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Abstract. Event cameras are bio-inspired sensors that perform well
in HDR conditions and have high temporal resolution. However, differ-
ent from traditional frame-based cameras, event cameras measure asyn-
chronous pixel-level brightness changes and return them in a highly dis-
cretised format, hence new algorithms are needed. The present paper
looks at fronto-parallel motion estimation of an event camera. The flow of
the events is modeled by a general homographic warping in a space-time
volume, and the objective is formulated as a maximisation of contrast
within the image of unwarped events. However, in stark contrast to prior
art, we derive a globally optimal solution to this generally non-convex
problem, and thus remove the dependency on a good initial guess. Our
algorithm relies on branch-and-bound optimisation for which we derive
novel, recursive upper and lower bounds for six different contrast esti-
mation functions. The practical validity of our approach is supported by
a highly successful application to AGV motion estimation with a down-
ward facing event camera, a challenging scenario in which the sensor
experiences fronto-parallel motion in front of noisy, fast moving textures.

Keywords: Event Cameras, Motion Estimation, Contrast Maximisa-
tion, Global Optimality, Branch and Bound

1 Introduction

Camera motion estimation is an important technology with many applications in
automation, smart transportation, and assistive technologies. However, despite
the fact that a certain level of maturity has already been reached, we keep facing
challenges in scenarios with high dynamics, low texture distinctiveness, or chal-
lenging illumination conditions [9,5]. Event cameras—also called dynamic vision
sensors—present an interesting alternative in this regard, as they pair HDR with
high temporal resolution. The potential advantages and challenges behind event-
based vision are well explained by the original work of Brandli et al. [3] as well
as the recent survey by Gallego et al. [10].

* indicates equal contribution.
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(a) AGV (b) wood grain foam (c)6=0 (d)oe=e

Fig. 1. (a): AGV equipped with a downward facing event camera for vehicle motion
estimation. (b)-(d): collected image with detectable corners, image of warped events
with @ = 0, and image of warped events with optimal parameters 6.

Our work considers fronto-parallel motion estimation of an event camera.
The flow of the events is hereby modelled by a general homographic warping in a
space-time volume, and motion may be estimated by maximisation of contrast in
the image of unwarped events [12]. Various reward functions that maximise con-
trast have been presented and analysed in the recent works of Gallego et al. [11]
and Stoffregen and Kleeman [29], and successfully used for solving a variety of
problems with event cameras such as optical flow [34,12,28,32,37,36], segmenta-
tion [28,27,21], 3D reconstruction [26,35,37,32], and motion estimation [13,12].
Our work focuses on the latter problem of camera motion estimation. However—
different from many of the aforementioned works—we propose the first globally
optimal solution to the underlying contrast maximisation problem, an important
point given its generally non-convex nature.

Our detailed contributions are as follows:

— We solve the global maximisation of contrast functions via Branch and
Bound.

— We derive bounds for six different contrast estimation functions. The bounds
are furthermore calculated recursively, which enables efficient processing.

— We successfully apply this strategy to Autonomous Ground Vehicle (AGV)
planar motion estimation with a downward facing event camera (cf. Figure
1), a problem that is complicated by motion blur, challenging illumination
conditions, and indistinctive, noisy textures. We prove that using an event
camera can solve these challenges, hence outperforming alternatives given
by regular cameras.

2 Contrast Maximisation

Gallego et al. [12] recently introduced contrast maximisation as a unifying frame-
work allowing the solution of several important problems for dynamic vision
sensors, in particular motion estimation problems in which the effect of camera
motion may be described by a homography (e.g. motion in front of a plane, pure
rotation). Our work relies on contrast maximisation, which we therefore briefly
review in the following.
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An event camera outputs a sequence of events denoting temporal logarith-
mic brightness changes above a certain threshold. An event e = {x, ¢, s} is
described by its pixel position x = [z y]T, timestamp ¢, and polarity s (the lat-
ter indicates whether the brightness is increasing or decreasing, and is ignored in
the present work). The core idea of contrast maximisation is relatively straight-
forward: The flow of the events is modelled by a time-parametrised homography.
Given its position and time-stamp, every event may therefore be warped back
along a point-trajectory into a reference view with timestamp ... Since events
are more likely to be generated by high-gradient edges, correct homographic
warping parameters will likely lead to a sharp Image of Warped Events (IWE)
in which events align along a crisp edge-map. Gallego et al. [12] simply propose
to consider the contrast of the IWE as a reward function to identify the correct
homographic warping parameters. Note that homographic warping functions in-
clude 2D affine and Euclidean transformations, and thus can be used in a variety
of vision problems such as optical flow, feature tracking, or fronto-parallel motion
estimation.

Suppose we are given a set of N events & = {ej}1_,. We define a general
warping function xj, = W (xy, tx; @) that returns the position xj, of an event ey
in the reference view at time ... 0 is a vector of warping parameters. The IWE
is generated by accumulating warped events at each discrete pixel location:

N

I(pij; 6 Zl (Pij — X) 1(pij — W(xx, t;0)), (1)
k=1 k=1

where 1(-) is an indicator function that counts 1 if the absolute value of (p;; —x},)
is less than a threshold e in each coordinate, and otherwise 0. p;; is a pixel in the
IWE with coordinates [i j]7, and we refer to it as an accumulator location. We
set € = 0.5 such that each warped event will increment one accumulator only.

Existing approaches replace the indicator function with a Gaussian kernel to
make the IWE a smooth function of the warped events, and thus solve contrast
maximisation problems via local optimisation methods (cf. [13,12,11]). In con-
trast, we show how our proposed method is able to find the global optimum of
the above, discrete objective function.

As introduced in [29,11], reward functions for event un-warping all rely on
the idea of maximising the contrast or sharpness of the IWE (they have also
been denoted as focus loss functions). They proceed by integration over the
entire set of accumulators, which we denote P. The most relevant ones for us are
summarized in Table 1. Note that for Lya,, g7 is the mean value of I(p;;; @) over
all pixels (a function of @ itself), and N, is the total number of accumulators in
I. For Lgosa, 0 is a design parameter called the shift factor. Different from other
objectives functions, locations with few accumulations will contribute more to
Lsosa. The intuition here is that more empty locations again mean more events
that are concentrated at fewer accumulators. Lgogas 1S a combination of Lgeg
and LSOE' Similarly, LSOSA&S is a combination of LSOS and LSOSA'

Let us now proceed to the main contribution of our work, which is a derivation
of bounds on the above objectives as required by Branch and Bound.
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Table 1. Contrast functions evaluated in this work

= Epij ep 1(pij; 0)°

= 5 Lpy,er(Pi; 0) — pr)?
= Zpij ep e!Pisi®)

Sum of Suppressed Lsosa(0) = Zpijep e~ 1(Piji0)6
Accumulations (SoSA)
SoE and Squares (SoEaS) Lsoras(0) = Zpijep I(pij: 0)2 + ¢! (Pisi®
SoSA and Squares (SoSAaS) | Lsosaas(0) = ZP»;J'EP I(pij: 0)? + e~ 1(Pisi0)8

Sum of Squares (SoS) Lsos(0)
Variance (Var) Lvar(0)
Sum of Exponentials (SoE) | Lsor(0)

3 Globally Maximised Contrast using Branch and Bound

Figure 2 illustrates how contrast maximisation for motion estimation is in general
a non-convex problem, meaning that local optimisation may be sensitive to the
initial parameters and not find the global optimum. We tackle this problem by
introducing a globally optimal solution to contrast maximisation using Branch
and Bound (BnB) optimisation. BnB is an algorithmic paradigm in which the
solution space is subdivided into branches in which we then find upper and lower
bounds for the maximal objective value. The globally optimal solution is isolated
by an iterative search in which entire branches are discarded if their upper bound
for the maximum objective value remains lower than the corresponding lower
bound in another branch. The most important factor deciding the effectiveness
of this approach is given by the tightness of the bounds.

Our core contribution is given by a recursive method to efficiently calculate
upper and lower bounds for the maximum value of a contrast maximisation
function over a given branch. In short, the main idea is given by expressing a
bound over (N + 1) events as a function of the bound over N events plus the
contribution of one additional event. The strategy can be similarly applied to
all six aforementioned contrast functions, which is why we limit the exposition
to the derivation of bounds for Lg.,g. Detailed derivations for all loss functions
are provided in the supplementary material.

3.1 Objective Function

In the following, we assume that L = Lg,s. The maximum objective function
value over all N events in a given time interval [tcf, tror + AT is given by

2

N
LN:%?@;Z Z]-(pij_w(xkatk;e)) ; (2)

p;; EP Lk=1

where @ is the search space (i.e. branch or sub-branch) over which we want to
maximise the objective. Most globally optimal methods for geometric computer
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Fig. 2. Visualization of the Sum of Squares contrast function. The camera is moving in
front of a plane, and the motion parameters are given by translational and rotational
velocity (cf. Section 4). The sub-figures from left to right are functions with increasing
Noise-to-Events (N/E) ratios. Note that contrast functions are non-convex.

vision problems find bounds by a spatial division of the problem into individual,
simpler maximisation sub-problems (cf. [6]). However, the contrast maximisation
objective is related to the distribution over the entire IWE and not just individual
accumulators, which complicates this strategy.

3.2 Upper and Lower Bound

The bounds are calculated recursively by processing the events and one-by-one,
each time updating the IWE. The event are notably processed in temporal order
with increasing timestamps.

For the lower bound, it is readily given by evaluating the contrast function at
an arbitrary point on the interval @, which is commonly picked as the interval
center 8. We present a recursive rule to efficiently evaluate the lower bound.
Theorem 1. For search space @ centered at 8y, the lower bound of SoS-based
contrast mazximisation may be given by

Lyi1=Ly+1+ QIN(U?\?H; 0o), (3)

where IN(pij; 00) is the incrementally constructed IWE, its exponent N denotes
the number of events that have already been taken into account, and

n%,, = round(W (xn1, tn41; 60)) (4)
returns the accumulator closest to the warped position of the (N + 1)-th event.

Proof. According to the definition of sum of the square focus loss function,

N41 2
Ly = Z Z 1 (pij — W(xx, t; 60))
p;;EP Lk=1
)
= Y [TV(piji00) + 1(pi; — V[/(1’<N+1715N+1;490))]2 )

pi; EP
=a+ b+ c, where
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Fig. 3. (a) Incremental update of the IWE. For each new event e, we choose and
increment the currently maximal accumulator in the bounding box P€ around all
possible locations W (x,t; 0 € @). We simply increment the center of the bounding box
if no other accumulator exists. (b) Bounding boxes of two temporally distinct events
generated by the same point in 3D.

a= Y I"(py;60)°,

pPi; €P
h=2 Z [1(pij — W(xn41, tng1;00) 1N (Pij; 00)]
pPi; €P
c = Z [1(pi; — W(XN+17tN+1§00))]2 .
pi; €P

It is clear that a = L. In ¢, owing to the definition of our indicator function,
only the p;; which is closest to W (xn41,tn+1;600) makes a contribution, thus
we have ¢ = 1. For b, the term 1(p;; — W(xn41,tn41;00)) is simply zero unless
we are considering an accumulator p;; = 77?\?+17 which gives b = 21V (n?\‘;ﬂ; 6o).
Thus we obtain (3). Note that the IWE is iteratively updated by incrementing
the accumulator which locates closest to 77]9\‘,’ 1

We now proceed to our main contribution, a recursive upper bound for the
contrast maximisation problem. Let us define ’PZG as the bounding box around
all possible locations W(x;,t;;0 € @) of the un-warped event. Lemma 1 is

introduced as follows.

Lemma 1. Given a search space 8 € @, for a small enough time interval, if
W(x;,t;;0) = W(x;,t;;0) and 0 < i < j < N, we have P2 C Pj@. An intuitive
explanation is given in Figure 3(b).

Lemma 1 now enables us to derive our recursive upper bound.

Theorem 1. The upper bound of the objective function Ly for SoS-based con-
trast maximisation satisfies

Lyi1=Ly+1+2I"(n%,1:0) (6)
<In+142QY =Tyiq, (7)
where QY = max TN(pij) > [N(n%+1;é)

Pi; €PN 11
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Pﬁﬂ is a bounding box for the (N + 1)-th event. 0 is the optimal parameter

set that mazimises Ly41 over the interval ©. TN(pij) is the value of pizel p;j;
in the upper bound IWE, a recursively constructed image in which we always
increment the mazimum accumulator within the bounding box P, (i.e. the
one that we used to define the value of QN . The incremental construction of

TN(pij) is llustrated in Figure 3(a).

Proof. (6) is straightforwardly derived from (3). The proof of inequation (7) then
proceeds by mathematical induction.

For N = 0, it is obvious that Ly = Lo = 0. Similarly, for N = 1, L, =
1<ILo+140,and Q° = I°(n?;0) = 0 (which satisfies Theorem 1). We now
assume that L,, as well as the corresponding upper bound IWE 1" are given for
all 0 < n < N. We furthermore assume that they satisfy Theorem 1. Our aim is
to prove that (7) holds for the (N + 1)-th event. It is clear that Ly > Ly, and

we only need to prove that QV > IV (77?\[+1§ ), for which we will make use of
Lemma 1. There are two cases to be distinguished:

— The first case is if there exists an event ¢;, with 0 < £ < N 41 and for which
n% = 0%, In other words, the k-th and the (N + 1)-th event are warped
to a same accumulator if choosing the locally optimal parameters. Note that
if there are multiple previous events for which this condition holds, the k-th
event is chosen to be the most recent one. Given our assumptions, Li_1 as
well as the (k—1)-th constructed upper bound IWE satisfy Theorem 1, which
means that Q=1 > I*"1(n?;6). Let p, € P2 now be the pixel location
with maximum intensity in Tk_l(pk). Then, the k-th updated IWE satisfies
Tk(pk) =QF1+1 > kal(nz;é) + 1. According to Lemma 1, we have
PP C Pg.,, therefore pp, C Pg,,, and QN > Tk(pk) > 1" 1(nl;0) + 1.
With optimal warp parameters 9, events with indices from k£ + 1 to N will
not locate at %, , and therefore I*"*(n?;0) + 1 =I"(n%_;0) < Q".

— If there is no such a event, it is obvious that QV > IN(n§V+1; 9)

With the basic cases and the induction step proven, we conclude our proof that
Theorem 1 holds for all natural numbers N.

We apply the proposed strategy to derive upper and lower bounds for all
six aforementioned contrast functions, and list them in Table 2. Note that the
initial case varies for different loss functions. The globally-optimal contrast max-
imisation framework (GOCMF) is outlined in Algorithm 1 and Algorithm 2.
We propose a nested strategy for calculating upper bounds, in which the outer
layer RB evaluates the objective function, while the inner layer BB estimates
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Table 2. Recursive Upper and Lower Bounds

Upper Bound Ln Lower Bound Ly Lo
SoS Iy_1+1+42Q LN;I+1+21N*1(17§9-,90) 0
var | Iy o1+ - XL+ 0 Iy o1+ - w6y 3
SoE Tn_1+(e—1De? Ly_1+ (e~ 1>e1N71<"fv0?90> Np
SoSA Iy 1+ (e % —1e5Q Ly_y+ (e %= 1)e‘5'1N71(’7f\??90> Np
SoEaS | ILy_1+1+2Q+ (e—1)e@ £+1+21N—1(n?\9;90)+(e71)51N71(’7§\??90) Np
SoSAaS|Ty_1 +1+2Q + (e~ % —1)e—9Q Ly_j+1+ 21N*1(n?\9; 00) + (e=9 — 1)6*51N_1("?\?990> Np

the bounding box P§ and depends on the specific motion parametrisation.

Algorithm 1 GOCMEF: globally opti-
mal contrast maximisation framework

Algorithm 2 RB: recursive bounds
calculation

Input: event set £, initial search space @,
branching limit N .
Output: optimal warping parameters 6

1: Initialize @ with the center of e,

2: L"«+ 0,5+ {RB(, O), 6}

3: Push S into queue @, S* < S

4: while i < N, do

5: L*«+0

6: if S*.L,== S*.L then

T 0 + Center of S*.0, break

8: for each node S € Q do

9: Pop S, split into subspaces S
10: for all subspaces S; do

11: {Sj.L, ij} — RB(E, @])
12: if S;.L > L" then

13: L* + S]L , S* Sj
14: Push S; into Q

15: Prune branches in Q
16: i+ 1+1
17: return 6

Input: event set &, search space @
Output: lower bound L, upper bound L
1: Initialize accumulator images I and
I with zeros
Initialize L, L according to Table 2
6o < center of @
for each event ¢;, € £ do
P « BB(W (), 0, ex)
Q <~ maxpij 673,? [(pu)
1% « round(W (xx, tx; 60))
Update L, L (cf. Table 2)
Vi ¢ argmax, . .pe I(pij)
10: I(vg) « I(vg) +1
1: Il « I(n?) +1
12: return L, L

9:

4 Application to Visual Odometry with a
downward-facing Event Camera

Motion estimation for planar Autonomous Ground Vehicles (AGVs) is an impor-
tant problem in intelligent transportation [30,24,17]. An interesting alternative
is given by employing a downward instead of a forward facing camera, thus per-
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Fig. 4. Left: The Ackermann steering model with the ICR [14]. Both a left and a
right turn are illustrated. Right: Connections between vehicle displacement, extrinsic
transformation, and relative camera pose.

mitting direct observation of the ground plane with known depth. This largely
simplifies the geometry of the problem and notably turns the image-to-image
warping into a homographic mapping that is linear in homogeneous space. The
strategy is widely used in relevant applications such as sweeping robots and
factory AGVs, and a good review is presented in [1]. However, the method is
affected by potentially severe challenges given by the image appearance: a) reli-
able feature matching or even extraction may be difficult for certain noisy ground
textures, b) fast motion may easily lead to motion blur, and ¢) stable appear-
ance may require artificial illumination. Many existing methods therefore do not
employ feature correspondences but aim at a correspondence-less alignment or
even a full photometric image alignment. Besides more classical RANSAC-based
hypothesise-and-test schemes [7], the community therefore has also developed
appearance-based template matching approaches [8,23,33,22,15], solvers based
on efficient second-order minimisation [20,38,18], and methods exploiting the
Fast Fourier Transform [25,2], the Fourier-Mellin Transform [16,19], or the Im-
proved Fourier Mellin Invariant [31,4]. In an attempt to tackle highly self-similar
ground textures, Dille et al. [8] propose to use an optical flow sensor instead of
a regular CMOS camera.

A critical question is given by the position of the camera. The camera may
hang in the front or rear of the vehicle, which gives increased distance to the
ground plane and in turn reduces motion blur. However, it also causes moving
shadows in the image, and generally complicates the stabilisation of the im-
age appearance and thus repeatable feature detection or region-based matching.
A common alternative therefore is given by installing the camera underneath
the vehicle paired with an artificial light source (e.g. [8,2]). However, the short
distance to the ground plane may easily lead to unwanted motion blur. We there-
fore consider an event camera as a highly interesting and much more dynamic
alternative visual sensor for this particular scenario.

4.1 Homographic Mapping and Bounding Box Extraction

We rely the globally-optimal BnB solver for correspondence-less AGV motion
presented in [14], which also employs a normal, downward facing camera. We
employ the two-dimensional Ackermann steering model describing the commonly
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non-holonomic motion of an AGV. Employing this 2-DoF model leads to bene-
fits in BnB, the complexity of which strongly depends on the dimensionality of
the solution space. As illustrated in Figure 4, the Ackermann model constrains
the motion of the vehicle to follow a circular-arc trajectory about an Instan-
taneous Centre of Rotation (ICR). The motion between successive frames can
be conveniently described at the hand of two parameters: the half-angle of the
relative rotation angle ¢, and the baseline between the two views p. However, the
alignment of the events requires a temporal parametrisation of the relative pose,

which is why we employ the angular velocity w = % = % as well as the trans-
lational velocity v = wr = wpm in our model. The relative transformation
from vehicle frame v" back to v is therefore given by
cos(wt) —sin(wt) 0 o 11— cos(wt)
R, = |sin(wt) cos(wt) 0| and t, = — | sin(wt) . (8)
0 0 1 w 0

Further details about the derivation are given in the supplementary material.
In practice the vehicle frame hardly coincides with the camera frame. The
orientation and the height of the origin can be chosen to be identical, and the
camera may be laterally mounted in the centre of the vehicle. However, there is
likely to be a displacement along the forward direction, which we denote by the
signed variable s. In other words, RS = I3y3 and t§ = [0 s O}T. As illustrated
in Figure 4, the transformation from camera pose ¢’ (at an arbitrary future
timestamp) to ¢ (at the initial timestamp ¢,cf) is therefore given by

R.=RIR,RE,
cT'yc cT cT c (9)
te=—-R; t; + R, t, + R;" R,t; .
Using the known plane normal vector n = [O 0 —1]T and depth-of-plane d,
the image warping function W (xy,t; [w v]T) that permits the transfer of an
event e, = {xg,tx, Sk} into the reference view at tof is finally given by the
planar homography equation
n’

H[xI1]" =KR, - * ;

Note that K here denotes a regular perspective camera calibration matrix with

K< 1] (10)

homogeneous focal length f, zero skew, and a principal point at [uo ’U()}T. Note
further that the substituted time parameter needs to be equal to t = t; — tyef,
and that the result needs to be dehomogenised. After expansion, we easily obtain

Xy = W (xp, tr; [w 0)7) = [} 4] (11)

[y = vo -+ sf)sin(wt) + on — uo — §(5)) cos(eot) + () + uo
| sin(wt) + [y — vo + 5L cos(wt) — 5L + vg

Finally, the bounding box 73,? is found by bounding the values of z), and yj,
over the intervals w € W = [Wmin; Wmax] and v € V = [Umin; Umax]. The bounding
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is easily achieved if simply considering monotonicity of functions over given sub-

branches. For example, if wyin > 0, Umin > 0, . > ug, and yi > vy — s, we

d b
obtain

. VUmin Umin
Ty = —[yx —vo + 55] sin(Wmaxt) + [Tx — uo — g(m)] cos(Wmaxt) + g(@) + uo,
T, = —[yr —vo + sg] Sin(wmint) + [2x — uo — g(zjr:::)] coS(Wmint) + 5(%) +uo,
Umax .
Y = [Tk —uo — g(w"‘m )] sin(wWmint) + [yx — vo + sg} cos(Wmaxt) — Sg +wvo, and
7T = ok — o — g(;fﬂ)} sin(wmaxt) + [y — vo + sg] 008 (wmint) — sg Fwo. (12)

We kindly refer the reader to the supplementary material for all further cases.

5 Experimental evaluation

We present two suites of experiments. The first one validates the global optimal-
ity, accuracy and robustness of our solver on simulated data. The second one
then applies it to the real-world scenario of AGV motion estimation.

5.1 Accuracy and Robustness of Globally Optimal Motion
Estimation

We start by evaluating the accuracy of the motion estimation with contrast
maximisation function Lg.g over synthetic data. As already implied in [11], Lgog
can be considered as a solid starting point for the evaluation. Our synthetic data
consists of randomly generated horizontal and vertical line segments on a plane
at a depth of 2.0m. We consider Ackermann motion with an angular velocity
w = 28.6479° /s (0.5rad/s) and a linear velocity v = 0.5m/s. Events are generated
by randomly choosing a 3D point on a line, and reprojecting it into a random
camera pose sampled by a random timestamp within the interval [0,0.1s]. The
result of our method is finally evaluated by running BnB over the search space
W =10.4,0.6] and V = [0.4,0.6], and comparing the retrieved solution against
the result of an exhaustive search with sampling points every dw = 0.001rad/s
and dv = 0.001m/s. BnB is furthermore configured to terminate the search if
|Wmaz — Wmin] < 0.00078rad/s or |Vmaz — Umin| < 0.00078m/s. The experiment
is repeated 1000 times.

Figures 5(a) and 5(b) illustrate the distribution of the errors for both methods
in the noise-free case. The standard deviation of the exhaustive search and BnB
are 0, = 1.0645°/s, o, = 0.0151m/s and o, = 1.305°/s, o, = 0.0150m/s,
respectively. While this result suggests that BnB works well and sustainably
returns a result very close to the optimum found by exhaustive search, we still
note that the optimum identified by both methods has a bias with respect to
ground truth, even in the noise-free case. Note however that this is related to
the nature of the contrast maximisation function, and not our globally optimal
solution strategy.
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Fig. 5. Simulation Results. (a) and (b) indicate the error distribution for w and v over
all experiments for both our proposed method as well as an exhaustive search. (c)
and (d) visualise the average error of the estimated parameters caused by additional
salt and pepper noise on the event stream. Results are averaged over 1000 random
experiments. Note that our proposed method has excellent robustness even for N/E
ratios up to 40%.

In order to analyse robustness, we randomly add salt and pepper noise to
the event stream with noise-to-event (N/E) ratios between 0 and 0.4 (Example
objective functions for different N/E ratios have already been illustrated in Fig-
ure 2). Figure 5(c) and 5(d) show the error for each noise level again averaged
over 1000 experiments. As can be observed, the errors are very similar and be-
have more or less independently of the amount of added noise. The latter result
underlines the high robustness of our approach.

5.2 Application to real data and comparison against alternatives

We apply our method to real data collected by a DAVIS346 event camera, which
outputs events streams with a maximum time resolution of 1us as well as regular
frames at a frame rate of 30Hz. Images have a resolution of 346x260. We mount
the camera on the front of a XQ-4 Pro robot and let it face downward. The
displacement from the non-steering axis to the camera is s = —0.45m, and the
height difference between camera and ground is d = 0.23m. We recorded several
motion sequences on a wood grain foam which has highly self-similar texture
and poses a challenge to reliably extract and match features. Ground truth
is obtained via an Optitrack optical motion tracking system. Our algorithm is
working in undistorted coordinates, which is why normalisation and undistortion
are computed in advance. The following aspects are evaluated:

Different objective functions: We test the algorithm with all aforemen-
tioned six contrast functions over various types of motions, including a straight
line, a circle, and an arbitrarily curved trajectory. Table 3 shows the RMS er-
rors of the estimated dynamic parameters, and compares the accuracy of all
six alternatives. We furthermore apply two state-of-the-art approaches for reg-
ular images, namely the correspondence-less globally optimal feature-based ap-
proach (GOVO) from [14], as well as the Improved Fourier Mellin Invariant
transform (IFMI) in [31,4]. Even though these alternatives use the same non-
holonomic or planar motion models, event-based motion estimation methods sig-
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Table 3. RMS errors for different datasets and methods.

Method Line Line | Circle | Circle | Curve | Curve

wl*/s] | vim/s] | w°/s] | vim/s] | wi°/s] | vim/s]
SoE 2.4089 | 0.0158 | 2.2121 | 0.0252 | 3.6282 | 0.0263
SoEaS 2.4057 | 0.0158 | 2.0178 | 0.0242 | 3.6282 | 0.0263
SoS 0.5127 | 0.0086 | 1.0884 | 0.0083 | 3.0091 | 0.0208
SoSA 1.9606 | 0.0287 | 4.2496 | 0.0734 | 9.2904 | 0.0727
SoSAaS | 0.5175 | 0.0086 | 0.5294 | 0.0046 | 0.5546 | 0.0189
Var 0.5127 | 0.0086 | 1.0884 | 0.0083 | 3.0091 | 0.0208
IFMI 145.3741| 1.0594 | 8.1092 | 0.0243 | 12.8047 | 0.0192
GOVO | 6.9705 | 0.2409 | 4.5506 | 0.0642 | 9.8652 | 0.0590

nificantly outperform the intensity-camera-based alternatives (Lgosaas On top,
and Lgos and Ly, also have good performance).

Event-based vs frame-based: GOVO [14] and IFMI [31] are frame-based
algorithms specifically designed for planar AGV motion estimation under fea-
tureless conditions. Figure 1 shows an example frame of the wood grain foam
texture, and Figure 7 the results obtained for all methods. As can be observed,
GOVO finds as little as three corner features for some of the images, thus making
it difficult to accurately recover the vehicle displacement despite the globally-
optimal correspondence-less nature of the algorithm. Both IFMI and GOVO
occasionally lose tracking (especially for linear motion), which leaves our pro-
posed globally-optimal event-based method using Lsosaas as the best method.

BnB vs Gradient Ascent: We apply both gradient descent as well as BnB
to the Foam dataset with curved motion. For the first temporal interval and the
local search method, we vary the initial angular velocity w and linear velocity
v between -1 and 0.8 with steps of 0.2 (rad/s or m/s, respectively). For later
intervals, we use the previous local optimum. Figure 6 illustrates the estimated
trajectories for all initial values, compared against ground truth and a BnB
search using Lgo.s. RMS errors are also indicated. As clearly shown, even the
best initial guess eventually diverges under a local search strategy, thus leading
to clearly inferior results compared to our globally optimal search.

Method | w[°/s] | v[m/s]
SoS 3.0091 | 0.0208
GA 11.5023 | 0.0379

Y [m]

L L L L L
-1 -0.5 0 0.5 1 1.5

Fig. 6. Estimated trajectories by our method (SoS), gradient ascent with various ini-
tializations, and ground truth (gt). The table indicates the RMS errors for the best
performing gradient ascent run and SoS.
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Fig. 7. Results for all methods over different datasets. The first two columns are errors
over time for w and v, and the third column illustrates a bird’s eye view onto the
integrated trajectories.

Various textures: More results over datasets with other ground floor tex-
tures can be found in the supplementary material.

6 Discussion

We have introduced the first globally optimal solution to contrast maximisation
for un-warped event streams. To the best of our knowledge, we are also the first to
apply the idea of homography estimation via contrast maximisation to the real-
world case of non-holonomic motion estimation with a downward facing camera
mounted on an AGV. The challenging conditions in this scenario favorise dy-
namic vision sensors over regular frame-based cameras, a claim that is supported
by our experimental results. The latter furthermore prove that global solutions
are important and significantly outperform incremental local refinement. The
recursive formulation of our bounds lets us find the global optimum over event
streams of 0.04s within less than one minute, a respectable achievement given
the typically low computational efficiency of BnB solvers.
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A Proof of Recursive Upper and Lower Bounds

A.1 Variance (Var)
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where pi; = N/N, is the mean value of I(p;;;0) over all pixels (a function of 8
itself), which is constant. N,, the total number of accumulators in I. And
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Thus, similar to the proof in the paper, for the objective function Ly = maxgece Iy,
we have
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A.2 Sum of Exponentials (SoE)
In(0) = Z el (Pi;:0)
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n% = round(W (xy,tn; 0)).
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A.3 Sum of Suppressed Accumulations (SoSA)
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SoEaS and SoSAaS are combination loss functions, the bounds are also a
combination, so we omit the derivation here.
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B Application to Visual Odometry with a
downward-facing Event Camera

B.1 Bounding Box Definition

We have
x|, = [—[yk — o + SJé] sin(wt) + [z, — uo — §(2)] cos(wt) + §(2) +uo
k [z, — uo — L(2)] sin(wt) + [y — vo + s£] cos(wt) — s4 + vy
— Az + bm + Cy + Uuop
B [ay+by+cy—sf + v (10)
r x d
where
_ o
az = —[yx —vo + SE] sin(wt),
by = [z — wo) cos(wt),
fov
Cp = E(;)[l — cos(wt)],
ay = [z — ug] sin(wt),
foug .
by = —E(;)sm(wt),
¢y = [yr —vo + 85] cos(wt). (11)

The bounding box P? is found by bounding the values of @} and y} over the
intervals w € [Wmin; Wmax] and v € [Umin; Umax]- Here we only consider the case
abs(wt) < 7/2. The bounding box is easily achieved if simply considering the
monotonicity and different cases. There are 17 cases in total. One case is when
w = 0. Given the Ackermann motion model, we then obtain

Th = Tk, T) = —Tk,
7;“ = Yk + gvmint, % =Yk + gvmaxt- (12)

The other 16 cases are based on the monotonicity of functions. For example, if
Wmin = 0, Umin > 0 and xx > ug, yYr > Vo — sg, the lower bound of z} is

Z}, = min a; + min by + min ¢z + uo , with (13)
—_— w w w,v

minag, > —[yr — vo + $=] sin(wmaxt),

d
minb; > [Tk — uo] cos(wWmaxt),
minc, > g(%)u — cos(wmaxt)]. (14)

Table 1 lists «}, and yj, with w and v arguments when the search space is wmin > 0.

Meanwhile E and % are obtained by wpyi, against wyax, and vpin against v ax.
The other 8 cases with wpyax < 0 are derived by a similar strategy.
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Table 1. Bounding Box Cases
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Fig. 1. Frames from dataset Carpet (first row) and Poster (second row) and RMS
errors for the different textures.

B.2 Application to Real Data and Comparison against Alternatives

Various Textures: To further analyse the robustness, we test our algorithm
on datasets collected with various textures. Figure 1 presents frames from two
further datasets named Carpet and Poster. The Carpet sequences are collected
on a carpet with non-repetitive almost featureless texture, while the Poster se-
quences are collected on a poster with characters and figures for which it is easy
to extract features. The estimated errors are summarised on the left of Figure
1. As can be observed, our algorithm continues have similar accuracy for the
various textures in the datasets.



