Skip to main content

How Can I See My Future? FvTraj: Using First-Person View for Pedestrian Trajectory Prediction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Abstract

This work presents a novel First-person View based Trajectory predicting model (FvTraj) to estimate the future trajectories of pedestrians in a scene given their observed trajectories and the corresponding first-person view images. First, we render first-person view images using our in-house built First-person View Simulator (FvSim), given the ground-level 2D trajectories. Then, based on multi-head attention mechanisms, we design a social-aware attention module to model social interactions between pedestrians, and a view-aware attention module to capture the relations between historical motion states and visual features from the first-person view images. Our results show the dynamic scene contexts with ego-motions captured by first-person view images via FvSim are valuable and effective for trajectory prediction. Using this simulated first-person view images, our well structured FvTraj model achieves state-of-the-art performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  2. Amirian, J., Hayet, J.B., Pettré, J.: Social ways: learning multi-modal distributions of pedestrian trajectories with GANs. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition Workshops (CVPRW) (2019)

    Google Scholar 

  3. Antonini, G., Bierlaire, M., Weber, M.: Discrete choice models of pedestrian walking behavior. Transp. Res. Part B: Methodol. 40(8), 667–687 (2006)

    Article  Google Scholar 

  4. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  5. Bagautdinov, T., Alahi, A., Fleuret, F., Fua, P., Savarese, S.: Social scene understanding: end-to-end multi-person action localization and collective activity recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4315–4324 (2017)

    Google Scholar 

  6. Bertasius, G., Chan, A., Shi, J.: Egocentric basketball motion planning from a single first-person image. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  7. Bi, H., Fang, Z., Mao, T., Wang, Z., Deng, Z.: Joint prediction for kinematic trajectories in vehicle-pedestrian-mixed scenes. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  8. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)

  9. Choi, C., Dariush, B.: Looking to relations for future trajectory forecast. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, F.F.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, Florida, USA, 20–25 June 2009 (2009)

    Google Scholar 

  11. Felsen, P., Lucey, P., Ganguly, S.: Where will they go? Predicting fine-grained adversarial multi-agent motion using conditional variational autoencoders. In: The European Conference on Computer Vision (ECCV), September 2018

    Google Scholar 

  12. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  13. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  14. Hasan, I., Setti, F., Tsesmelis, T., Del Bue, A., Galasso, F., Cristani, M.: Mx-LSTM: mixing tracklets and vislets to jointly forecast trajectories and head poses. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  16. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  17. Huang, Y., Bi, H., Li, Z., Mao, T., Wang, Z.: STGAT: modeling spatial-temporal interactions for human trajectory prediction. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  18. Ivanovic, B., Pavone, M.: The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  19. Johnson, L.A., Higgins, C.M.: A navigation aid for the blind using tactile-visual sensory substitution. In: Proceedings of International Conference on IEEE Engineering in Medicine and Biology Society, pp. 6289–6292 (2006)

    Google Scholar 

  20. Kang, G., Lim, J., Zhang, B.: Dual attention networks for visual reference resolution in visual dialog. CoRR abs/1902.09368 (2019). http://arxiv.org/abs/1902.09368

  21. Kantorovitch, J., Väre, J., Pehkonen, V., Laikari, A., Seppälä, H.: An assistive household robot-doing more than just cleaning. J. Assistive Technol. 8(2), 64–76 (2014)

    Article  Google Scholar 

  22. Kosaraju, V., Sadeghian, A., Martín-Martín, R., Reid, I., Rezatofighi, S.H., Savarese, S.: Social-bigat: multimodal trajectory forecasting using bicycle-GAN and graph attention networks. arXiv preprint arXiv:1907.03395 (2019)

  23. Lai, G.Y., Chen, K.H., Liang, B.J.: People trajectory forecasting and collision avoidance in first-person viewpoint. In: 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 1–2. IEEE (2018)

    Google Scholar 

  24. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 593–604 (2007)

    Google Scholar 

  25. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H.S., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  26. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Proceedings of Computer Graphics Forum, vol. 26, pp. 655–664 (2007)

    Google Scholar 

  27. Leung, T.S., Medioni, G.: Visual navigation aid for the blind in dynamic environments. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 565–572 (2014)

    Google Scholar 

  28. Liang, J., Jiang, L., Carlos Niebles, J., Hauptmann, A.G., Fei-Fei, L.: Peeking into the future: predicting future person activities and locations in videos. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  29. Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D.: Trafficpredict: trajectory prediction for heterogeneous traffic-agents. In: Proceedings of AAAI Conference on Artificial Intelligence, pp. 6120–6127 (2019)

    Google Scholar 

  30. Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 year, 1000 km: the oxford robotcar dataset. Int. J. Robot. Res. 36(1), 3–15 (2017)

    Article  Google Scholar 

  31. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 935–942 (2009)

    Google Scholar 

  32. Morris, B., Trivedi, M.: Learning trajectory patterns by clustering: experimental studies and comparative evaluation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 312–319 (2009)

    Google Scholar 

  33. Patil, A., Malla, S., Gang, H., Chen, Y.: The H3D dataset for full-surround 3D multi-object detection and tracking in crowded urban scenes. CoRR abs/1903.01568 (2019). http://arxiv.org/abs/1903.01568

  34. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: Proceedings of IEEE Conference on Computer Vision (ICCV), pp. 261–268 (2009)

    Google Scholar 

  35. Ramanishka, V., Chen, Y.T., Misu, T., Saenko, K.: Toward driving scene understanding: a dataset for learning driver behavior and causal reasoning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7699–7707 (2018)

    Google Scholar 

  36. Rios-Martinez, J., Spalanzani, A., Laugier, C.: From proxemics theory to socially-aware navigation: a survey. Int. J. Soc. Robot. 7(2), 137–153 (2015)

    Article  Google Scholar 

  37. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: Sophie: an attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  38. Sadeghian, A., Legros, F., Voisin, M., Vesel, R., Alahi, A., Savarese, S.: Car-net: clairvoyant attentive recurrent network. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 151–167 (2018)

    Google Scholar 

  39. Song, X., et al.: Apollocar3d: a large 3D car instance understanding benchmark for autonomous driving. CoRR abs/1811.12222 (2018). http://arxiv.org/abs/1811.12222

  40. Soo Park, H., Hwang, J.J., Niu, Y., Shi, J.: Egocentric future localization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  41. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. CoRR abs/1409.3215 (2014). http://arxiv.org/abs/1409.3215

  42. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017). http://arxiv.org/abs/1706.03762

  43. Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7 (2018)

    Google Scholar 

  44. Wang, X., Ma, K.T., Ng, G.W., Grimson, W.E.L.: Trajectory analysis and semantic region modeling using nonparametric hierarchical Bayesian models. Int. J. Computer Vision 95(3), 287–312 (2011)

    Article  Google Scholar 

  45. Wang, X., Ma, X., Grimson, W.E.L.: Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 539–555 (2009)

    Article  Google Scholar 

  46. Xu, Y., Piao, Z., Gao, S.: Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  47. Yagi, T., Mangalam, K., Yonetani, R., Sato, Y.: Future person localization in first-person videos. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  48. Yao, Y., Xu, M., Wang, Y., Crandall, D.J., Atkins, E.M.: Unsupervised traffic accident detection in first-person videos. CoRR abs/1903.00618 (2019). http://arxiv.org/abs/1903.00618

  49. Zhang, P., Ouyang, W., Zhang, P., Xue, J., Zheng, N.: SR-LSTM: state refinement for LSTM towards pedestrian trajectory prediction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key Research and Development Program of China under Grant 2018AAA0103000, 2017YFC0804900, and 2018YFB1700905, in part by the National Natural Science Foundation of China under Grant 61532002, 61972379, and 61702482. Zhigang Deng was in part supported by US NSF grant IIS-1524782.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huikun Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bi, H., Zhang, R., Mao, T., Deng, Z., Wang, Z. (2020). How Can I See My Future? FvTraj: Using First-Person View for Pedestrian Trajectory Prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics