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Abstract. Freespace detection is an essential component of visual per-
ception for self-driving cars. The recent efforts made in data-fusion con-
volutional neural networks (CNNs) have significantly improved semantic
driving scene segmentation. Freespace can be hypothesized as a ground
plane, on which the points have similar surface normals. Hence, in this
paper, we first introduce a novel module, named surface normal esti-
mator (SNE), which can infer surface normal information from dense
depth/disparity images with high accuracy and efficiency. Furthermore,
we propose a data-fusion CNN architecture, referred to as RoadSeg,
which can extract and fuse features from both RGB images and the
inferred surface normal information for accurate freespace detection. For
research purposes, we publish a large-scale synthetic freespace detec-
tion dataset, named Ready-to-Drive (R2D) road dataset, collected under
different illumination and weather conditions. The experimental results
demonstrate that our proposed SNE module can benefit all the state-
of-the-art CNNs for freespace detection, and our SNE-RoadSeg achieves
the best overall performance among different datasets.

Keywords: freespace detection · self-driving cars · data-fusion CNN ·
semantic driving scene segmentation · surface normal

Source Code, Dataset and Demo Video:
sites.google.com/view/sne-roadseg

1 Introduction

Autonomous cars are a regular feature in science fiction films and series, but
thanks to the rise of artificial intelligence, the fantasy of picking up one such
vehicle at your garage forecourt has turned into reality. Driving scene under-
standing is a crucial task for autonomous cars, and it has taken a big leap
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with recent advances in artificial intelligence [1]. Collision-free space (or simply
freespace) detection is a fundamental component of driving scene understanding
[27]. Freespace detection approaches generally classify each pixel in an RGB or
depth/disparity image as drivable or undrivable. Such pixel-level classification
results are then utilized by other modules in the autonomous system, such as
trajectory prediction [4] and path planning [31], to ensure that the autonomous
car can navigate safely in complex environments.

The existing freespace detection approaches can be categorized as either tra-
ditional or machine/deep learning-based. The traditional approaches generally
formulate freespace with an explicit geometry model and find its best coefficients
using optimization approaches [13]. [36] is a typical traditional freespace detec-
tion algorithm, where road segmentation is performed by fitting a B-spline model
to the road disparity projections on a 2D disparity histogram (generally known
as a v-disparity image) [12]. With recent advances in machine/deep learning,
freespace detection is typically regarded as a semantic driving scene segmenta-
tion problem, where the convolutional neural networks (CNNs) are used to learn
its best solution [34]. For instance, Lu et al. [25] employed an encoder-decoder ar-
chitecture to segment RGB images in the bird’s eye view for end-to-end freespace
detection. Recently, many researchers have resorted to data-fusion CNN archi-
tectures to further improve the accuracy of semantic image segmentation. For
example, Hazirbas et al. [19] incorporated depth information into conventional
semantic segmentation via a data-fusion CNN architecture, which greatly en-
hanced the performance of driving scene segmentation.

In this paper, we first introduce a novel module named surface normal es-
timator (SNE), which can infer surface normal information from dense dispar-
ity/depth images with both high precision and efficiency. Additionally, we design
a data-fusion CNN architecture named RoadSeg, which is capable of incorpo-
rating both RGB and surface normal information into semantic segmentation
for accurate freespace detection. Since the existing freespace detection datasets
with diverse illumination and weather conditions do not have either dispar-
ity/depth information or freespace ground truth, we created a large-scale syn-
thetic freespace detection dataset, named Ready-to-Drive (R2D) road dataset
(containing 11430 pairs of RGB and depth images), under different illumina-
tion and weather conditions. Our R2D road dataset is also publicly available
for research purposes. To validate the feasibility and effectiveness of our intro-
duced SNE module, we use three road datasets (KITTI [15], SYNTHIA [21] and
our R2D) to train ten state-of-the-art CNNs (six single-modal CNNs and four
data-fusion CNNs), with and without our proposed SNE module embedded. The
experiments demonstrate that our proposed SNE module can benefit all these
CNNs for freespace detection. Also, our method SNE-RoadSeg outperforms all
other CNNs for freespace detection, where its overall performance is the second
best on the KITTI road benchmark3 [15].

The remainder of this paper is structured as follows: Section 2 provides an
overview of the state-of-the-art CNNs for semantic image segmentation. Section

3 cvlibs.net/datasets/kitti/eval_road.php
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3 introduces our proposed SNE-RoadSeg. Section 4 shows the experimental re-
sults and discusses both the effectiveness of our proposed SNE module and the
performance of our SNE-RoadSeg. Finally, Section 5 concludes the paper.

2 Related Work

In 2015, Long et al. [24] introduced Fully Convolutional Network (FCN), a CNN
for end-to-end semantic image segmentation. Since then, research on this topic
has exploded. Based on FCN, Ronneberger et al. [26] proposed U-Net in the
same year, which consists of a contracting path and an expansive path [26].
It adds skip connections between the contracting path and the expansive path
to help better recover the full spatial resolution. Different from FCN, SegNet
[3] utilizes an encoder-decoder architecture, which has become the mainstream
structure for following approaches. An encoder-decoder architecture is typically
composed of an encoder, a decoder and a final pixel-wise classification layer.

Furthermore, DeepLabv3+ [9], developed from DeepLabv1 [6], DeepLabv2 [7]
and DeepLabv3 [8], was proposed in 2018. It employs depth-wise separable con-
volution in both atrous spatial pyramid pooling (ASPP) and the decoder, which
makes its encoder-decoder architecture much faster and stronger [9]. Although
the ASPP can generate feature maps by concatenating multiple atrous-convolved
features, the resolution of the generated feature maps is not sufficiently dense
for some applications such as autonomous driving [7]. To address this problem,
DenseASPP [37] was designed to connect atrous convolutional layers (ACLs)
densely. It is capable of generating multi-scale features that cover a larger and
denser scale range, without significantly increasing the model size [37].

Different from the above-mentioned CNNs, DUpsampling [32] was proposed
to recover the pixel-wise prediction by employing a data-dependent decoder.
It allows the decoder to downsample the fused features before merging them,
which not only reduces computational costs, but also decouples the resolutions
of both the fused features and the final prediction [32]. GSCNN [30] utilizes a
novel two-branch architecture consisting of a regular (classical) branch and a
shape branch. The regular branch can be any backbone architecture, while the
shape branch processes the shape information in parallel with the regular branch.
Experimental results have demonstrated that this architecture can significantly
boost the performance on thinner and smaller objects [30].

FuseNet [19] was designed to use RGB-D data for semantic image segmenta-
tion. The key ingredient of FuseNet is a fusion block, which employs element-wise
summation to combine the feature maps obtained from two encoders. Although
FuseNet [19] demonstrates impressive performance, the ability of CNNs to handle
geometric information is limited, due to the fixed grid kernel structure [35]. To
address this problem, depth-aware CNN [35] presents two intuitive and flexible
operations: depth-aware convolution and depth-aware average pooling. These
operations can efficiently incorporate geometric information into the CNN by
leveraging the depth similarity between pixels [35].
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Fig. 1: The architecture of our SNE-RoadSeg. It consists of our SNE module, an
RGB encoder, a surface normal encoder and a decoder with densely-connected
skip connections. s represents the input resolution of the RGB and depth images.
cn represents the number of feature map channels at different levels.

MFNet [18] was proposed for semantic driving scene segmentation with the
use of RGB-thermal vision data. In order to meet the real-time requirement of
autonomous driving applications, MFNet focuses on minimizing the trade-off be-
tween accuracy and efficiency. Similarly, RTFNet [29] was developed to improve
the semantic image segmentation performance using RGB-thermal vision data.
Its main contribution is a novel decoder, which leverages short-cuts to produce
sharp boundaries while keeping more detailed information [29].

3 SNE-RoadSeg

3.1 SNE

The proposed SNE is developed from our recent work three-filters-to-normal
(3F2N) [14]. Its architecture is shown in Fig. 2. For a perspective camera model,
a 3D point P = [X,Y, Z]> in the Euclidean coordinate system can be linked with
a 2D image pixel p = [x, y]> using:

Z
[
p
1

]
= KP =


fx 0 xo
0 fy yo
0 0 1

 P, (1)

where K is the camera intrinsic matrix; po = [xo, yo]> is the image center; fx
and fy are the camera focal lengths in pixels. The simplest way to estimate the
surface normal n = [nx, ny, nz]> of P is to fit a local plane:

nxX + nyY + nzZ + d = 0 (2)
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Fig. 2: The architecture of our proposed SNE module.

to N+P = [P,NP]>, where NP = [Q1, . . . ,Qk]> is a set of k neighboring points of
P. Combining (1) and (2) results in [14]:

1

Z
= − 1

d

(
nx

x − xo
fx
+ ny

y − yo

fy
+ nz

)
. (3)

Differentiating (3) with respect to x and y leads to:

gx =
∂1/Z
∂x

= − nx

dfx
, gy =

∂1/Z
∂y

= −
ny
dfy

, (4)

which, as illustrated in Fig. 2, can be respectively approximated by convolving
the inverse depth image 1/Z (or a disparity image, as disparity is in inverse
proportion to depth) with a horizontal and a vertical image gradient filter [14].
Rearranging (4) results in the expressions of nx and ny as follows:

nx = −dfxgx, ny = −dfygy . (5)

Given an arbitrary Qi ∈ NP, we can compute its corresponding nzi by plugging
(5) into (2):

nzi = d
fx∆Xigx + fy∆Yigy

∆Zi
, (6)

where Qi − P = [∆Xi,∆Yi,∆Zi]>. Since (5) and (6) have a common factor of −d,
the surface normal ni obtained from Qi and P has the following expression [34]:

ni =
[

fxgx, fygy, −
fx∆Xigx + fy∆Yigy

∆Zi

]>
. (7)

A k-connected neighborhood system NP of P can produce k normalized surface
normals n̄1, . . . , n̄k , where n̄i =

ni
‖ni ‖2 = [n̄xi , n̄yi , n̄zi ]>. Since any normalized

surface normals are projected on a sphere with center (0, 0, 0) and radius 1, we
believe that the optimal surface normal n̂ for P is also projected somewhere on
the same sphere, where the projections of n̄1, . . . , n̄k distribute most intensively
[13]. n̂ can be written in spherical coordinates as follows:

n̂ =
[
sin θ cos ϕ, sin θ sin ϕ, cos θ

]>
, (8)
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where θ ∈ [0, π] denotes inclination and ϕ ∈ [0, 2π) denotes azimuth. ϕ can be
computed using:

ϕ = arctan

(
fygy
fxgx

)
. (9)

Similar to [13], we hypothesize that the angle between an arbitrary pair of nor-
malized surface normals is less than π/2. n̂ can therefore be estimated by mini-
mizing E = −∑k

i=1 n̂ · n̄i [13]. ∂E
∂θ = 0 obtains:

θ = arctan

(∑k
i=1 n̄xi cos ϕ +

∑k
i=1 n̄yi sin ϕ∑k

i=1 n̄zi

)
. (10)

Substituting θ and ϕ into (8) results in the optimal surface normal n̂, as shown
in Fig. 2. The performance of our proposed SNE will be discussed in Section 4.

3.2 RoadSeg

U-Net [26] has demonstrated the effectiveness of using skip connections in re-
covering the full spatial resolution. However, its skip connections force aggrega-
tions only at the same-scale feature maps of the encoder and decoder, which,
we believe, is an unnecessary constraint. Inspired by DenseNet [23], we propose
RoadSeg, which exploits densely-connected skip connections to realize flexible
feature fusion in the decoder.

As shown in Fig. 1, our proposed RoadSeg also adopts the popular encoder-
decoder architecture. An RGB encoder and a surface normal encoder is employed
to extract the feature maps from RGB images and from the inferred surface nor-
mal information, respectively. The extracted RGB and surface normal feature
maps are hierarchically fused through element-wise summations. The fused fea-
ture maps are then fused again in the decoder through densely-connected skip
connections to restore the resolution of the feature maps. At the end of RoadSeg,
a sigmoid layer is used to generate the probability map for the semantic driving
scene segmentation.

We use ResNet [20] as the backbone of our RGB and surface normal en-
coders, the structures of which are identical to each other. Specifically, the initial
block consists of a convolutional layer, a batch normalization layer and a ReLU
activation layer. Then, a max pooling layer and four residual layers are sequen-
tially employed to gradually reduce the resolution as well as increase the number
of feature map channels. ResNet has five architectures: ResNet-18, ResNet-34,
ResNet-50, ResNet-101 and ResNet-152. Our RoadSeg follows the same naming
rule of ResNet. cn, the number of feature map channels (see Fig. 1) varies with
respect to the adopted ResNet architecture. Specifically, c0–c4 are 64, 64, 128,
256 and 512, respectively, for ResNet-18 and ResNet-34, and are 64, 256, 512,
1024 and 2048, respectively, for ResNet-50, ResNet-101 and ResNet-152.

The decoder consists of two different types of modules: a) feature extractors
Fi, j and b) upsampling layers Ui, j , which are connected densely to realize flexible
feature fusion. The feature extractor is employed to extract features from the
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fused feature maps, and it ensures that the feature map resolution is unchanged.
The upsampling layer is employed to increase the resolution and decrease the
feature map channels. Three convolutional layers in the feature extractor and
the upsampling layer have the same kernel size of 3× 3, the same stride of 1 and
the same padding of 1.

4 Experiments

4.1 Datasets and Experimental Setup

In our experiments, we first evaluate the performance of our proposed SNE on
the DIODE dataset [33], a public surface normal estimation dataset containing
RGBD vision data of both indoor and outdoor scenarios. We utilize the average

angular error (AAE), eAAE =
1
m

∑m
k=1 cos−1

(
〈nk,n̂k 〉

‖nk ‖2 ‖n̂k ‖2

)
, to quantify our SNE’s

accuracy, where m is the number of 3D points used for evaluation; nk and n̂k
is the ground truth and estimated (optimal) surface normal, respectively. The
experimental results are presented in Section 4.2.

Then, we carry out the experiments on the following three datasets to eval-
uate the performance of our proposed SNE-RoadSeg for freespace detection:

– The KITTI road dataset [15]: this dataset provides real-world RGB-D vision
data. We split it into three subsets: a) training (173 images), b) validation
(58 images), and c) testing (58 images).

– The SYNTHIA road dataset [21]: this dataset provides synthetic RGB-D
vision data. We select 2224 images from it and group them into: a) training
(1334 images), b) validation (445 images), and c) testing (445 images).

– Our R2D road dataset: along with our proposed SNE-RoadSeg, we also pub-
lish a large-scale synthetic freespace detection dataset, named R2D road
dataset. This dataset is created using the CARLA4 simulator [11]. Firstly,
we mount a simulated stereo rig (baseline: 1.5 m) on the top of a vehicle to
capture synchronized stereo images (resolution: 640×480 pixels) at 10 fps.
The vehicle navigates in six different scenarios under different illumination
and weather conditions (sunny, rainy, day and sunset). There are a total of
11430 pairs of stereo images with corresponding depth images and semantic
segmentation ground truth. We split them into three subsets: a) training
(6117 images), b) validation (2624 images), and c) testing (2689 images).
Our dataset is publicly available at sites.google.com/view/sne-roadseg
for research purposes.

We use these three datasets to train ten state-of-the-art CNNs, including six
single-modal CNNs and four data-fusion CNNs. We conduct the experiments of
single-modal CNNs with three setups: a) training with RGB images, b) train-
ing with depth images, and c) training with surface normal images (generated
from depth images using our SNE), which are denoted as RGB, Depth and

4 carla.org
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Fig. 3: Qualitative and quantitative results on the DIODE dataset: (a) RGB
images; (b)–(d): the angular error maps obtained using our proposed SNE, SRI
[2] and LINE-MOD [22], respectively.

SNE-Depth, respectively. Similarly, the experiments of data-fusion CNNs are
conducted using two setups: training using RGB-D vision data, with and without
our SNE embedded, which are denoted as RGBD and SNE-RGBD, respec-
tively. To compare the performances between our proposed RoadSeg and other
state-of-the-art CNNs, we train our RoadSeg with the same setups as for the
data-fusion CNNs on the three datasets. Moreover, we re-train our SNE-RoadSeg
for the result submission to the KITTI road benchmark [15]. The experimen-
tal results are presented in Section 4.3. Additionally, the ablation study of our
SNE-RoadSeg is provided in Section 4.4.

Five common metrics are used for the performance evaluation of freespace de-
tection: accuracy, precision, recall, F-score and the intersection over union (IoU).
Their corresponding definitions are as follows: Accuracy =

ntp+ntn

ntp+ntn+nfp+nfn
, Preci-

sion =
ntp

ntp+nfp
, Recall =

ntp

ntp+nfn
, F-score =

2n2
tp

2n2
tp+ntp(nfp+nfn) and IoU =

ntp

ntp+nfp+nfn
,

where ntp, ntn, nfp and nfn represents the true positive, true negative, false pos-
itive, and false negative pixel numbers, respectively. In addition, the stochastic
gradient descent with momentum (SGDM) optimizer is utilized to minimize the
loss function, and the initial learning rate is set to 0.001. Furthermore, we adopt
the early stopping mechanism on the validation subset to avoid over-fitting. The
performance is then quantified using the testing subset.

4.2 Performance Evaluation of Our SNE

We simply set gx =
1

Z(x−1,y) −
1

Z(x+1,y) and gy =
1

Z(x,y−1) −
1

Z(x,y+1) to evaluate the
accuracy of our proposed SNE. In addition, we also compare it with two well-
known surface normal estimation approaches: SRI [2] and LINE-MOD [22]. The
qualitative and quantitative comparisons are shown in Fig. 3. It can be observed
that our proposed SNE outperforms SRI and LINE-MOD for both indoor and
outdoor scenarios.

4.3 Performance Evaluation of Our SNE-RoadSeg

In this subsection, we evaluate the performance of our proposed SNE-RoadSeg-
152 (abbreviated as SNE-RoadSeg) both qualitatively and quantitatively. Ex-
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Fig. 4: Examples of the experimental results on (a) the SYNTHIA road dataset
and (b) our R2D road dataset: (i) RGB, (ii) Depth, (iii) SNE-Depth (Ours),
(iv) RGBD and (v) SNE-RGBD (Ours); (1) DeepLabv3+ [9], (2) U-Net [26],
(3) SegNet [3], (4) GSCNN [30], (5) DUpsampling [32], (6) DenseASPP [37], (7)
FuseNet [19], (8) RTFNet [29], (9) Depth-aware CNN [35], (10) MFNet [18] and
(11) RoadSeg (Ours). The true positive, false negative and false positive pixels
are shown in green, red and blue, respectively.
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KITTI

SYNTHIA

R2D

KITTI

SYNTHIA

R2D

Fig. 5: Performance comparison (%) among DeepLabv3+ [9], U-Net [26], SegNet
[3], GSCNN [30], DUpsampling [32] and DenseASPP [37] with and without our
SNE embedded, where RGB, Depth, and SNE-Depth (Ours).
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KITTI SYNTHIA R2D

Fig. 6: Performance comparison (%) among FuseNet [19], RTFNet [29], depth-
aware CNN [35], MFNet [18] and our RoadSeg with and without our SNE em-
bedded, where RGBD and SNE-RGBD (Ours).

amples of the experimental results on the SYNTHIA road dataset [21] and our
R2D road dataset are shown in Fig. 4. We can clearly observe that the CNNs
with RGB images as inputs suffer greatly from poor illumination conditions.
Moreover, the CNNs with our SNE embedded generally perform better than
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Table 1: The KITTI road benchmark results, where the best results are in bold
type. Please note that we only compare our method with published works.
Method MaxF (%) AP (%) PRE (%) REC (%) Rank

RBNet [10] 93.21 89.18 92.81 93.60 21
TVFNet [17] 95.34 90.26 95.73 94.94 16
LC-CRF [16] 95.68 88.34 93.62 97.83 13
LidCamNet [5] 96.03 93.93 96.23 95.83 7
RBANet [28] 96.30 89.72 95.14 97.50 6

SNE-RoadSeg (Ours) 96.75 94.07 96.90 96.61 2

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7: Examples on the KITTI road benchmark, where rows (a)–(f) show the
freespace detection results obtained by RBNet [10], TVFNet [17], LC-CRF [16],
LidCamNet [5], RBANet [28] and our proposed SNE-RoadSeg, respectively. The
true positive, false negative and false positive pixels are shown in green, red and
blue, respectively.

they do without our SNE embedded. The corresponding quantitative compar-
isons are given in Fig 5 and Fig. 6. Readers can see that the IoU increases by
approximately 2-12% for single-modal CNNs and by about 1-7% for data-fusion
CNNs, while the F-score increases by around 1-7% for single-modal CNNs and
by about 1-4% for data-fusion CNNs. We demonstrate that our proposed SNE
can make the road areas become highly distinguishable, and thus, it will benefit
all state-of-the-art CNNs for freespace detection.

Furthermore, from Fig 5 and Fig. 6, we can observe that RoadSeg itself
outperforms all other CNNs. We demonstrate that the densely-connected skip
connections utilized in our proposed RoadSeg can help achieve flexible feature
fusion and smooth the gradient flow to generate accurate freespace detection
results. Also, RoadSeg with our SNE embedded performs better than all other
CNNs with our SNE embedded. An increase of approximately 1.4-14.7% is wit-
nessed on the IoU, while the F-score increases by about 0.7-8.8%.
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Fig. 8: Unsatisfactory results obtained using the KITTI road dataset. The true
positive, false negative and false positive pixels are shown in green, red and blue,
respectively.

In addition, we compare our proposed method with five state-of-the-art CNNs
published on the KITTI road benchmark [15]. Examples of the experimental
results are shown in Fig. 7. The quantitative comparisons are given in Table
1, which shows that our proposed SNE-RoadSeg achieves the highest MaxF
(maximum F-score), AP (average precision) and PRE (precision), while LC-
CRF [16] achieves the best REC (recall). Our freespace detection method is the
second best on the KITTI road benchmark [15].

Fig. 8 presents several unsatisfactory results of our SNE-RoadSeg on the
KITTI road dataset [15]. Since the 3D points on freespace and sidewalks possess
very similar surface normals, our proposed approach can sometimes mistakenly
recognize part of sidewalks as freespace, especially when the textures of the road
and sidewalks are similar. We believe this can be improved by leveraging sur-
face normal gradient features, as there usually exists a clear boundary between
freespace and sidewalks (due to their differences in height).

4.4 Ablation Study

In this subsection, we conduct ablation studies on our R2D road dataset to
validate the effectiveness of the architecture for our RoadSeg. The performances
of different architectures are provided in Table 2.

Firstly, we replace the backbone of RoadSeg with different ResNet architec-
tures. The quantitative results are given in Table 2. The superior performance of
our choice is as expected, because ResNet-152 has also presented the best image
classification performance among the five ResNet architectures [20].

Then, we remove one encoder from RoadSeg to evaluate its performance on
single-modal vision data. We conduct five experiments: a) training with RGB
images, denoted as RGB; b) training with depth images, denoted as Depth;
c) training with depth images, denoted as SNE-Depth; d) training with four-
channel RGB-D vision data, denoted as RGBD-C; and e) training with four-
channel RGB-D vision data, denoted as SNE-RGBD-C. From Table 2, we can
observe that our choice outperforms the single-modal architecture with respect
to different modalities of training data, proving that the data fusion via a two-
encoder architecture can benefit the freespace detection. It should be noted that
although the single-modal architectures cannot provide competitive results, our
proposed SNE still benefits them for better freespace detection performance.

To further validate the effectiveness of our choice, we replace the densely-
connected skip connections in the decoder with two different architectures: a) no
skip connections (NSCs), which totally removes the skip connections; b) sparse
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Table 2: Performance comparison (%) among different architectures and setups
on our R2D road dataset. The best results are shown in bold font.
Architecture Setup Accuracy Precision Recall F-Score IoU

RoadSeg-18

SNE-RGBD

93.6 93.5 91.3 92.4 85.9
RoadSeg-34 95.5 96.3 93.0 94.6 89.8
RoadSeg-50 96.8 97.5 95.2 96.3 92.9
RoadSeg-101 98.0 98.2 97.1 97.6 95.4

RoadSeg-152

RGB 94.0 91.9 93.8 92.8 86.6
Depth 96.7 97.6 94.6 96.1 92.4
SNE-Depth 97.6 98.9 95.5 97.2 94.5
RGBD-C 95.1 92.8 95.6 94.2 89.0
SNE-RGBD-C 97.0 97.5 95.3 96.4 93.0

RoadSeg-152-NSCs
SNE-RGBD

97.9 98.6 96.5 97.5 95.2
RoadSeg-152-SSCs 98.2 99.0 96.8 97.9 95.9

RoadSeg-152 (Ours) SNE-RGBD 98.6 99.1 97.6 98.3 96.7

skip connections (SSCs), which employs the skip connections only at the same-
scale feature maps of the encoder and decoder (like U-Net). Table 2 verifies the
superiority of the densely-connected skip connections, which helps to achieve
flexible feature fusion and to smooth the gradient flow to generate accurate
freespace detection results, as analyzed in Section 4.3.

5 Conclusion

The main contributions of this paper include: a) a module named SNE, capable
of inferring surface normal information from depth/disparity images with both
high precision and efficiency; b) a data-fusion CNN architecture named Road-
Seg, capable of fusing both RGB and surface normal information for accurate
freespace detection; and c) a publicly available synthetic dataset for semantic
driving scene segmentation. To demonstrate the feasibility and effectiveness of
the proposed SNE module, we embedded it into ten state-of-the-art CNNs and
evaluated their performances for freespace detection. The experimental results
illustrated that our introduced SNE can benefit all these CNNs for freespace
detection. Furthermore, our proposed data-fusion CNN architecture RoadSeg is
most compatible with our proposed SNE, and it outperforms all other CNNs
when detecting drivable road regions.
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