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Abstract. The divergence between labeled training data and unlabeled
testing data is a significant challenge for recent deep learning models. Un-
supervised domain adaptation (UDA) attempts to solve such a problem.
Recent works show that self-training is a powerful approach to UDA.
However, existing methods have difficulty in balancing scalability and
performance. In this paper, we propose an instance adaptive self-training
framework for UDA on the task of semantic segmentation. To effectively
improve the quality of pseudo-labels, we develop a novel pseudo-label
generation strategy with an instance adaptive selector. Besides, we pro-
pose the region-guided regularization to smooth the pseudo-label region
and sharpen the non-pseudo-label region. Our method is so concise and
efficient that it is easy to be generalized to other unsupervised domain
adaptation methods. Experiments on ‘GTA5 to Cityscapes’ and ‘SYN-
THIA to Cityscapes’ demonstrate the superior performance of our ap-
proach compared with the state-of-the-art methods.

Keywords: domain adaptation, semantic segmentation, self-training,
regularization

1 Introduction

Domain shifts refer to the divergence between the training data (source domain)
and the testing data (target domain), induced by factors such as the variance
in illumination, object viewpoints, and image background [27,4]. Such domain
shifts often lead to the phenomenon that the trained model suffers from a sig-
nificant performance drop in the unlabeled target domain. The unsupervised
domain adaptation (UDA) methods aim to improve the model generalization
performance by transferring knowledge from labeled source domain to unlabeled
target domain.

Recently, the adversarial training (AT) methods have received significant at-
tention for semantic segmentation [27,9,10,21,6,29]. These methods aim to mini-
mize a series of adversarial losses to align source and target feature distributions.

? The corresponding author: Chuang Zhu.
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More recently, an alternative research line to reduce domain shift focuses on
building schemes based on the self-training (ST) framework [36,2,34,35,20,31].
These works iteratively train the model by using both the labeled source domain
data and the generated pseudo-labels for the target domain and thus achieve the
alignment between source and target domains. Besides, several works [19,28,34]
have explored to combine AT and ST methods, which shows great potential
on semantic segmentation UDA. Through carefully designed network structure,
these methods achieve state-of-the-art performance on the benchmark.

Table 1. Performance comparison of AT and ST. AT : adversarial training based meth-
ods; ST : self-training based methods; AT + ST : the mixed methods

Method BLF[19] AdaptMR[34] AdaptSeg[27] AdvEnt[29] PyCDA[20] CRST[35] Ours mean

AT 44.3 42.7 42.4 45.5 - - 43.8 43.7
ST - - - - 47.4 47.1 48.8 47.8
AT+ST 48.5 48.3 - - - - 50.2 49.0

Despite the success of these AT and ST methods, a natural question comes
up: what is the most effective one among these methods? AT or ST? Table 1
lists some of the above representative methods performance on the GTA5 to
Cityscapes benchmark. All these methods use the same segmentation network
for a fair comparison. In terms of performance, an explicit conclusion is: AT +
ST (49.0) [19,34] > ST (47.8) [20,35] > AT (43.7) [27,29]. The mixed methods,
such as BLF [19] and AdaptMR [34], both have achieved great performance gains
(+ 4.2, + 5.6) after using ST. However, in order to achieve better performance,
these mixed methods generally have serious coupling between sub-modules (such
as network structure dependency), thus losing scalability and flexibility.

This paper aims to propose a self-training framework for semantic segmen-
tation UDA, which has good scalability that can be easily applied to other non-
self-training methods and achieves state-of-the-art performance. To achieve this,
we locate the main obstacle of existing self-training methods is how to generate
high-quality pseudo-labels. This paper designs a new pseudo-label generation
strategy and model regularization to solve this obstacle.

Fig. 1. Pseudo-label results. Columns correspond to original images with ground truth
labels, class-balanced method, and our method
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The pseudo-label generation suffers from information redundancy and noise.
The generator tends to keep pixels with high confidence as pseudo-labels and
ignore pixels with low confidence. Because of this conservative threshold selec-
tion, they are inefficient when more similar samples with high confidence are
applied to training. The existing class-balanced self-training (CBST) [36] uti-
lized rank-based reference confidence for each class among all related images.
This results in the ignorance of key information from the hard images with most
of the pixels having low prediction scores. For example, in Fig. 1, the pseudo-
labels generated by CBST are concentrated on the road, while pedestrians and
trucks are ignored, which loses much learnable information. Therefore, we try
to design a pseudo-label generation that can be adjusted adaptively according
to the instance strategy to reduce data redundancy and increase the diversity of
pseudo-labels.

M

G

AT

𝑥𝑠𝑥𝑡 𝑝(𝑥) R

𝑦̂ 𝑡

𝑥𝑠𝑥𝑡 G 𝑝(𝑥)

AT 𝑅

(a) (b)

𝑎𝑑𝑣

S

𝐶𝐸

Fig. 2. IAST framework. (a) Warm-up phase, an initial model G is trained using any
existing non-self-training method (eg. AT). (b) Self-training phase, the selector S filters
the pseudo-labels generated by G, and R is the regularization

In this work, we propose an instance adaptive self-training framework (IAST)
for semantic segmentation UDA, as shown in Fig. 2. We employ an instance
adaptive selector in considering pseudo-label diversity during the training pro-
cess. Besides, we design region-guided regularization in our framework, which
has different roles in the pseudo-label region and the non-pseudo-label region.
The main contributions of our work are summarized as follows:

– We propose a new self-training framework. Our methods significantly out-
perform the current state-of-the-art methods on the public semantic segmen-
tation UDA benchmark.

– We design an instance adaptive selector to involve more useful informa-
tion for training. It effectively improves the quality of pseudo-labels. Be-
sides, region-based regularization is designed to smooth the prediction of
the pseudo-label region and sharpen the prediction of the non-pseudo-label
region.

– We propose a general approach that makes it easy to apply other non-self-
training methods to our framework. Moreover, our framework can also be
extended to semi-supervised semantic segmentation tasks.
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2 Related Works

Adversarial training for UDA: A large number of UDA schemes [1,13,16,17]
are proposed to reduce the domain gap by building shared embedding space to
both the source and target domain. Following the same idea, many adversarial
training based UDA methods are proposed by adding a domain discriminator
in recent years [27,10,21,6,29,33,32]. With adversarial training, the domain ad-
versarial loss can be minimized to directly align features between two domains.
Motivated by the recent image-to-image translation works, some works [9,19]
regard the mapping from the source domain to the target domain as the image
synthesis problem that reduce the domain discrepancy before training.

Self-training: Self-training schemes are commonly used in semi-supervised learn-
ing (SSL) areas [18].These works iteratively train the model by using both the
labeled source domain data and the generated pseudo-labels in the target do-
main and thus achieve the alignment between the source and target domain [26].
However, these methods directly choose pseudo-labels with high prediction con-
fidence, which will result in the model bias towards easy classes and thus ruin
the transforming performance for the hard classes. To solve this problem, the au-
thors in [36] proposed a class-balanced self-training (CBST) scheme for semantic
segmentation, which shows comparable domain adaptation performance to the
best adversarial training based methods. [20] proposed a self-motivated pyramid
curriculum domain adaptation method using self-training. More recently, CRST
[35] further integrated a variety of confidence regularizers to CBST, producing
better domain adaption results.

Regularization: Regularization refers to schemes that are intended to reduce
the testing error and thus make the trained model generalize well to unseen data
[7,15]. For deep neural network learning, different kinds of regularization schemes
such as weight decay [14] and label smoothing [25] are proposed. The recent work
[35] designed labels and model regularization under self-training architecture for
UDA. However, the proposed regularization scheme is just applied to the pseudo-
label region.

3 Preliminary

3.1 UDA for Semantic Segmentation

It is assumed that there are two domains: source domain S and target domain
T . The source domain includes image XS = {xs}, semantic mask YS = {ys},
and the target domain only has image XT = {xt}. In UDA, the semantic seg-
mentation model is trained only from the ground truth YS as the supervisory
signal. UDA semantic segmentation model can be defined as follows:

{XS ,YS ,XT } ⇒MUDA
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MUDA uses some special losses and domain adaptation methods to align the
distribution of two domains to learn domain-invariant feature representation.

3.2 Self-training for UDA

Because the ground truth labels of target domain are not available, we can treat
the target domain as an extra unlabeled dataset. In this case, the UDA task can
be transformed into a semi-supervised learning (SSL) task. Self-training is an
effective method for SSL. The problem can be described as the following forms:

min
w
LCE =− 1

|XS |
∑

xs∈XS

C∑
c=1

y(c)s log p(c|xs,w)

− 1

|XT |
∑

xt∈XT

C∑
c=1

ŷ
(c)
t log p(c|xt,w)

(1)

where C is the number of classes, y
(c)
s indicates the label of class c in source

domain, and ŷ
(c)
t indicates the pseudo-label of class c in target domain. xs and

xt are input images, w indicates weights of M, p(c|x,w) is the probability of
class c in softmax output, and |X| indicates the number of images.

In particular, ŶT = {ŷt} are the “pseudo-labels” generated according to the
existing model, which is limited to a one-hot vector (only single 1 and all the
others 0) or an all-zero vector. The pseudo-labels can be used as approximate
target ground truth labels.

Initially, pseudo-labels are generated before the training process. After this,
Eq.(1) can be used to directly minimize the cross-entropy loss of the source and
target. Pseudo-labels are updated periodically during the self-training process.

3.3 Adversarial training for UDA

Adversarial training uses an additional discriminator to align feature distribu-
tions. The discriminator D attempts to distinguish the feature distribution in
the output space of the source and target. The segmentation model M attempts
to fool the discriminator to confuse the feature distributions of the source and
target, thereby aligning the feature distributions. The optimization process is as
follows:

min
w

max
D
LXAT =− 1

|XS |
∑

xs∈XS

C∑
c=1

y(c)s log p(c|xs,w)

+
λadv
|XT |

∑
xt∈XT

[D(M(xt,w))− 1]
2

(2)

The first term is the cross-entropy loss of source, and the second term uses
a mean squared error as the adversarial loss, where λadv is the weight of the
adversarial loss. Eq. (2) is used to optimize M and D alternately.
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4 Proposed Method

An overview of our framework is shown in Fig. 3. We propose an instance adap-
tive self-training framework (IAST) with instance adaptive selector (IAS) and
region-guided regularization. IAS selects an adaptive pseudo-label threshold for
each semantic category in units of images and dynamically reduces the propor-
tion of “hard” classes, to eliminate noise in the pseudo-labels. Besides, region-
guided regularization is designed to smooth the prediction of the confident region
and sharpen the prediction of the ignored region. Our overall objective function
is as follows:

min
w
LCE(w, ŶT ) + LR(w)

= LCE(w, ŶT ) + (λiRi(w) + λcRc(w))
(3)

where LCE is the cross-entropy loss, which is different from Eq.(1) and only

calculates the cross-entropy loss of the target domain images. ŶT is the set of
pseudo-labels, and the detailed generation process is described in Section 4.1.
Ri and Rc are regularization of the ignored and confidence regions, which is
described in Section 4.2. And λi, λc are regularization weights.

Regularization

𝑝(𝑥𝑡)𝑖

confidence region

𝑝(𝑥𝑡)𝑐

min 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

min 𝐾𝐿𝐷

ignored region

𝑅𝑖

𝑅𝑐

𝑥𝑡

𝑦̂ 𝑡

𝑥𝑡 𝑝( )𝑥𝑡 𝑦̂ 𝑡𝐶𝐸

M

G Instance Adaptive Selector

pseudo-labels𝑥𝑠

𝑥𝑠 for warmup

prediction

Fig. 3. Proposed IAST framework overview

The IAST training process consists of three phases.

– (a) In the warm-up phase, a non-self-training method uses both the source
data and the target data to train an initial segmentation model M0 as the
initial pseudo-label generator G0.

– (b) In the pseudo-label generation phase, G is used to obtain the prediction
result of the target data, and a pseudo-label is generated by an instance
adaptive selector.
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– (c) In the self-training phase, according to Eq.(3), the segmentation model
M is trained using the target data.

Why warm-up? Before self-training, we expect to have a stable pre-trained
model so that IAST can be trained in the right direction and avoid disturbances
caused by constant fitting the noise of pseudo-labels. We use the adversarial
training method described in Section 3.3 to obtain a stable model by roughly
aligning the output of the source and target. In addition, in the warm-up phase,
we can optionally apply any other semantic segmentation UDA method as the
basic method, and it can be retained even in the (c) phase. In fact, we can use
IAST as a decorator to decorate other basic methods.

Multi-round self-training. Performing (b) phase and (c) phase once counts
as one round. As with other self-training tasks, in this experiment we performed
a total of three rounds. At the end of each round, the parameters of model M
will be copied into model G to generate better target domain prediction results
in the next round.

𝜃! = 0.9

road person road person road person road person

x&'( x& x&'( x& x&'( x&

𝜃(#$%&)

𝜃(()#*$+)

𝜃,-.
(#$%&)

𝜃,
(#$%&)

𝜃,
(()#*$+)

(a) Constant threshold (b) Class-balanced threshold (c) Instance adaptive threshold

road person road person

𝜃,-.
(()#*$+)

Fig. 4. Illustration of three different thresholding methods. xt−1 and xt represent two
consecutive instances, the bars approximately represent the probabilities of each class.
(a) A constant threshold is used for all instances. (b) class-balanced thresholds are used
for all instances. (c) Our method adaptively adjusts the threshold of each class based
on the instance

4.1 Pseudo-Label Generation Strategy with an Instance Adaptive
Selector

Pseudo-labels ŶT have a decisive effect on the quality of self-training. The generic
pseudo-label generation strategy can be simplified to the following form when
segmentation model parameter w is fixed:

min
ŶT

− 1

|XT |
∑

xt∈XT

C∑
c=1

ŷ
(c)
t log

p(c|xt,w)

θ
(c)
t

s.t. ŷt ∈ {[onehot]C} ∪ 0 , ∀ŷt ∈ ŶT

(4)
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Algorithm 1 pseudo-labels generation

Input: Model M, target instance {xt}T ,
Parameter: proportion α, momentum β, weight decay γ,
Output: target pseudo-labels

1: init θ0 = 0.9
2: for t = 1 to T do
3: Pindex = arg max(M(xt))
4: Pvalue = max(M(xt))
5: for c = 1 to C do
6: P(c)

xt = sort(Pvalue[Pindex = c], descending)

7: θ
(c)
xt = Ψ(xt, θ

(c)
t−1) Eq.(7)

8: end for
9: θt = βθt−1 + (1− β)θxt Eq.(6)

10: ŷt = onehot(Pindex[Pvalue > θt])
11: end for
12: return {ŷt}T

where θ(c) indicates the confidence threshold for class c, and ŷt = [ŷ
(1)
t , ..., ŷ

(C)
t ]

is required to be a one-hot vector or a all-zero vector. Therefore, ŷ
(c)
t can be

solved by Eq.(5).

ŷ
(c)
t =

{
1, if c = arg max

c
p(c|xt,w) and p(c|xt,w) > θ(c)

0, otherwise
(5)

When class c output probability p(c|xt,w) > θ(c), these pixels are regarded
as confidence region (pseudo-label region), and the rest are ignored regions (non-
pseudo-label region). Therefore, θ(c) become the key to the pseudo-labels gen-
eration process. As shown in Fig.4: (a) the traditional pseudo-labels generation
strategy based on a constant confidence threshold; (b) the generation strategy
which uses the same class-balanced θ for all target images; (c) we propose a
data diversity-driven pseudo-labels generation strategy with an instant adaptive
selector (IAS).

IAS maintains two thresholds {θt,θxt}, where θt indicates the historical
threshold and θxt indicates the threshold of current instance xt. During the
generation process, IAS dynamically updates θt based on θxt

of the current in-
stance xt, so each instance gets an adaptive threshold, combining global and local
information. Specifically, for each instance xt, we sort the confidence probability
of each class in descending order, and then take the α× 100% confidence proba-

bility as the local threshold θ
(c)
xt for each class in instance xt. Finally, we use the

exponentially weighted moving average to update the threshold θt containing
historical information as the global threshold. The details are summarized in
Algorithm1.

Exponential moving average (EMA) threshold. When generating pseudo-
labels one by one, we use an exponential moving average method, denoted as
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Eq.(6), which can smooth the threshold of each instance, introduce past histor-

ical information, and avoid noise interference. Eq.(7) Ψ(xt, θ
(c)
t−1) represents the

threshold for acquiring the current instance xt. β is a momentum factor used to

preserve past threshold information. As β increases, the threshold θ
(c)
t becomes

smoother.

θ
(c)
t = βθ

(c)
t−1 + (1− β)Ψ(xt, θ

(c)
t−1) (6)

Ψ(xt, θ
(c)
t−1) = P(c)

xt

[
αθ

(c)
t−1

γ
|P(c)

xt
|
]

(7)

“Hard” classes weight decay (HWD). For “hard” classes, pseudo-labels

tend to bring more noise labels. In Eq.(7), we design θ
(c)
t−1

γ
to modify the pro-

portion of pseudo-labels α. γ is a weight decay parameter, which is used to

control the decay degree. The thresholds θ
(c)
t−1 of the “hard” classes are usually

smaller, so HWD reduces more pseudo-labels of “hard” classes. On the contrary

the thresholds θ
(c)
t−1 of easy classes is usually larger, so HWD has a weaker im-

pact. It is easy to prove that when Ψ(xt, θ
(c)
t−1) = θ

(c)
t−1, θ will converge to a larger

value, thereby reduce the amount of the “hard” classes.

4.2 Region-Guided Regularization

Confident region KLD minimization. During training, the model is prone
to overfit pseudo-labels, which will damage the model. For the confidence region

Ixt
= {1 | ŷ(h,w)

t > 0}, there are pseudo labels as supervising signals to supervise
the model for learning. However, as shown in Table 4, although a series of tech-
niques for generating high-confidence pseudo labels have been used, the quality
of the pseudo labels is still not as good as the ground truth labels, which means
that there are some noise labels in the pseudo-labels. How to reduce the impact
of noise labels is a key issue. Zou et al. [35] has proposed various regularization
for this. We use the KLD which works best in [35] to smooth the prediction
results of the confidence region, so that the prediction results do not overfit the
pseudo-labels.

Rc = − 1

|XT |
∑

xt∈XT

Ixt

C∑
c=1

1

C
log p(c|xt,w) (8)

As shown in Eq.(8), when the prediction result log p(c|xt,w) is approximately
close to the uniform distribution (the probability of each class is 1

C ), Rc gets
smaller. KLD minimization promotes smoothing of confidence regionsand avoid
the model blindly trusting false labels.
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Ignored region entropy minimization. On the other hand, for the ignored

region I{xt
= {1 | ŷ(h,w)

t = 0}, there is no supervision signal during the training

process. Because the prediction result of the region I{xt
is smooth and has low

confidence, we use the minimized entropy of the ignored region to prompt the
model to predict the low entropy result, which makes the prediction result look
more “sharper”.

Ri = − 1

|XT |
∑

xt∈XT

I{xt

C∑
c=1

p(c|xt,w) log p(c|xt,w) (9)

As shown in Eq.(9), sharpening the prediction result of the ignored region
by minimizing Ri can promote the model to learn more useful features from the
ignored region without any supervised signal, which has also been proved to be
effective for UDA in the work [29].

5 Experiment

5.1 Experimental Settings

Network architecture and datasets. We adapt Deeplab-v2 [3], which is
widely used in the semantic segmentation UDA problem, as our basic network
architecture. ResNet-101[8] is selected as the backbone network of the model.
All experiments in this work are carried out under this network architecture. We
evaluate our UDA methods for semantic segmentation on the popular synthetic-
to-real adaptation scenarios: (a) GTA5 [23] to Cityscapes [5], (b) SYNTHIA [24]
to Cityscapes. The GTA5 dataset has 24966 images that are rendered from the
GTA5 game and 19 classes with Cityscapes. SYNTHIA dataset includes 9400
images and 16 common classes with Cityscapes. Cityscapes is split into training
set, validation set, and testing set. Following the standard protocols in [27], we
use the training set which has 2975 images as the target dataset and use the
validation dataset to evaluate our models with mIoU.
Implementation details. In our experiments, we implement IAST using Py-
Torch on an NVIDIA Tesla V100. The training images are randomly cropped
and resized to 1024 × 512, the aspect ratio of the crop window is 2.0, and the
window height is randomly selected from [341 ∼ 950] for GTA5 and [341 ∼ 640]
for SYNTHIA. All weights of batch normalization layers were frozen. Deeplab-
v2 is pre-trained on ImageNet. In IAST, we adopt Adam with learning rate
2.5 × 10−5, batch size 6 for 4 epochs. The pseud-label parameters α, β, γ
are set to 0.2, 0.9 and 8.0. The regularization weights λi and λc are set to
3.0 and 0.1. Our code code and pre-trained molels are available at: https:

//github.com/Raykoooo/IAST

5.2 Discussion and Ablation Study

Why IAS works? Table 2 shows a sensitivity analysis on the parameter α and
β. When we set α = 0.2 and β = 0, it means IAS takes 20% of each image as the

https://github.com/Raykoooo/IAST
https://github.com/Raykoooo/IAST
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Fig. 5. Visualization of pseudo-labels. Columns correspond to original images with
ground truth labels, our method, and class-balanced method [36]

confidence region. As a comparison, the class-balanced method [36] takes 20%
of pixels in the whole target set as the confidence region. As shown in Fig. 5,
pseudo-labels of class-balanced method miss some pixels for persons, cars and
bikes. In contrast, the pseudo-labels of our method are more diverse, especially
for some “hard” classes. When we set α = 0.2 and β = 0.9, IAS combines global
and local information to get more diverse content so that the model achieve the
best performance.

Table 2. α and β sensitivity analysis
(GTA5 to Cityscapes)

α β Proportion(%) mIoU(%)

.20 .0 20.0 49.8

.20 .50 31.2 50.3

.20 .90 36.5 50.5

.20 .99 40.1 50.0

.30 .90 42.5 49.7

.50 .90 48.6 48.2

Constant(Fig. 4 a) 38.6 45.1
Class-balanced(Fig. 4 b) 20.0 47.9

Table 3. λi and λc sensitivity analysis
(GTA5 to Cityscapes)

λi λc mIoU(%)

.5 .10 50.6
1.0 .10 51.1
2.0 .10 50.9
3.0 .10 51.5
4.0 .10 51.2
5.0 .10 51.3

3.0 .05 50.6
3.0 .15 51.0

Fig.6 shows that as the γ increases, the proportion of some easy classes (sky,
car) that have a high prediction score does not decrease significantly, while the
proportion of some “hard” classes (motor, wall, fence and pole) that have a
low prediction score decreases sharply. This proves that Eq.(7) can effectively
reduce the pseudo-labels of “hard” classes and suppress noise interference in the
pseudo-labels. Table 4 shows a sensitivity analysis on the parameter γ. We find
that as the γ increases, pseudo-labels have smaller proportions but have better
quality. Therefore, we let γ = 8 as the trade-off between the proportion and
the quality of pseudo-labels. On the contrary, moderate regularization helps the
model to improve the prediction accuracy and avoid overfitting the noise labels.
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Table 3 shows a sensitivity analysis of the parameter λi and λc. We performed
multiple sets of experiments with fixed λi and λc, respectively. When λc = 0.1
is fixed and λi is gradually increased, the overall model performance tends to
improve until λi = 4. It can be expected that when the low entropy prediction is
excessively performed in the non-pseudo-label region, the influence of noise will
be amplified and the model will be damaged.

𝛾

pr
op
or
tio
n

Ps
eu
do
m
Io
U

Fig. 6. Relationship between the pseudo-
labels proportion and γ

Table 4. γ sensitivity analysis
(α = 0.2, β = 1.0). P-mIoU
means mIoU of pseudo-labels

γ 0 1 4 8 16

Proportion 0.36 0.34 0.30 0.28 0.25
P-mIoU(%) 65.6 66.3 67.4 68.2 69.0
mIoU (%) 50.5 50.8 51.2 51.5 50.9

Ablation studies. The results of the ablation studies are reported in Table 5.
We attempt the methods proposed in Section 4.1 and Section 4.2 one by one to
study their performance in the test set. From the data in Table 5, after using self-
training (Fig. 4 a) without using any other techniques, the model performance
has a gain of 1.3%. After adding IAST modules (IAS, Ri, Rc), the performance
of the model is gradually and steadily improved, and finally, 51.5% mIoU is
achieved. In addition, we also try multi-scale testing and the combined result
achieved the best 52.2% mIoU.

Table 5. Results of ablation study (GTA5 to Cityscapes)

Method ST IAS Rc Ri mIoU ∆

Source - - - - 35.6 0
Warm-up - - - - 43.8 +8.2

+ Constant ST(Fig. 4 a) 3 45.1 +1.3
+ Instance adaptive selector 3 3 49.8 +4.7
+ Confidence region R. 3 3 3 50.7 +0.9
+ Ignored region R. 3 3 3 3 51.5 +0.8

5.3 Experimental Results

Comparison with the state-of-the-art methods:The results of IAST and
some other state-of-the-art methods on GTA5 to Cityscapes are present in Ta-
ble6. From the overall results, IAST has the best mIoU 52.2% and has obvious
advantages over other methods. Compared with some adversarial training meth-
ods AdaptSegNet [27] and SIBAN [22], IAST improves by 9.6% mIoU and have
significant gains in almost all classes. Compared with the same self-training
methods such as MRKLD [35], IAST improves by 4.8% mIoU. In addition, BLF
[19] is a method that combines adversarial training and self-training, which has
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Table 6. Results of our proposed method IAST and other state-of-the-art methods
(GTA5 to Cityscapes). A&S means a mixed method of AT and ST
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mIoU

Source [27]

AT

75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

AdaptSegNet [27] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

SIBAN [22] 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.3 3.4 21.6 21.5 42.6

SSF-DAN [6] 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4

AdvEnt [29] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.4

APODA [30] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9

Source [36]

ST

71.3 19.2 69.1 18.4 10.0 35.7 27.3 6.8 79.6 24.8 72.1 57.6 19.5 55.5 15.5 15.1 11.7 21.1 12.0 33.8

CBST [36] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

PyCDA[20] 90.5 36.3 84.4 32.4 28.7 34.6 36.4 31.5 86.8 37.9 78.5 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4

MRKLD [35] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

BLF [19]

A&S

91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

AdaptMR [34] 90.5 35.0 84.6 34.3 24.0 36.8 44.1 42.7 84.5 33.6 82.5 63.1 34.4 85.8 32.9 38.2 2.0 27.1 41.8 48.3

PatchAlign [28] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 26.3 2.2 29.5 32.3 46.5

Source(ours)

A&S

64.8 21.7 74.3 15.4 21.2 18.2 30.7 13.0 80.9 33.7 76.3 55.6 20.0 43.9 27.0 35.5 4.4 24.9 14.3 35.6

IAST(ours) 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5

IAST-MST(ours) 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2

Table 7. Results of our proposed method IAST and other state-of-the-art methods
(SYNTHIA to Cityscapes)
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mIoU mIoU*

Source [27]

AT

55.6 23.8 74.6 - - - 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 - 38.6

AdaptSegNet [27] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

SIBAN [22] 82.5 24.0 79.4 - - - 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 - 46.3

SSF-DAN [6] 84.6 41.7 80.8 - - - 11.5 14.7 80.8 85.3 57.5 21.6 82.0 36.0 19.3 34.5 - 50.0

AdvEnt [29] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

APODA [30] 86.4 41.3 79.3 - - - 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 - 53.1

Source [36]

ST

64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 40.3

CBST [36] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9

PyCDA [20] 75.5 30.9 83.3 20.8 0.7 32.7 27.3 33.5 84.7 85.0 64.1 25.4 85.0 45.2 21.2 32.0 46.7 53.3

MRKLD [35] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1

BLF [19]

A&S

86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4

AdaptMR [34] 83.1 38.2 81.7 9.3 1.0 35.1 30.3 19.9 82.0 80.1 62.8 21.1 84.4 37.8 24.5 53.3 46.5 53.8

PatchAlign [28] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

Source(ours)
A&S

63.4 24.1 66.7 7.1 0.1 28.4 11.6 16.8 77.0 74.6 60.4 20.5 75.6 22.0 14.4 21.2 36.5 42.2

IAST(ours) 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0

the second-best 48.5% mIoU. Compared to BLF, IAST still has a significant
improvement.

Table 7 is the results of the SYNTHIA to Cityscapes dataset. For a compre-
hensive comparison, as in the previous work, we also report two mIoU metrics:
13 classes of mIoU* and 16 classes of mIoU. The domain gap between SYN-
THIA and Cityscapes is much larger than the domain gap between GTA5 and
Cityscapes. Many of the methods that performed well on GTA5 to Cityscapes
have experienced a significant performance degradation on this dataset. Corre-
spondingly, the performance gap between different methods is becoming more
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apparent. IAST also achieves the best results, which are 49.8% mIoU and 57.0%
mIoU* and significantly higher than all recent state-of-the-art methods.

Table 8. Semi-supervised learning
results on the Cityscapes val set.
1/8, 1/4 and 1/2 mean the propor-
tion of labeled images

Method
Data Amount

1/8 1/4 1/2 Full

Baseline 57.3 59.0 61.2 70.2
Univ-full[12] 55.9 - - -
AdvSemi[11] 58.8 62.3 65.7 67.7
IAST(ours) 64.6 66.7 69.8 70.2

Table 9. Extension analysis, applying IAST to
non-self-learning UDA methods [27,29] (test on
Cityscapes), and Source means training IAST
without warmup

Method
GTA5 SYNTHIA

Base +IAST ∆ Base +IAST ∆

AdaptSeg[27] 42.4 50.2 +7.8 46.7 54.7 +8.0
AdvEnt[29] 45.4 49.8 +4.4 48.0 55.1 +7.1
Source 35.6 48.8 +13.2 42.2 54.2 +12.0

Apply to other UDA methods. Because IAST has no special structure or
model dependencies, it can be directly used to decorate other UDA methods. We
chose two typical adversarial training methods, AdaptSeg[27] and AdvEnt[29] for
experiments. As shown in Table 9, these two methods have significantly improved
performance under the IAST framework.
Extension: other tasks. The self-training method can also be applied to semi-
supervised semantic segmentation task. We use the same configuration as [11]
in Cityscapes for semi-supervised training with different proportions of data as
labeled data. As shown in Table 8, we have significantly better performance than
[11] and [12].

6 Conclusions

In this paper, we propose an instance adaptive self-training framework for se-
mantic segmentation UDA. Compared with other popular UDA methods, IAST
still has a significant improvement in performance. Moreover, IAST is a method
with no model or special structure dependency, which means that it can be eas-
ily applied to other UDA methods with almost no additional cost to improve
performance. In addition, IAST can also be applied to semi-supervised semantic
segmentation tasks, which also achieves state-of-the-art performance. We hope
this work will prompt people to rethink the potential of self-training on UDA or
semi-supervised learning tasks.
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