
OneGAN: Simultaneous Unsupervised Learning
of Conditional Image Generation, Foreground
Segmentation, and Fine-Grained Clustering

Yaniv Benny1 and Lior Wolf1,2

1 Tel-Aviv University, Israel
2 Facebook AI Research

Abstract. We present a method for simultaneously learning, in an un-
supervised manner, (i) a conditional image generator, (ii) foreground ex-
traction and segmentation, (iii) clustering into a two-level class hierarchy,
and (iv) object removal and background completion, all done without
any use of annotation. The method combines a Generative Adversarial
Network and a Variational Auto-Encoder, with multiple encoders, gener-
ators and discriminators, and benefits from solving all tasks at once. The
input to the training scheme is a varied collection of unlabeled images
from the same domain, as well as a set of background images without a
foreground object. In addition, the image generator can mix the back-
ground from one image, with a foreground that is conditioned either on
that of a second image or on the index of a desired cluster. The method
obtains state of the art results in comparison to the literature methods,
when compared to the current state of the art in each of the tasks.

1 Introduction

We hypothesize that solving multiple unsupervised tasks together, enables one
to improve on the performance of the best methods that solve each individually.
The underlying motivation is that in unsupervised learning, the structure of the
data is a key source of knowledge and each task exposes a different aspect of
it. We advocate for solving the various tasks in phases, where easier tasks are
addressed first, and the other tasks are introduced gradually, while constantly
updating the solutions of the previous sets of tasks. The method consists of
multiple networks that are trained end-to-end and side-by-side to solve multiple
tasks. The method starts from learning background image synthesis and image
generation of objects from a particular domain. It then advances to more complex
tasks, such as clustering, semantic segmentation and object removal. Finally,
we show the model’s ability to perform image-to-image translation. The entire
learning process is unsupervised, meaning that no annotated information is used.
In particular, the method does not employ class labels, segmentation masks,
bounding boxes, etc. However, it does require a separate set of clean background
images, which are easy to obtain in many cases.

ar
X

iv
:1

91
2.

13
47

1v
2

 [
cs

.C
V

]
 1

2
Ju

l 2
02

0

2 Y. Benny and L. Wolf

Contributions Beyond the conceptual novelty of a method that treats single-
handedly multiple unsupervised tasks, which were previously solved by individ-
ual methods, the method displays a host of technical novelties, including: (i) a
novel architecture that supports multiple paths addressing multiple tasks, (ii)
employing bypass paths that allow a smooth transition between autoencoding
and generation based on a random seed, (iii) backpropagation through three
paths in each iteration, (iv) mixup module, which applies interpolation between
latent representations of the generation and reconstruction paths, and more. Due
to each of these novelties, backed by the ablation studies, we obtain state of the
art results compared to the literature methods in each of the individual tasks.

2 Related work

Since our work touches on many tasks, we focus the literature review on gen-
eral concepts and on the most relevant work. Generative models are typically
based on Generative Adversarial Networks [11] or Variational Auto-Encoders [18].
In addition, these two can be combined [21]. Conditional image generation
conditions the output on an initial variable, most commonly, the target class.
CGAN [23] and InfoGAN [7] proposed different methods to apply the condition
on the discriminator. Our work is more similar to InfoGAN, since we do not
use labeled data and the label is not linked to any real image and no condi-
tional discriminator can be applied. The condition is maintained by a classifier
that tries to predict the conditioned label and, as a result, forces the genera-
tor to condition the result on that label. Semantic segmentation deals with
the classification of the image pixels based on their class labels. For the super-
vised setting Unet [24], DeepLab [4], DeepLabV3 [5], HRNet [30] have shown
great performance leaps using a regression loss. For the unsupervised case, more
creative solutions are considered. In [6,16,32,31,8,27,14,3] a variety of methods
have been used including inpainting, learning feature representation, clustering
or video frames comparison. In Clustering, deep learning methods are the cur-
rent state of the art. JULE [33] and DEPICT [10], cluster based on a learned
feature representation. IIC [14] trains a classifier directly.

The most similar approach to ours is FineGAN [26], which our generators
and discriminators are based upon. However, there are many significant differ-
ences and additions: (i) We added a set of encoders, which are trained to support
new tasks. (ii) While FineGAN employs one-hot input, our generators use coded
input, which is important for our autoencoding path. (iii) We added a skip con-
nection, followed by a mixup module that combines the bypass tensor with the
pre-image tensor. The mixup also allows passing only one of the tensors, making
either the bypass or the pre-image optional in each flow. (iv) We employ single
foreground generator instead of FineGAN’s double hierarchical design, where we
have found one generator to be dominant and the second one redundant. (v) Our
model uses layer normalization [1] instead of batch normalization, which better
performs for large number of classes, small batch size, and alternating paths.
(vi) We define a new normalization method for the generators, where GLU [9]

OneGAN 3

activation layers were used as non-linear activations. (vii) We add many losses,
regularization terms, and training techniques that were not used in FineGAN,
many of which are completely novel, as far as we can ascertain. As a result, our
work outperforms FineGAN in all tasks and is capable of performing new tasks
that its predecessor could not handle.

Mixup [35] is a technique for applying a weighted sum between two latent
variables in order to synthesize a new latent variable. We use it to merge dif-
ferent paths in the model by mixing latent variables that are part coded by the
encoder and part produced by the lower levels of the generation. As far as we
can ascertain, this is the first usage of mixup to merge information from different
paths. Our mixup is applied to image reconstruction in four different locations.

3 Method

To solve the tasks of clustering, foreground segmentation, and conditional gen-
eration with minimal supervision, our method trains multiple neural networks
side-by-side. Each task is solved by applying the networks in a task-dependent
order. Similarly, the method is trained by applying the networks in two different
paths in each iteration, each path is optimized with a specific set of losses.
Architecture The architecture of the compound network consists of two
generators, three encoders and two discriminators. Fig. 1 and Fig. 2 illustrate
the two training paths. In the generation path, the generators produce a synthetic
image conditioned on selected code, the encoders then retrieve the latent code
from the generated images. In the reconstruction path, the encoders code an
input image into latent code which is used by the generators to reconstruct the
image. The reconstruction path is applied twice in each iteration, once on real
images and once on fake images from the generation path. The reconstruction of
fake images adds multiple capabilities of self-supervision such as reconstructing
the background and mask, which is not applicable with real images without
additional supervision. The sub-networks are fully detailed in the supplementary.
Generators The generation is performed by merging the results of two sepa-
rate generators that run in parallel to produce the output image. One generator
is dedicated for generating the background and the other for the foreground.
The generators are conditioned on a two-level hierarchical categorization. Each
category has a unique child class φc and a parent class φp shared by multi-
ple child classes. These classes are represented by the one-hot vectors (ec, ep).
An additional background one-hot vector ebg affects the generation of the back-
ground images. Since there is a tight coupling between the class of the object
(water bird, tropical bird, etc.) and the expected background, the typology of
the background follows the coarse hierarchy, i.e. the parent class. The generator
architecture is influenced by.

ec[i] = δi,φc
, ep[i] = δi,φp

, ebg = ep (1)

The generation starts by converting the one-hot vectors into code vectors us-
ing learned embeddings. Such an embedding is often used when working with

4 Y. Benny and L. Wolf

Embedding

Shape

Generator

Style

Background

Ep

Ec

Ebg
Pa

re
n

t
 o

n
e-

h
o

t

Gbg1

I1 Foreground

I1 Mask

I1 Background

I1

Gbg0
C

hi
ld

 o
n

e-
h

o
t

Vc

Vp

Vbg
Background

vector

Pose
vector

Shape
vector

Style
vector

DcA

DbgA

B
ac

kg
ro

un
d

 o
n

e-
ho

t

B
G

 M
as

ki
n

g
B

G
 M

as
ki

n
g

Shape vector

Style
vector

Pose vector

Parent
one-hot

Child
one-hot

Gfg0 Gfg1 Gfg2

real/fake

bg/fg

real/fake

aux: child

Background
vector

Reconstruction

Embedding

Shape

Generator

Style

Background

Ep

Ec

Ebg Gbg1

I1 Foreground

I1 Mask

I1 Background

I1

Gbg0

Vc

Background
vector

Pose
vector

Shape
vector

Style
vector

B
G

 M
as

ki
ng

B
G

 M
as

ki
ng

Shape vector

Style
vector

Pose vector

Parent
one-hot

Child
one-hot

Gfg0 Gfg1 Gfg2

Background
vector

Reconstruction

Vp
Mixup

1
Mixup

1

Mixup
2

Mixup
2

Mixup
3

Mixup
3

SKIP CONNECTION Bfg

SKIP CONNECTION Bbg

Mixup
4

Mixup
4

DbgB

DcB

DbgA real/fake

bg/fgDbgB

DcA real/fake

aux: childDcB

Fig. 1. Flow of the generation path. The generators decode the four priors (ebg, ep, ec, z)
and produce three separate images (foreground, background, mask) that are combined
into the final image. The generated image is then coded by three encoders to retrieve
the latent variables and priors.

Embedding

Shape

Generator

Style

Background

Ep

Ec

Ebg

Pa
re

n
t

 o
n

e-
h

o
t

Gbg1

I1 Foreground

I1 Mask

I1 Background

I1

Gbg0

C
hi

ld
 o

n
e-

ho
t

Vc

Vp

Vbg
Background

vector

Pose
vector

Shape
vector

Style
vector

DcA

DbgA

B
ac

kg
ro

un
d

 o
n

e-
ho

t

B
G

 M
as

ki
ng

B
G

 M
as

ki
ng

Shape vector

Style
vector

Pose vector

Parent
one-hot

Child
one-hot

Gfg0 Gfg1 Gfg2

real/fake

bg/fg

real/fake

aux: child

Background
vector

Reconstruction

Embedding

Shape

Generator

Style

Background

Ep

Ec

Ebg Gbg1

I1 Foreground

I1 Mask

I1 Background

I1

Gbg0

Vc

Background
vector

Pose
vector

Shape
vector

Style
vector

B
G

 M
as

ki
ng

B
G

 M
as

ki
ng

Shape vector

Style
vector

Pose vector

Parent
one-hot

Child
one-hot

Gfg0 Gfg1 Gfg2

Background
vector

Reconstruction

Vp
Mixup

1
Mixup

1

Mixup
2

Mixup
2

Mixup
3

Mixup
3

SKIP CONNECTION Bfg

SKIP CONNECTION Bbg

Mixup
4

Mixup
4

DbgB

DcB

DbgA real/fake

bg/fgDbgB

DcA real/fake

aux: childDcB

Fig. 2. Flow of the reconstruction path. The same sub-networks are rearranged to per-
form image reconstruction. The image is coded with the shape and style encoders and
then decoded by the foreground generator to produce the foreground image and mask.
Then the background encoder and generator code the masked image and produces a
background image. The output image combines the foreground and background images.
The mixup modules, placed in four different locations, merge the encoders’ predicted
codes with intermediate stages of the generation, acting as a robust skip connection.

categorical values. A fourth vector z is sampled from a multi-variate gaussian
distribution to represent non-categorical features.

vbg = Vbg(ebg), vp = Vp(ep), vc = Vc(ec), z ∼ N (0, 1)dz (2)

The background generator Gbg receives the background vector vbg and noise
z and produces a background image Ibg. The foreground generator Gfg receives
the parent vector ep, child vector ec and the same z used in the background
generation and produces a foreground image Ifg and a foreground mask Im.
The generator is optimized such that all foreground images with the same ep will

OneGAN 5

have the same object shape and all images with the same ec will have a similar
object appearance. The latent vector z is implicitly conditioned to represent all
non-categorical information, such as pose, orientation, size, etc. It is used in both
the background and foreground generation, so that the images produced by both
networks will merge into a coherent image. Each generator is a composition of
sub-modules applied back to back, with intermediate pre-images (Abg, Afg):

Ibg = Gbg1(Abg), Abg = Gbg0(vbg, z) (3)

(Ifg, Im) = Gfg2(Gfg1(Afg, vp), vc), Afg = Gfg0(vp, z) (4)

The final generated image is: (where ◦ denotes element-wise multiplication)

I = Ibg ◦ (1− Im) + Ifg ◦ Im (5)

Encoders Unlike FineGAN, which performs only the generation task, our
method requires the use of encoders. We introduce three encoders: background
encoder Ebg, shape encoder Ep, and style encoder Ec. They run in semi-parallel
to predict both the latent codes (vbg, vp, vc, z) of an input image and the underly-
ing one-hot vectors (ebg, ep, ec). All encoders are fed with image I as input. The
background encoder is also fed with the mask Im. During image reconstruction,
there is no initial image mask, therefore it first has to be generated by encoding
the shape and style features and applying the foreground generator. The lack of
ground-truth mask is why the encoders do not run fully in parallel. In addition,
the background and shape encoders also produce bypass tensors (Bbg, Bfg) to
be used as skip connections between the encoders and the generators.

(Bbg) = Ebg(I, Im) (6)

(êp, µp, σp, Bfg, µz, σz) = Ep(I) (7)

(êc, µc, σc) = Ec(I) (8)

Following Variational Auto-Encoder literature, (µ, σ) are three paired vectors
of sizes (dz, dp, dc) defining the mean and variance to sample each element of
(ẑ, v̂p, v̂c) from a gaussian distribution .
Mixup At the intersection between the encoders and generators, we introduce
a novel method to merge information coded by the encoders and information
produced by the embeddings and lower levels of the generators. The mixup
module [35], mixes two input variables with a weight parameter β. The rationale
behind this application is that during generation there is no data coming from the
encoders, so the mixup is turned off and only information from the embeddings
and lower levels of the generators are passed forward. During reconstruction, we
want our method to utilize the skip connections to improve performance and also
use the predicted embeddings (vp, vc) to represent the object’s shape and style.
The contrast between the two paths leads to a difficulty in optimizing them
simultaneously. The introduction of the mixup simplifies this by having both
paths active during forward path and back-propagation. In contrast to regular
residual connections, the ever changing β used in the mixup forces both inputs
to be independent representations and not complement each other.

6 Y. Benny and L. Wolf

The mixup modules at the vector embeddings level (mixup1 and mixup2 in
Fig. 2) mix the vectors (vp, vc) given by the embeddings (Vp, Vc), Eq. 2, with the
predicted vectors (v̂p, v̂c) produced by the encoders (Ep, Ec), Eq. 7,8. The mix-
ture of features leads to both the embeddings and the encoders being optimized
for reconstructing the object. This has two benefits. First, it trains the encoders
to properly code the images, which improves clustering and learns image-to-
image translation implicitly. Second, it trains the embeddings to represent the
real object classes, which improves the generation task.

The mixup modules at the skip connections (mixup3 and mixup4 in Fig. 2)
mix the pre-image tensors (Abg, Afg), Eq. 3,4, with the bypass tensors (Bbg, Bfg),
Eq. 6,7. It serves to create the condition where the reconstruction path will be
simultaneously dependent on the bypass and on the lower stage of the generators.
This way, at any time we can choose any β or even pass only the bypass or only
the pre-image and result in an almost identical image.

Given two inputs and a parameter β, the mixup is defined as follows:

vpmix
= vp ◦ (1− β1) + v̂p ◦ β1, vcmix

= vc ◦ (1− β2) + v̂c ◦ β2
Afgmix

= Afg ◦ (1− β3) +Bfg ◦ β3, Abgmix
= Abg ◦ (1− β4) +Bbg ◦ β4

(9)

In our implementation, β1, β2 ∈ [0, 1] and β3, β4 ∈ [0.5, 1], are sampled in each
iteration for each instance in the batch. At reconstruction, the mixed features
(vpmix , vcmix , Afgmix , Abgmix) replace the features (vp, vc, Afg, Abg) in Eq. 3,4 as
input to the generators. For illustration, please refer to Fig. 2.
GLU Layer Normalization Following StackGANv2 and FineGAN archi-
tecture, we apply GLU [9] activation in the generators. Due to the multiple
paths, the large scale and high complexity of our method, batch normalization
was unstable for our low batch size, and, increasing the batch size was not an
option. As a solution, we switched to layer normalization, which is not affected
by the batch size. We fused the normalization and activation into a single module
termed “GLU Layer Normalization”. Given an input x with xL, xR representing
an equal split in the channel axis (left/right):

GLU(xL, xR) = xL ◦ Sigmoid(xR)

GLU-LNorm(xL, xR) = GLU(LNorm(xL), xR)
(10)

In this method, the normalization is only applied on xL. The input to the sig-
moid, xR, is not normalized. This is favorable, because xR serves as a mask on
xL, and normalizing it across the channels contradicts this goal.
Discriminators Following FineGAN, the two discriminators are adversarial
opponents on the outputs Ibg, I. The background discriminator Dbg has two
tasks, with a separate output for each. The tasks are as follows: (i) patch-wise
prediction if the input image is real or fake when presented with either a real
or fake background image, annotated as DbgA . (ii) patch-wise prediction if the
input image is a background image or not when presented with either a real
background image or a real object image, annotated as DbgB . The background
generator is hereby optimized to generate images that look like real images and

OneGAN 7

do not contain object features. In addition, when performing the reconstruction
path on fake images, we also extract a hidden layer output and apply perceptual
loss between generated and reconstructed backgrounds, annotated as DbgC , to
reduce the perceptual distance between the original and the reconstructed image.

The image discriminator Dc receives real images from Xc or generated fake
images, and also has two tasks: (i) predict if the input image is real or fake,
annotated as DcA . (ii) predict the child class φc of the image, annotated as
DcB , as in all InfoGAN-influenced methods. This trains the foreground generator
to generate images that look real and represent the conditioned child class. In
addition, we also extract a hidden layer output and apply perceptual loss between
generated and reconstructed foreground images, annotated as DcC .

4 Training

To train to solve various tasks, we perform in each iteration two different paths
through the model, by connecting the various sub-networks in a specific order.

4.1 Generation path

The generation path is described in Fig. 1, Eq. 2–5. For illustrations, see Fig. 3.
The inputs for this path are ebg, ep, ec, z. During generation, the model learns
to generate image I in a way that relies on generating a background Ibg, fore-
ground Ifg, and mask Im images. The discriminators are trained along with the
generators and produce an adversarial training signal. In addition, the encoders
are also trained to retrieve the latent variables from the generated images, as a
self-supervised task.

The losses in this path can be put into four groups: adversarial losses, classi-
fication losses, distance losses, and regularizations. For brevity, e represents the
dependence on all prior codes (ebg, ep, ec). Similarly, G(e, z) represents the full
generation of the final image, Eq. 3–5.

Adversarial losses These involve the two discriminators and are derived
from the minimax equation: minG maxD Ex[log(D(x))] + Ez[log(1 −D(G(z)))],
for a generic generator G and discriminator D. The concrete GAN loss is the
sum of the losses for the separation between real/fake background, the separation
between background/object and the separation between real/fake object.

For the discriminators, where Xbg, Xc are the sets of real background images
and real object images, the losses are:

LDbgA
=Ex∼Xbg

[log(DbgA(x))] + Eebg,z[log(1−DbgA(Gbg(ebg, z)))]

LDbgB
=Ex∼Xbg

[log(DbgB (x))] + Ex∼Xc
[log(1−DbgB (x))]

LDcA
=Ex∼Xc [log(DcA(x))] + Ee,z[log(1−DcA(G(e, z)))]

LD =10 · LDbgA
+ LDbgB

+ LDcA

(11)

8 Y. Benny and L. Wolf

For the generators, the losses are:

LGbgA
= Eebg,z[log(DbgA(Gbg(ebg, z)))]

LGbgB
= Eebg,z[log(DbgB (Gbg(ebg, z)))]

LGcA
= Ee,z[log(DcA(G(e, z)))]

LG = 10 · LGbgA
+ LGbgB

+ LGcA

(12)

Classification losses These losses optimize the generators to generate dis-
tinguished images for each style and shape priors and optimize the encoders to
retrieve the prior classes. We use the cross entropy loss between the conditioned
classes (φp, φc) and the encoders’ predictions (êp, êc) form Eq.7,8. In addition,
we use the auxiliary task DCB

.

LE = CE(êp, φp) + CE(êc, φc) + CE(DcB (I), φc) (13)

Distance losses We train the encoders to minimize the mean squared error
between the vectors in the latent space produced during generation and their
predicted counterparts. These vectors are used in the reconstruction path, thus
this self-supervised task assists in this regard. We minimize the distance between
the pre-images and bypasses (Abg, Afg, Bbg, Bfg), and between the latent vectors
(vp, vc) and the mean vectors µp, µc used to sample the latent code (v̂p, v̂c).

LMSE = MSE(vc, µc) + MSE(vp, µp) + MSE(Afg, Bfg) + MSE(Abg, Bbg) (14)

Regularization losses For regularization, a loss term is applied on the latent
codes (vbg, vp, vc), annotated as LRv , and on the foreground mask Im, annotated
as LRM

. They are detailed in the supplementary.
All the losses are summed together to the total loss:

LGEN = LG + LE + LMSE + 0.1 · LRv
+ 2 · LRM

(15)

4.2 Reconstruction path

The reconstruction path is described in Fig. 2. For illustrations, see Fig. 4. The
input is an image I. The precise flow is: (1) encode the foreground through the
shape and style encoders (Ep, Ec), Eq. 7,8, (2) generate a foreground image and
mask with the foreground generator (Gfg), Eq. 4, (3) encode the image and mask
through the background encoder (Ebg), Eq. 6, (4) generate the background im-
age with the background generator (Gbg), Eq. 3, and (5) compose the final image
with Ifg, Ibg, Im, Eq. 5. In addition, the mixup is applied as in Eq. 9 between
encoding and generation. This path optimizes the clustering and segmentation
tasks directly and also implicitly optimizes the generation task by reconstruc-
tion real images. We perform the reconstruction path on both real images and
generated images from the generation path. This fully utilizes the information
available to learn all tasks with minimal supervision.

The losses in this path can be put in three groups: statistical losses, recon-
struction losses, and perceptual losses.

OneGAN 9

Statistical losses As in Variational Auto-Encoders [18], we compare the
Kullback-Leiber Divergence between the latent variables encoded by the en-
coders (v̂p, v̂c, ẑ) to a multivariate gaussian distribution. For the pose vector z,
we used the standard normal distribution with covariance matrix equal to the
identity matrix (Σ = Idz) and a zero mean vector (µ = 0). For the shape and
style vectors (v̂p, v̂c) we still use identity Σ, but since they should match their
latent code (vp, vc), we use these latent codes as the target mean.

LVAEp = DKL(N (µp, diag(σp))‖N (vp, Idp)),LVAEc = DKL(N (µc, diag(σc))‖N (vc, Idc))

LVAEz = DKL(N (µz, diag(σz))‖N (0, Idz)),LVAE = LVAEp + LVAEc + LVAEz (16)

Reconstruction losses The reconstruction losses are a set of L1 losses that
compare the difference between the input image to the output. The network
trains at reconstructing both real and fake images. For fake images, we have the
extra self-supervision to also compare reconstruction of the background image
and foreground mask.

LREC =

{
L1(I, Î) , real

L1(I, Î) + L1(Ibg, Îbg) + L1(Im, Îm) , fake
(17)

Perceptual losses Comparing images to their ground-truth counterpart is
known to produce blurred images; Perceptual loss [15] is known to aid in pro-
ducing sharper images with more visible context [36] by comparing the images
on the feature level as well. The perceptual loss is often used along with a pre-
trained network, but this relies on added supervision. In our case, we use the
discriminators as feature extractors. We use the notation DbgC , DcC from Sec. 3
to describe the extraction of the hidden layers used for this comparison.

LPER =

{
L2DcC

(I, Î) , real

L2DcC
(I, Î) + ‖D(DbgC)−D(Îbg)‖2 , fake

(18)

All the losses are summed together to the total loss:

LAE = LGEN + LVAE + LREC + LPER (19)

4.3 Multi-phase training

In order to simplify training, instead of training both paths at once, we schedule
the training process by phases. The phases are designed to train the network for
a gradually increasing subset of tasks, starting from image-level tasks (gener-
ating images) to semantic tasks (semantic segmentation of the foreground, and
semantic clustering) that benefit from the capabilities obtained in the genera-
tion path. In the first phase we only perform the generation path 4.1 and in the
second phase we add the reconstruction path 4.2.

Without multi-phase training, the networks would be trained to generate and
reconstruct images simultaneously. While the generation flow encourages a sep-
aration between the background and foreground components, the reconstruction

10 Y. Benny and L. Wolf

Fig. 3. Image Generation for each dataset. From top to bottom: (i) final image, (ii)
foreground, (iii) foreground mask, (iv) background.

Fig. 4. Image reconstruction for each dataset. From top to bottom: (i) real image, (ii)
reconstructed image, (iii) reconstructed foreground, (iv) reconstructed background, (v)
ground-truth foreground mask, (vi) predicted foreground mask.

flow resists this separation due to the trivial solution of encoding and decod-
ing the image in one of the paths (foreground or background) and applying an
all-zero or all-one mask. In the experiments, in Tab. 1,2, we show that without
multi-phase the model is incapable of learning any task.

In this controlled environment, the generators are much more likely to con-
verge to the required setting. After a decent amount of iterations, determined
in advance by a hyper-parameter, the second phase kicks in, where the model is
also trained to reconstruct images, which will train the encoders on top of the
generator instead of breaking it.

When entering Phase II, the fake images for both discriminators can be a
result of either (i) generation path, (ii) fake image reconstruction, or (iii) real im-
age reconstruction. We noticed that images from the reconstruction paths fail to
converge to real-looking images when the discriminators were only trained by the
generation path outputs. We hypothesized that this is probably due to each path
producing images from a different source domain and these paths can generate
very different images during training and the discriminators get overwhelmed by
the different tasks and are not able to optimize them simultaneously. To solve
this, upon entering Phase II, we clone each discriminator (Dc, Dbg) twice and as-
sociate one separate clone for each path, resulting in a total of three background
discriminators and another three for the foreground. In this setting, each path
receives the adversarial signal that is concentrated only at improving that path.

5 Experiments

We train the network for 600,000 iterations, with batch size 20. All sub-networks
are optimized using Adam [19], with lr=2e-4. Phase I duration is 200,000 itera-
tions and Phase II 400,000. Within Phase II, we start with training only on fake
images and real image reconstruction starts after another 200,000 iterations.

OneGAN 11

Fig. 5. Conditional Generation. From left
to right: (i) real images, (ii-vi) generation
of images with the encoded parent and
child codes and a different vector z per col-
umn, (vii) FineGAN [26] + our encoders,
(viii) StackGANv2 [34] + our encoders.

Fig. 6. Style Transfer. From left to right:
(i) real images. (ii-vi) reconstructed im-
ages when the child code ec is switched
with a code from a selected category,
(vii) FineGAN [26] + our encoders, (viii)
StackGANv2 [34] + our encoders.

Table 1. Quantitative generation results. FID↓, IS↑, CFID↓, CIS↑

Birds Dogs Cars

Model FID IS CFID CIS FID IS CFID CIS FID IS CFID CIS

Dataset 0 163.6 0 47.9 0 114.2 0 77.1 0 163.1 0 55.4

StackGANv2 21.4 67.0 96.8 15.0 56.7 82.4 184.7 10.2 25.0 88.1 190.3 13.3
FineGAN 23.0 66.4 65.3 24.7 54.9 83.1 100.4 15.7 24.8 86.2 126.0 13.6

OneGAN 20.5 67.4 55.2 30.7 48.7 89.7 92.0 19.6 24.2 90.3 100.7 18.7
no real recon 22.3 65.6 58.6 25.6 55.4 84.2 95.3 17.0 25.1 88.2 104.3 15.5
Phase I only 23.9 63.2 59.1 21.6 56.1 82.0 97.8 16.8 25.4 87.7 106.1 13.4
no multi-phase196.5 11.0 356.1 2.3 217.8 16.9 543.2 1.7 264.7 23.4 767.9 3.9

We evaluate our model on various tasks against the state of the art methods.
Since no other model can solve all these tasks, we evaluate against different
methods in each task. Depending on availability, some baselines were pre-trained
models released by the authors and some were trained from scratch with the
authors’ official code and instructions.

Datasets We evaluate our model with three datasets of fine-grained catego-
rization. Caltech-UCSD Birds-200-2011 (Birds) [29]: This dataset consists
of 11,788 images of 200 classes of birds, annotated with bounding boxes and seg-
mentation masks. Stanford Dogs (Dogs) [20]: This dataset consists of 20,580
images of 120 classes of dogs, annotated with bounding boxes. For evaluation,
target segmentation masks were generated by a pre-trained DeepLabV3 [5] model
on the COCO [22] dataset. The pre-trained model was acquired from the gluoncv
toolkit [12]. Stanford Cars (Cars) [17]: This dataset consists of 16,185 images
of 196 classes of cars, annotated with bounding boxes. Segmentation masks were
generated as above with the pre-trained DeepLabV3 model.

Similarly to FineGAN, before training the model, we produced a background
subset by cutting background patches with the bounding boxes. In addition to

12 Y. Benny and L. Wolf

Table 2. Segmentation and clustering results. §unfair upper bound results, obtained
by selecting the best result out of many. †provided by [26]. ∗model performed task by
using our encoders. 7model cannot perform task. Higher is better in all scores.

Segmentation Clustering

Birds Dogs Cars Birds Dogs Cars

Model IOU DICE IOU DICE IOU DICE ACC NMI ACC NMI ACC NMI

ReDO 46.5 60.2 38.4 52.8 16.2 26.2 7 7 7 7 7 7

WNet 24.8 38.9 47.7 62.1 52.8 67.6 7 7 7 7 7 7

UISB§ 44.2 60.1 62.7 75.5 64.7 77.5 7 7 7 7 7 7

IIC-seg stf-3§ 36.5 50.2 58.5 71.5 58.5 71.5 7 7 7 7 7 7

IIC-seg stf§ 35.2 50.4 56.6 70.2 58.8 71.7 7 7 7 7 7 7

JULE† 7 7 7 7 7 7 .045 .204 .043 .142 .046 .232

DEPICT† 7 7 7 7 7 7 .061 .290 .052 .182 .063 .329
IIC-cluster 7 7 7 7 7 7 .084 .345 .060 .200 .056 .254
StackGANv2 7 7 7 7 7 7 .057∗ .253∗ .040∗ .139∗ .039∗ .174∗

FineGAN 44.5∗ 56.9∗ 48.7∗ 59.3∗ 53.2∗ 60.3∗ .086∗ .349∗ .059∗ .194∗ .051∗ .233∗

OneGAN 55.5 69.2 71.0 81.7 71.2 82.6 .101 .391 .073 .211 .060 .272
no real recon 53.5 67.7 67.1 78.6 69.8 81.1 .095 .389 .062 .194 .057 .250
Phase I only 45.7 60.6 65.1 77.3 64.8 75.9 .084 .352 .058 .175 .052 .244
no multi-phase 28.2 43.2 7.4 13.6 45.9 60.5 .050 .216 .019 .082 .041 .208

Table 3. Ablation studies on CUB: (a) normalization methods, (b) modules’ behaviour,
and (c) losses. Measuring FID and C-IS for generation and IOU for segmentation.

Model FID C-IS IOU

OneGAN 20.5 30.7 55.5
GLU-INorm 122.0 10.2 31.3
LNorm 87.5 14.5 45.4
INorm 103.4 9.8 30.1

Model FID C-IS IOU

OneGAN 20.5 30.7 55.5
no bypass 21.2 22.8 53.3
no mixup(1,2) 22.6 17.5 54.1
no mixup(3,4) 20.9 22.2 53.8

Model FID C-IS IOU

OneGAN 20.5 30.7 55.5
no loss LRM 97.2 19.5 35.3
no loss LVAE 44.1 18.5 39.6
no loss LPER 25.5 24.1 53.0

(a) (b) (c)

FineGAN, the bounding boxes were not used in any other way to train our
method and we made sure that no image was used for both foreground and
background examples. This was done by splitting the dataset in a 80/20 ratio,
and use the larger subset as foreground Xc and only the smaller subset for
background Xbg.

Due to the different size of classes in each dataset, there is also a different size
of child and parent classes in the design for each dataset. Birds: NC = 200, NP =
20, Dogs: NC = 120, NP = 12, Cars: NC = 196, NP = 14.

Image generation We compare our image generation results to FineGAN [26]
and StackGANv2 [34], by relying on an InceptionV3 fine-tuned on each dataset.
We evaluate our method in both IS [25] and FID [13]. In addition, we measure
the conditional variants of these metrics (CIS, CFID), as presented in [2]. The
conditional metrics measure the similarity between real and fake images within
each class, which cannot be measured by the unconditional metrics.

OneGAN 13

Our results, reported in Tab. 1 show that OneGAN outperforms in both
conditional and unconditional image generation metrics. In unconditional gen-
eration, our method and the baselines performed roughly the same, since the
generators are very similar. In conditional generation, our method improves on
the baseline by a large margin. StackGANv2 was the worst performing model,
followed by FineGAN. This suggest that the mask-based generation, that Fine-
GAN and our method rely on, generates a stronger conditioning on the object
in the image. In addition, our multi-path training method improves conditional
generation further, as is shown in the ablation tests. For illustration of condi-
tional generation, see Fig. 5.

Unsupervised foreground segmentation We compare our mask predic-
tion from the reconstruction path to the real foreground mask. We evaluate ac-
cording to IOU and DICE scores. We compare against three baselines, ReDO [6],
WNet [32] and UISB [16] which are trained for each dataset separately, and a
third one, IIC-seg [14], which was trained on coco-stuff and coco-stuff-3 (a sub-
set). While coco-stuff is a different dataset than the ones we used, it contains
all the relevant classes. ReDO and WNet produce a foreground mask which we
compare to the ground-truth similarly to how we evaluate our model. UISB is an
iterative method that produces a final segmentation with a varying number of
classes between 2 and 100. We iterated UISB on each image 50 times. The output
was usually between 4-20 classes. Since there is no labeling of the foreground or
background classes, this method cannot be immediately used for this task. In
order to get an evaluation, we look for each image for the class that has the high-
est IOU with the ground-truth foreground. The rest of the classes are merged
to a single background class. We then repeat with a single background class and
the rest merged into foreground. Finally, taking the best out of the two options,
each obtained by using an oracle to select out of many options, which provides a
liberal upper bound on the performance of UISB. IIC also produces a multi-class
segmentation map, we use it in the same way we use UISB by taking the best
class for either background or foreground in respect to IOU. IIC has 2-headed
output, one for the main task and one for over-clustering. For coco-stuff trained
IIC, we look for the best mask in one of the 15 classes of the main head. For coco-
stuff-3 trained IIC, the main head is trained to cluster sky/ground/plants, so we
look for the best mask in one of the 15 classes of the over-clustering head. Fine-
GAN cannot perform segmentation, since it does not have a reconstruction path.
But we added an additional baseline by training FineGAN with our encoders to
allow such path. The results in Table. 2 show that our method outperforms all
the baselines. The ablation show that the biggest contribution comes from the
reconstruction path and the multi-phase scheduling.

Unsupervised clustering We compare our method against JULE [33], DE-
PICT [10] and IIC-cluster [14]. In addition, we added the baselines of Stack-
GANv2 and FineGAN trained with our encoders. In this task, we evaluate how
well the encoders are capable of clustering real images. The results show that
OneGAN outperforms the other methods for both Birds and Dogs datasets. For
Cars, our model was second after DEPICT. By looking at the generated images,

14 Y. Benny and L. Wolf

this can be explained by the fact our method clusters the cars based more on
color and less on car model. This aligns with the conditional generation scores,
where the scores for Cars were lower than for the other datasets.
Image to image translation To further evaluate our model, we show its
capability to transfer an input image to a target category. The results can be
seen in Fig. 6. Even though our model was never trained on this task, the dis-
entanglement between the shape and the texture enables this translation simply
by passing a different child code during reconstruction. By selecting different
child codes, we can manipulate the appearance of the object to any of the child
categories. In contrast, FineGAN and StackGANv2 are unable to perform this
task correctly as there is no learned disentanglement in StackGANv2’s case and
no bypass connection in FineGAN’s case to allow good reconstruction.
Object removal and inpainting Through the reconstruction task, our
model is also capable of performing automatic object removal and background
reconstruction, see Fig. 4. In contrast to other known method for inpainting, due
to the lack of perfect ground-truth mask, our model does not only fill the missing
pixels but fully reconstructs the background image. As a result, the background
image is not identical to the original background, but it is semantically similar
to it. we compare our method with previous work in the supplementary.
Ablation study In Tab. 1,2, we provide multiple versions of our method
for ablation. In the version without real reconstruction, we only add fake image
reconstruction in Phase II, meaning that real images did not pass through the
network during training. Another variant employs only the first phase of training.
Finally, a third variant trains without multi-phase scheduling. These tests show
the contribution of the multiple paths and the multi-phase scheduling. In Tab. 3,
we provide an extensive ablation study on three aspects. In (a), we compared
layer and instance normalization [28] methods in the generators. Our “GLU layer
normalization” outperformed all other options. In (b), we turned of intersection
modules between encoders and generators. The experiment shows that these
models strongly improve the CIS, which explains why our method outperformed
FineGAN and StackGANv2 in conditional generation. In (c), we evaluated the
contribution of selected novel losses, which affected all scores. Together, all these
experiments show the contribution of the proposed novelties in our method.

6 Conclusions

By building a single model to handle multiple unsupervised tasks at once, we con-
vincingly demonstrate the power of co-training, by surpassing the performance
of the best in class methods for each task. This capability is enabled by a com-
plex architecture with many sub-networks. Considering biological visual system,
one can expect future architectures to be complex and to contain multiple path-
ways between the various modules. However, supporting this complexity during
training is challenging. We introduce a mixup module that integrates multiple
pathways in a homogenized manner and a multi-phase training, which helps to
avoid some tasks dominating over the others.

OneGAN 15

Acknowledgement

This project has received funding from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation programme
(grant ERC CoG 725974).

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

2. Benny, Y., Galanti, T., Benaim, S., Wolf, L.: Evaluation metrics for conditional
image generation. arXiv preprint arXiv:2004.12361 (2020)

3. Bielski, A., Favaro, P.: Emergence of object segmentation in perturbed generative
models. In: Advances in Neural Information Processing Systems. pp. 7256–7266
(2019)

4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelli-
gence 40(4), 834–848 (2017)

5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

6. Chen, M., Artières, T., Denoyer, L.: Unsupervised object segmentation by redraw-
ing. arXiv preprint arXiv:1905.13539 (2019)

7. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan:
Interpretable representation learning by information maximizing generative adver-
sarial nets. In: Advances in neural information processing systems. pp. 2172–2180
(2016)

8. Croitoru, I., Bogolin, S.V., Leordeanu, M.: Unsupervised learning of foreground
object detection. arXiv preprint arXiv:1808.04593 (2018)

9. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated
convolutional networks. In: Proceedings of the 34th International Conference on
Machine Learning-Volume 70. pp. 933–941. JMLR. org (2017)

10. Ghasedi Dizaji, K., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering
via joint convolutional autoencoder embedding and relative entropy minimization.
In: Proceedings of the IEEE International Conference on Computer Vision. pp.
5736–5745 (2017)

11. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

12. Guo, J., He, H., He, T., Lausen, L., Li, M., Lin, H., Shi, X., Wang, C., Xie, J., Zha,
S., Zhang, A., Zhang, H., Zhang, Z., Zhang, Z., Zheng, S.: Gluoncv and gluonnlp:
Deep learning in computer vision and natural language processing. arXiv preprint
arXiv:1907.04433 (2019)

13. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Advances
in Neural Information Processing Systems. pp. 6626–6637 (2017)

14. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsuper-
vised image classification and segmentation. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 9865–9874 (2019)

16 Y. Benny and L. Wolf

15. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: European Conference on Computer Vision. pp. 694–711.
Springer (2016)

16. Kanezaki, A.: Unsupervised image segmentation by backpropagation. In: 2018
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). pp. 1543–1547. IEEE (2018)

17. Khosla, A., Jayadevaprakash, N., Yao, B., Fei-Fei, L.: Novel dataset for fine-grained
image categorization. In: First Workshop on Fine-Grained Visual Categorization,
IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs,
CO (June 2011)

18. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. stat 1050, 1 (2014)

19. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: The Inter-
national Conference on Learning Representations (ICLR) (2016)

20. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-
grained categorization. In: 4th International IEEE Workshop on 3D Representation
and Recognition (3dRR-13). Sydney, Australia (2013)

21. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond
pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300 (2015)

22. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

23. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

24. Ronneberger, O., P.Fischer, Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention (MICCAI). LNCS, vol. 9351, pp. 234–241. Springer (2015), http:

//lmb.informatik.uni-freiburg.de//Publications/2015/RFB15a, (available on
arXiv:1505.04597 [cs.CV])

25. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. arXiv preprint arXiv:1606.03498 (2016)

26. Singh, K.K., Ojha, U., Lee, Y.J.: Finegan: Unsupervised hierarchical disen-
tanglement for fine-grained object generation and discovery. arXiv preprint
arXiv:1811.11155 (2018)

27. Sultana, M., Mahmood, A., Javed, S., Jung, S.K.: Unsupervised deep context pre-
diction for background estimation and foreground segmentation. Machine Vision
and Applications 30(3), 375–395 (2019)

28. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

29. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 Dataset. Tech. Rep. CNS-TR-2011-001, California Institute of
Technology (2011)

30. Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y.,
Tan, M., Wang, X., et al.: Deep high-resolution representation learning for visual
recognition. arXiv preprint arXiv:1908.07919 (2019)

31. Wang, Y., Choi, J., Chen, Y., Li, S., Huang, Q., Zhang, K., Lee, M.S., Kuo, C.C.J.:
Unsupervised video object segmentation with distractor-aware online adaptation.
arXiv preprint arXiv:1812.07712 (2018)

32. Xia, X., Kulis, B.: W-net: A deep model for fully unsupervised image segmentation.
arXiv preprint arXiv:1711.08506 (2017)

http://lmb.informatik.uni-freiburg.de//Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de//Publications/2015/RFB15a

OneGAN 17

33. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations
and image clusters. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 5147–5156 (2016)

34. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: Stack-
gan++: Realistic image synthesis with stacked generative adversarial networks.
IEEE transactions on pattern analysis and machine intelligence 41(8), 1947–1962
(2018)

35. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412 (2017)

36. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 586–595 (2018)

18 Y. Benny and L. Wolf

A Summary of notation

For convenience, in Tab. 4 we provide a complete listing of the notation used in
our paper.

B Regularization

Due to lack of space in the main text, we include the regularization loss terms
as part of the supplementary.

During generation, we apply regularization on the latent vectors and on the
mask image. The former serves to bound the range of the values to be close to
the axis center and to be closely grouped.

LRv
= ||vp||22 + ||vc||22 + ||vbg||22

The regularization on the mask serves to direct the model to utilize the
mask efficiently, with a balanced and decisive representation of background and
foreground. For mask Im ∈ [0, 1]H,W , with H,W the height and width of the
mask. The first regularization term balances the mask value around the value of
half.

LMB
= | 1

HW
(

HW∑
i,j

(Im)i,j)−
1

2
|

The second regularization term aims to make the masks more decisive. It is
better described when the mask is between [-1,1], so we define I ′m = 2 · Im − 1.
In the ideal case, all pixels are either 1 or -1 (either background of foreground),
therefore, if we assume a balanced distribution, for each mask the average value
of max(0, I ′m) is 0.5 and of min(0, I ′m) it’s -0.5, since half of the pixels are zeroed
in each term. This is the decisiveness regularization.

LMD
= | 1

HW
(

HW∑
i,j

max(0, (I ′m)i,j))−
1

2
|+ | 1

HW
(

HW∑
i,j

min(0, (I ′m)i,j)) +
1

2
|)

Together, the mask regularization loss is:

LRM
= LMB

+ 0.1 · LMD

C Sub-networks architecture

In this section, we describe the details of each sub-network described in the main
paper. The layers of each sub-network are listed in the tables Tab. 6–12, with
some modules that are frequently used listed in Tab. 5. The majority of the
networks are sequential. When more complicated connections are present, the
input and output notations are there to guide the flow.

OneGAN 19

D Additional illustrations

D.1 Conditional generation

We supply more conditionally generated images to further demonstrate the con-
ditional generation performance. We use generation conditioned on both very
different classes to highlight the broad coverage of the representation and very
similar classes to show the high sensitivity to detail.

In Fig. 7, the images are obtained by generating five different images per
reference image in the top row. To achieve these results, our model has to perform
two tasks. First, it has to be able to detect the child and parent classes under
which the object is represented. Second, it needs to be able to generate a similar
looking object with the predicted classes. The success in this task is evidence for
both the generation and clustering capabilities of the model.

In the figure, each column shows a real image, followed by five generated
images conditioned on the first image in respect to category. Additionally, in
each row, all images are generated with the same z, showing how non-categorical
information is consistent across the different categories and how the pose is
disentangled from the shape category.

For both birds and dogs, we can see that the generated images have very
similar properties to their conditioned image. In both cases, we can see the large
coverage of different classes and the fine detailed differences between similar
classes. For cars, we can see that that the generated images apply the same
color, but the car shape is changing, indicating that the model has categorized
the cars by their color and not by their model.

D.2 Reconstruction

We supply more images to show the reconstruction path with the resulting re-
constructed images, reconstructed backgrounds, and segmentation masks.

In Fig. 8, the results show the images generated by the reconstruction process.
The generated mask shows the model’s ability to detect and segment the object,
the background image shows the model’s ability to repaint the background,
and the foreground image shows the model’s ability to detect and reconstruct
conditioned on the object class.

The segmentation works under many different poses, sizes, and backgrounds.
For dogs and cars, it can be seen that our model is sometimes better than
the “ground-truth” masks, which were generated by a pre-trained network. The
background repainting works well in the majority of cases, but we do notice that
some backgrounds work better than others. The challenges are mostly notice-
able in the cars dataset, where there was the smallest amount of background
patches available in Xbg, leading to a less powerful background discriminator.
Subsequently, the performance of the background generation was affected.

20 Y. Benny and L. Wolf

D.3 Image to image translation

We supply more images, Fig. 9, to show the image to image translation capability
of the model. We show that the disentanglement that emerged from the design
allows manipulation of the reconstructed image by replacing the child code with
a code from an arbitrary category. We can see that not only do the objects in the
images change appearance, but the change is consistent across different images,
while the background is mostly unaffected.

In birds, we can see that the generator is usually able to detect the different
parts of the birds (wings, head, beak) and apply the correct color manipula-
tion to the correct area. Furthermore, the color manipulation works on birds
of different shapes and different original colors. The background is sometimes
slightly altered, first, because it is regenerated every time, and second, because
the foreground mask is soft and sometimes applies a slight manipulation on the
background as well. In dogs, the manipulation is less effective, but it is noticeable
and is correlated to the applied category. In cars, we can see the color manipula-
tion for many different colors. We can also notice how the background is mostly
unchanged and that the manipulation is applied correctly on the car chassis and
not on other parts like windows, tires and lights.

D.4 Background inpainting

Due to space limits, we could not address all tasks in the main paper. As an
intermediate step of the reconstruction task, our model also performs a side-
task of object foreground extraction and background inpainting. The model first
detects the foreground in the image and produces a segmentation mask. Then,
with the mask, the background is encoded and reconstructed. Because the mask
is a prediction and not a ground-truth, the model cannot only fill the masked
pixels with background texture, but has to assume that the mask was not per-
fect and reconstruct the entire image. The drawback of this method is that the
background is not always identical to the source in the background area, but the
benefit is that the object is fully removed even when it is not fully covered by
the mask.

We compare our model against images produced with Deep-Image-Prior
(DIP; Ulyanov et al., CVPR 2018). There are two variants. In the fist, DIP
receives the ground-truth mask and in the second, the predicted mask is given.
DIP optimizes its network for 1000 steps on the input image.

The results can be seen in Fig. 10. It can be observed that DIP works rel-
atively well when using a perfectly covering mask, but fails when the mask is
not perfect and does not fully cover the object. In contrast, our model suffers
less when the mask is not perfect. We can also see that our model does not
exactly inpaints the background but actually repaints it, which usually results
in a slightly different background even where the image was not masked, but as
we mentioned above, it may be beneficial when the mask is not perfect. Finally,
our model performs the inpainting task in a single forward path instead of 1000
iterations of DIP.

OneGAN 21

Table 4. The components of the OneGAN model

Symbol Description Computed as (or a comments)

V
a
ri

a
b
le

s

φc ∈ [1, NC] child class
φp ∈ [1, NP] parent class
ec ∈ {0, 1}NC child class one-hot vector (style) ec[i] = δi,φc

ep ∈ {0, 1}NP parent class one-hot vector (shape) ep[i] = δi,φp

ebg ∈ {0, 1}NP background one-hot vector ebg = ep
z ∈ Rdz pose code z[i] ∼ N (0, 1)

vc ∈ Rdc style code vector vc = Vc0(ec)

vp ∈ Rdp shape code vector vp = Vp0(ep)

vbg ∈ Rdbg background code vector vbg = Vbg0(ebg)
Afg foreground pre-image Afg = Gfg0(vp, z)
Abg background pre-image Abg = Gbg0(vbg, z)
Im foreground mask
Ifg foreground image (Ifg, Im) = Gfg2(Gfg1(Afg, vp), vc)
Ibg background image Ibg = Gbg1(Abg)
I full image I = Ibg ◦ (1− Im) + Ifg ◦ Im
Bfg foreground bypass Bfg = Ep1(I)
Bbg background bypass Bbg = Ebg1(I, Im)
Xc image domain
Xbg background image domain

N
et

w
o
rk

s

Vc embedding LUT of child class
Vp embedding LUT of parent class
Vbg embedding LUT of background
Gfg foreground generator Gfg2(Gfg1(Gfg0(vp, z), vp), vc)
Gbg background generator Gbg1(Gbg0(vbg, z))
Ec style encoder Ec(I)
Ep content encoder Ep(I)
Ebg content encoder Ebg(I, Im)
Dc image discriminator
Dbg background discriminator

P
a
ra

m
et

er
s

NC number of child classes Depends on the dataset.
NP number of parent classes NP < NC , Depends on the dataset.
dz dimensionality of pose code dz = 100
dc dimensionality of style code dc = 32
dp dimensionality of shape code dp = 16
dbg dimensionality of background code dbg = 32
H,W size of image H = W = 128

22 Y. Benny and L. Wolf

Fig. 7. Conditional Image Generation. From top to bottom: (i) real image, (ii-vi) gen-
eration of images with the encoded parent and child codes and a different vector z per
row.

OneGAN 23

Fig. 8. Image Reconstruction. From top to bottom: (i) real image, (ii) reconstructed
image, (iii) reconstructed foreground, (iv) reconstructed background, (v) ground-truth
foreground mask, (vi) predicted foreground mask.

24 Y. Benny and L. Wolf

Fig. 9. Image to Image Translation. From left to right: (i) real image, (ii-xiii) recon-
structed images when the child code ec in each column is switched with a code from a
selected category represented by the top image.

OneGAN 25

Fig. 10. Background Inpainting. From top to bottom: (i) original image, (ii) image
masked with real mask, (iii) image masked with predicted mask, (iv) OneGAN, (v)
DIP with real mask, (vi) DIP with predicted mask.

26 Y. Benny and L. Wolf

Table 5. General modules

Module layers input output

GLU-LNorm

ChannelSplit x xL, xR
LayerNorm xL x′L

Sigmoid xR x′R
Multiply x′L, x

′
R -

UPBlk
Upsample2d(S/2, S) - -

(ci, co, S)
K3P1Conv2d(ci, 2co) - -

GLU-LNorm - -

DOWNBlk
K4S2P1Conv2d(ci,co) - -

(ci, co)
LayerNorm - -
lReLU(0.2) - -

RESBlk0

K3P1Conv2d(ci,2ci) x -

(ci)

GLU-LNorm - -
K3P1Conv2d(ci,2ci) - -

GLU-LNorm - d
Add x, d -

RESBlk

K3P1Conv2d(ci + d,2ci) - -

(ci, d, co)

GLU-LNorm - -
RESBlk0(ci) - -
RESBlk0(ci) - -

K3P1Conv2d(ci,2co) - -
GLU-LNorm - -

Table 6. Background Generator Gbg

Module layers input output

Vbg Linear(NP , dbg) ebg vbg

Gbg0

Linear(dbg + dz, 32768) vbg, z -
Reshape(2048,4,4) - -

GLU-LNorm - -
UPBlk(1024,512,8) - -
UPBlk(512,256,16) - Abg

Gbg1

UPBlk(256,128,32) Abg -
UPBlk(128,64,64) - -
UPBlk(64,32,128) - -

K3P1Conv2d(32,3) + tanh - Ibg

OneGAN 27

Table 7. Foreground Generator Gfg

Module layers input output

Vp Linear(NP , dp) ep vp

Vc Linear(NC , dc) ec vc

Gfg0

Linear(dp + dz, 32768) vp, z -
Reshape(2048,4,4) - -

GLU-LNorm - -
UPBlk(1024,512,8) - -
UPBlk(512,256,16) - Afg

Gfg1

UPBlk(256,128,32) Afg -
UPBlk(128,64,64) - -
UPBlk(64,3,128) - Cfg0

Gfg2

RESBlk(64,dp,32) Cfg0 , vp Cfg1
RESBlk(32,dc,16) Cfg1 , vc Cfg2

K3P1Conv2d(16,3) + tanh Cfg2 Ifg

K3P1Conv2d(16,1) + sigmoid Cfg2 Im

Table 8. Style Encoder Ec

Module layers input output

Ec1

K4S2P1Conv2d(3, 64) I -
LayerNorm - -
lReLU(0.2) - -

DOWNBlk(64, 128) - -
DOWNBlk(128, 256) - Hc

Ec0

DOWNBlk(256, 512) Hc -
DOWNBlk(512, 1024) - -

K3P1Conv2d(1024, 1024) - -
LayerNorm - -
lReLU(0.2) - -

Reshape(16384) - -
Linear(16384, 512) - -

LayerNorm - -
lReLU(0.2) - hc

Linear((512, NC) hc êc
Linear(512, dc) hc µc
Linear(512, dc) hc σc

28 Y. Benny and L. Wolf

Table 9. Shape Encoder Ep

Module layers input output

Ep1

K4S2P1Conv2d(3, 64) I -
LayerNorm - -
lReLU(0.2) - -

DOWNBlk(64, 128) - -
DOWNBlk(128, 256) - Hp

K3P1Conv2d((256, 512) Hp -
GLU-LNorm - -

UPBlk(256,256) - Bfg

Ep0

DOWNBlk(256, 512) Hp -
DOWNBlk(512, 1024) - -

K3P1Conv2d(1024, 1024) - -
LayerNorm - -
lReLU(0.2) - -

Reshape(16384) - h

Linear(16384, 512) h -
LayerNorm - -
lReLU(0.2) - hp

Linear((512, NC) hp êp
Linear(512, dc) hp µp
Linear(512, dc) hp σp

Linear(16384, 512) h -
LayerNorm - -
lReLU(0.2) - hz

Linear(512, dz) hz µz
Linear(512, dz) hz σz

Table 10. Background Encoder Ebg

Module layers input output

Ebg1

K4S2P1Conv2d(4, 64) I, Im -
DOWNBlk(64, 128) - -
DOWNBlk(128, 256) - Hbg

K3P1Conv2d((256, 512) Hbg -
GLU-LNorm - -

UPBlk(256,256) - Bbg

OneGAN 29

Table 11. Background Discriminator Dbg

Module layers input output

Dbg

DownSample2d(128, 126) I -
K4S2P0Conv2d(3, 64) - -

lReLU(0.2) - -
K4S2P0Conv2d(64, 128) - -

lReLU(0.2) - -
K4S4P0Conv2d(128, 256) - -

lReLU(0.2) - H = DbgC (I)

K4S1P0Conv2d(256,1) H DbgA(I)

K4S1P0Conv2d(256,1) H DbgB (I)

Table 12. Object Discriminator Dc

Module layers input output

Dc

K4S2P1Conv2d(3, 64) I -
LayerNorm - -
lReLU(0.2) - -

DOWNBlk(64, 128) - -
DOWNBlk(128, 256) - -
DOWNBlk(256, 512) - DcC (I)
DOWNBlk(512, 1024) - -

K3P1Conv2d(1024, 1024) - -
LayerNorm - -
lReLU(0.2) - -

Reshape(16384) - H

Linear(16384, 512) H -
LayerNorm - -
lReLU(0.2) - -

Linear(512, 1) - DcA(I)

Linear(16384, 512) H -
LayerNorm - -
lReLU(0.2) - -

Linear(512, NC) - DcB (I)

	OneGAN: Simultaneous Unsupervised Learning of Conditional Image Generation, Foreground Segmentation, and Fine-Grained Clustering

