionally applied during caption decoding, where each
token is randomly drawn from the top K candidates based on the normalized
logits produced by a softmax function with temperature 7. A small T favors the
top candidate and a large K produces more randomness. We evaluate different
combinations of K and 7. Using top-K sampling decreases the top-1 accuracy
yet significantly increases all diversity scores (-3.6 CIDEr yet +22% in 1-gram
with T=0.6, K=3). The same trend was also observed in [30].

Our final model (Sub-GC) combines sGPN and consensus re-ranking for rank-
ing captions. We set NMS threshold to 0.75 for experiments focusing on the
accuracy of top-1 caption (Table 3, 4, 5) and 0.55 for experiments on diversity
(Table 2). Top-K sampling is only enabled for additional results on diversity.

4.2 Accurate and Diverse Image Captioning

Dataset and Metric. Moving forward, we evaluate our final model for accu-
racy and diversity on MS-COCO caption test set using M-RNN split [38]. Similar
to our ablation study, we report top-1 accuracy and diversity scores by select-
ing from a pool of top 20/100 output sentences. Top-1 accuracy scores include
BLEU [40], CIDEr [51], ROUGE-L [31], METEOR [4] and SPICE [1]. And diver-
sity scores include distinct caption, novel sentences, mutual overlap (mBLEU-4)
and n-gram diversity. Beam search was disabled for a fair comparison.
Baselines. We consider several latest methods designed for diverse and accurate
captioning as our baselines, including Div-BS [52], AG-CVAE [55], POS [12],
POS+Joint [12] and Seq-CVAE [3]. We compare our results of Sub-GC to these
baselines in Table 2. In addition, we include the results of our model with top-K
sampling (Sub-GC-S), as well as human performance for references of diversity.
Diversity Results. For the majority of the diversity metrics, our model Sub-
GC outperforms previous methods (+8% for novel sentences and +29%/20% for
1/2-gram with 20 samples), except the most recent Seq-CVAE. Upon a close
inspection of Seq-CVAE model, we hypothesis that Seq-CVAE benefits from
sampling tokens at each time step. It is thus meaningful to compare our model
using top-K sampling (Sub-GC-S) with Seq-CVAE. Sub-GC-S outperforms Seq-
CVAE in most metrics (+18%/19% for 1/2-gram with 100 samples) and remains
comparable for the metric of novel sentences (within 3% difference).
Accuracy Results. We notice that the results of our sub-graph captioning
models remain the same with increased number of samples. This is because our
outputs follow a fixed rank from sGPN scores. Our Sub-GC outperforms all
previous methods by a significant margin. Sub-GC achieves +2.6/2.1 in B4 and
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Table 2. Diversity and top-1 accuracy results on COCO Caption dataset (M-RNN
split [38]). Best-5 refers to the top-5 sentences selected by a ranking function. Note
that Sub-GC and Sub-GC-S have same top-1 accuracy in terms of sample-20 and
sample-100, since we have a sGPN score per sub-graph and global sorting is applied
over all sampled sub-graphs. Our models outperform previous methods on both top-1
accuracy and diversity for the majority of the metrics.

Diversity Top-1 Accuracy

Method # | Distinct #novel mBLEU-4 1-gram 2-gram - ; o o

Caption (1) (Best 5) (1) (Best 5) (1) (Best 5) () (Best 5) (p)| B B2 B3 B4 C R M S

Div-BS [57] 100% 3106 81.3 0.20 026|729 56.2 424 32.0 103.2 53.6 25.5 184
AG-CVAE [55] 69.8% 3189 66.6 0.24 0.34  |71.6 54.4 40.2 29.9 96.3 51.8 23.7 17.3
POS [12] |20 96.3% 3394 63.9 0.24 0.35 |74.4 57.0 41.9 30.6 101.4 53.1 25.2 18.8
POS+Joint [12] 77.9% 3409 66.2 0.23 0.33  |73.7 56.3 41.5 30.5 102.0 53.1 25.1 18.5
Sub-GC 71.1% 3679 67.2 0.31 0.42  |77.2 60.9 46.2 34.6 114.4 56.1 26.9 20.0
Seq-CVAE [J] [, 940% 4266 52.0 0.25 054 |73.1 554 40.2 28.9 100.0 52.1 245 17.5
Sub-GC-S 96.2% 4153 36.4 0.39 0.57 |75.2 57.6 42.7 31.4 107.3 54.1 26.1 19.3
Div-BS [57] 100% 3421 82.4 0.20 0.25 [734 56.9 43.0 32.5 103.4 53.8 25.5 18.7
AG-CVAE [55] 47.4% 3069 70.6 0.23 0.32  |73.2 55.9 41.7 31.1 100.1 52.8 24.5 17.9
POS [12]  |100| 91.5% 3446 67.3 0.23 0.33  |73.7 56.7 42.1 31.1 103.6 53.0 25.3 18.8
POS-+Joint [12] 58.1% 3427 70.3 0.22 0.31  |73.9 56.9 42.5 31.6 104.5 53.2 25.5 18.8
Sub-GC 65.8% 3647 69.0 0.31 0.41  |77.2 60.9 46.2 34.6 114.4 56.1 26.9 20.0
Seq-CVAE [] | [ 84.2% 4215 64.0 0.33 0.48 [74.3 56.8 41.9 30.8 104.1 53.1 24.8 17.8
Sub-GC-S 94.6% 4128 37.3 0.39 0.57 |75.2 57.6 42.7 31.4 107.3 54.1 26.1 19.3

Human [ 5] 99.8% - 51.0 0.34 048 | -

Table 3. Comparison to accuracy optimized models on COCO caption dataset using
Karpathy split [21]. Our Sub-GC compares favorably to the latest methods.

Method Bl B4 C R M S
Up-Down [2] |77.2 36.2 113.5 56.4 27.0 20.3
GCN—LSTM[ ] 77.3 36.8 116.3 57.0 27.9 20.9
SGAE [61] |77.6 36.9 116.7 57.2 27.7 20.9
Full-GC 76.7 36.9 114.8 56.8 27.9 20.8
Sub-GC 76.8 36.2 115.3 56.6 27.7 20.7
Sub-GC-oracle [90.7 59.3 166.7 71.5 40.1 30.1

+11.2/9.9 in CIDEr when using 20/100 samples in comparison to previous best
results. Moreover, while achieving best diversity scores, our model with top-
K sampling (Sub-GC-S) also outperforms previous methods in most accuracy
metrics (+0.8/0.9 in B1 and +4.1/2.8 in CIDEr when using 20/100 samples)
despite its decreased accuracy from Sub-GC.

Comparison to Accuracy Optimized Captioning models. We conduct
further experiments to compare the top ranked sentence from ou Sub-GC against
the results of latest captioning models optimized for accuracy, including Up-
Down [2], GCN-LSTM [62] and SGAE [61]. All these previous models can only
generate a single sentence, while our method (Sub-GC) can generate a set of
diverse captions. As a reference, we consider a variant of our model (Full-GC)
that uses a full scene graph instead of sub-graphs to decode sentences. Moreover,
we include an upper bound of our model (Sub-GC-oracle) by assuming that
we have an oracle ranking function, i.e., always selecting the maximum scored
sentence for each metric. All results are reported on Karpathy split [21] of COCO
dataset without using reinforcement learning for score optimization [45].
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Table 4. Grounded captioning results on Flickr30K Entities [412]. Our method (Sub-
GC) outperforms previous weakly supervised methods.

Grounding Evaluation Caption Evaluation

Method  [Eronree BT BL C M S
GVD [07] 3.88 11.70 69.2 26.9 60.1 22.1 16.1
Up-Down [2] | 4.14 12.30 69.4 27.3 56.6 21.7 16.0
Cyclical [37] | 4.98 13.53 69.9 27.4 61.4 22.3 16.6
Full-GC 4.90 13.08 69.8 29.1 63.5 22.7 17.0
Sub-GC 5.98 16.53 70.7 28.5 61.9 22.3 16.4
GVD (Sup.) [67]] 7.55 22.20 [69.9 27.3 62.3 22.5 16.5

Table 5. Controllable captioning results on Flickr30K Entities [12]. With weak super-
vision, our Sub-GC compares favorably to previous methods. With strong supervision,
our Sub-GC (Sup.) achieves the best results.

Method Bl B4 C R M S IU
NBT [35] (Sup.)| - 8.6 53.8 31.9 13.5 17.8 49.9
SCT [7] (Sup.) [33.1 9.9 67.3 35.3 14.9 22.2 52.7

Sub-GC  [33.6 9.3 57.8 325 14.2 18.8 50.6
Sub-GC (Sup.) |36.2 11.2 73.7 35.5 15.9 22.2 54.1

Our results are shown in Table 3. Our Sub-GC achieves comparable results
(within 1-2 points in B4/CIDEr) to latest methods (Up-Down, GCN-LSTM and
SGAE). We find that the results of our sub-graph captioning model is slightly
worse than those models using the full scene graph, e.g., Full-GC, GCN-LSTM
and SGAE. We argue that this minor performance gap does not diminish our
contribution, as our model offers new capacity for generating diverse, controllable
and grounded captions. Notably, our best case (Sub-GC-oracle) outperforms all
other methods for all metrics by a very large margin (+22.4 in B4 and +50.0
in CIDEr). These results suggest that at least one high-quality caption exists
among the sentences decoded from the sub-graphs. It is thus possible to generate
highly accurate captions if there is a way to select this “good” sub-graph.

4.3 Grounded Image Captioning

Moreover, we evaluate our model for grounded captioning. We describe the
dataset and metric, introduce our setup and baselines, and discuss our results.

Dataset and Metric. We use Flickr30k Entities [42] for grounded captioning.
Flickr30k Entities has 31K images, with 5 captions for each image. The dataset
also includes 275k annotated bounding boxes associated with the phrases in cor-
responding captions. We use the data split from [21]. To evaluate the grounding
performance, we follow the protocol in GVD [67]. We report both F1,,; and
F1;,.. F1y; considers a region prediction as correct if the object word is cor-
rectly predicted and the box is correctly localized. On the other hand F'1;,. only
accounts for localization quality. Moreover, we report the standard BLEU [40],
CIDEr [51], METEOR [4] and SPICE [1] scores for caption quality.
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A young couple walking down the street. is walking in a large building

Amaninagrey i is
walking down the street.

Fig. 3. Sample results of our Sub-GC on Flickr30k Entities test set. Each column shows
three captions with their region groundings decoded from different sub-graphs for an
input image. The first two rows are successful cases and the last row is the failure case.
These sentences can describe different parts of the images. Each generated noun and
its grounding bounding box are highlighted in the same color.

Experiment Setup and Baselines. For this experiment, we only evaluate
the top-ranked sentence and its grounding from our model. We select the node
on the sub-graph with maximum attention weight when decoding a noun word,
and use its bounding box as the grounded region. Our results are compared to
a strong set of baselines designed for weakly supervised grounded captioning,
including weakly supervised GVD [67], Up-Down [2] and a concurrent work
Cyclical [37]. We also include reference results from fully supervised GVD [67]
that requires ground-truth matching pairs for training, and our Full-GC that
decode a sentence from a full graph.

Results. Our results are presented in Table 4. Among all weakly supervised
methods, our model achieves the best F1 scores for caption grounding. Specif-
ically, our sub-graph captioning model (Sub-GC) outperforms previous best
results by +1.0 for Fl,; and +3.0 for F'1j,., leading to a relative improve-
ment of 20% and 22% for F1,,; and F1;,,., respectively. Our results also have
the highest captioning quality (+1.1 in B4 and 40.5 in CIDEr). We conjecture
that constraining the attention to the nodes of a sub-graph helps to improve the
grounding. Fig. 3 shows sample results of grounded captions. Not surprisingly,
the supervised GVD outperforms our Sub-GC. Supervised GVD can be consid-
ered as an upper bound for all other methods, as it uses grounding annotations
for training. Comparing to our Full-GC, our Sub-GC is worse on captioning
quality (-0.6 in B4 and -1.6 in CIDEr) yet has significant better performance for
grounding (+1.1 in Fl,; and +3.5 in Flj,c).
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4.4 Controllable Image Captioning

Finally, we report results on controllable image captioning. Again, we describe
our experiments and present the results.

Dataset and Metric. Same as grounding, we consider Flickr30k Entities [12]
for controllable image captioning and use the data split [21]. We follow evaluation
protocol developed in [7]. Specifically, the protocol assumes that an image and
a set of regions are given as input, and evaluates a decoded sentence against
one or more target ground-truth sentences. These ground-truth sentences are
selected from captions by matching the sentences tokens to object regions in
the image. Standard captioning metrics are considered (BLEU [40], CIDEr [51],
ROUGE-L [31], METEOR [1] and SPICE [1]), yet the ground-truth is different
from conventional image captioning. Moreover, the IoU of the nouns between
the predicted and the target sentence is also reported as [7].

Experiment Setup and Baselines. We consider (1) our Sub-GC trained with
only image-sentence pairs; and (2) a supervised Sub-GC trained with ground-
truth pairs of region sets and sentences as [7]. Both models follow the same
inference scheme, where input controlled set of regions are converted into best
matching sub-graphs for sentence decoding. However, supervised Sub-GC uses
these matching during training. We compare our results to recent methods devel-
oped for controllable captioning, including NBT [35] and SCT [7]. NBT and SCT
are trained with matching pairs of region sets and sentences same as our super-
vised Sub-GC. Results are reported without using reinforcement learning.
Results. The results are shown in Table 5. Our models demonstrate strong
controllability of the output sentences. Specifically, our supervised Sub-GC out-
performs previous supervised methods (NBT and SCT) by a significant margin.
Comparing to previous best SCT, our results are +1.3 in B4, +6.4 in CIDEr and
+1.4 in IoU. Interestingly, our vanilla model has comparable performance to pre-
vious methods, even if it is trained with only image sentence pairs. These results
provide further supports to our design of using sub-graphs for image captioning.

5 Conclusion

We proposed a novel image captioning model by exploring sub-graphs of image
scene graph. Our key idea is to select important sub-graphs and only decode
a single target sentence from a selected sub-graph. We demonstrated that our
model can generate accurate, diverse, grounded and controllable captions. Our
method thus offers the first comprehensive model for image captioning. More-
over, our results established new state-of-the-art in diverse captioning, grounded
captioning and controllable captioning, and compared favourably to latest method
for caption quality. We hope our work can provide insights into the design of
explainable and controllable models for vision and language tasks.
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internship at Tencent Al Lab and further completed at UW-Madison. YZ and
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Appendix A Additional Implementation Details

We present additional implementation details not covered in the main paper.
Network Architecture. f(-) in Eq. 4 took input features with a dimension
of 2048 (D=2048), projected them into a vector (D=512), and outputted a
scalar. Moreover, ¢(-) in Eq. 6 was a two-layer fully connected network that
first projects input features (D=2048) to D=512 and then D=2048. All GCN
layers transformed the input features (e.g., node and edge features with D=1024)
to a feature dimension D=1024. The LSTMs used in our model followed the same
architecture as [2].

Inference. For consensus re-ranking, we used global image features from ResNet-
101 [17] pre-trained on ImageNet [11].

Appendix B More Qualitative Results

We present further qualitative results of our model on Flickr30k Entities test
set. Given an input image and its scene graph, our method selects multiple
top ranked sub-graphs, decodes each of them into a sentence description and
associates the decoded sentence tokens with the image regions. Sample results
of the selected sub-graphs, decoded sentences and their region groundings are
visualized in Figures 4 to 7.

For each image, we show multiple generated sentences decoded from dif-
ferent sub-graphs grouped into successful and failure cases. For each row, we
present results from a single sub-graph, including its detected objects (left), the
nodes and edges used to decode the sentence (middle), and the output sentence
grounded into image regions (right). For each sub-graph, we only visualize the
nodes that have maximum attention weights for the decoded tokens, as well
as the edges between these nodes (middle). Moreover, we present the decoded
nouns and their grounded image regions using the same color (right).

Take the first image shown in Fig. 4 as an example. Our model describes
this image as “A man in a suit is walking down the street” when using a sub-
graph with the nodes of “man”, “jacket” and “sidewalk”, or as “A bus is parked
in front of a building” when using another sub-graph with nodes of “bus” and
“building”. Moreover, our model successfully links the generated tokens, such
as “man”, “suit”, “street”, “bus” and “building” to their image regions. These
results further suggest that our method can generate diverse and grounded cap-
tions by representing scene components as sub-graphs on an input scene graph.



Sub-graph Captioning 21

Successful Cases:
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Fig. 4. Diverse and grounded captioning results on Flickr30k Entities test set (Part
1). Each row presents the result from a single sub-graph. From left to right: input
image and detected objects associated with the sub-graph, sub-graph nodes and edges
used to decode the sentences, and the generated sentence grounded into image regions.
Decoded nouns and their corresponding grounding regions are shown in the same color.
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Fig. 5. Diverse and grounded captioning results on Flickr30k Entities test set (Part
2). Each row presents the result from a single sub-graph. From left to right: input
image and detected objects associated with the sub-graph, sub-graph nodes and edges
used to decode the sentences, and the generated sentence grounded into image regions.
Decoded nouns and their corresponding grounding regions are shown in the same color.
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Successful Cases:
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Fig. 6. Diverse and grounded captioning results on Flickr30k Entities test set (Part
3). Each row presents the result from a single sub-graph. From left to right: input
image and detected objects associated with the sub-graph, sub-graph nodes and edges
used to decode the sentences, and the generated sentence grounded into image regions.
Decoded nouns and their corresponding grounding regions are shown in the same color.
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Successful Cases:
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Fig. 7. Diverse and grounded captioning results on Flickr30k Entities test set (Part
4). Each row presents the result from a single sub-graph. From left to right: input
image and detected objects associated with the sub-graph, sub-graph nodes and edges
used to decode the sentences, and the generated sentence grounded into image regions.
Decoded nouns and their corresponding grounding regions are shown in the same color.
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