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Abstract. Fusing data from multiple modalities provides more information to
train machine learning systems. However, it is prohibitively expensive and time-
consuming to label each modality with a large amount of data, which leads to a
crucial problem of semi-supervised multi-modal learning. Existing methods suffer
from either ineffective fusion across modalities or lack of theoretical guarantees
under proper assumptions. In this paper, we propose a novel information-theoretic
approach - namely, Total Correlation Gain Maximization (TCGM) — for semi-
supervised multi-modal learning, which is endowed with promising properties: (i)
it can utilize effectively the information across different modalities of unlabeled
data points to facilitate training classifiers of each modality (ii) it has theoreti-
cal guarantee to identify Bayesian classifiers, i.e., the ground truth posteriors of
all modalities. Specifically, by maximizing TC-induced loss (namely TC gain)
over classifiers of all modalities, these classifiers can cooperatively discover the
equivalent class of ground-truth classifiers; and identify the unique ones by lever-
aging limited percentage of labeled data. We apply our method to various tasks
and achieve state-of-the-art results, including the news classification (Newsgroup
dataset), emotion recognition IEMOCAP and MOSI datasets), and disease pre-
diction (Alzheimer’s Disease Neuroimaging Initiative dataset).

Keywords: Total Correlation, Semi-supervised, Multi-modality, Conditional Inde-
pendence, Information intersection

1 Introduction

Learning with data from multiple modalities has the advantage to facilitate information
fusion from different perspectives and induce more robust models, compared with only
using a single modality. For example, as shown in Figure 1, to diagnose whether a patient
has a certain disease or not, we can consult to its X-ray images, look into its medical
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records, or get results from clinical pathology. However, in many real applications,
especially in some difficult ones (e.g. medical diagnosis), annotating such large-scale
training data is prohibitively expensive and time-consuming. As a consequence, each
modality of data may only contain a small proportion of labeled data from professional
annotators, leaving a large proportion of unlabeled. This leads to an essential and
challenging problem of semi-supervised multi-modality learning: how to effectively train
accurate classifiers by aggregating unlabeled data of all modalities?

To achieve this goal, many methods have been proposed in the literature, which can be
roughly categorized into two branches: (i) co-training strategy [6]; and (ii) learning joint
representation across modalities in an unsupervised way [26,28]. These methods suffer
from either too strong assumptions or loss of information during fusing. Specifically, the
co-training strategy relies largely on the “compatible” assumption that the conditional
distributions of the data point labels in each modality are the same, which may not be
satisfied in the real settings, as self-claimed in [60]; while the latter branch of methods
fails to capture the higher-order dependency among modalities, hence may end up in
learning a trivial solution that maps all the data points to the same representation.

Modality 1 Modality 1
IP Ground Truth \
e 9 Modality 2
Modality 3
Modality 2 Ground Truth Modality 3 “Information Intersection”

Fig. 1. Multiple modalities are independent conditioning on the ground truth; Ground truth is the
“information intersection" of all of the modalities.

A common belief in multi-modality learning [22,6,13,20] is that conditioning on
ground truth label Y, these modalities are conditionally independent, as illustrated in
Figure 1. For example, to diagnose if one suffers from a certain disease, an efficient
way is to leverage as many as modalities that are related to the disease, e.g., X-ray
image, medical records and the clinical pathology. Since each modality captures the
characteristics of the disease from different aspects, the information extracted from these
modalities, in addition to the label, are not necessarily correlated with each other. This
suggests that the ground truth label can be regarded as the “information intersection”
across all the modalities, i.e., the amount of agreement shared by all the modalities.

Inspired by such an assumption and the fact that the Toral Correlation [29] can
measure the amount of information shared by M (M > 2) variables, in this paper, we
propose Total Correlation Gain (TCG), which is a function of classifiers of all the
modalities, as a surrogate goal for maximization of mutual information, in order to
infer the ground-truth labels (i.e., information intersection among these modalities).
Based on the proposed TCG, we devise an information-theoretic framework called Total
Correlation Gain Maximization (TCGM) for semi-supervised multi-modal learning.
By maximizing TCG among all the modalities, the classifiers for different modalities
cooperatively discover the information intersection across all the modalities. It can be
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proved that the optimal classifiers for such a Total Correlation Gain are equivalent to
the Bayesian posterior classifiers given each modality under some permutation function.
With further leverage of labeled data, we can identify the Bayesian posterior classifiers.
Furthermore, we devise an aggregator that employs all the modalities to forecast the
labels of data. A simulated experiment is conducted to verify this theoretical result.

We apply TCGM on various tasks: (i) News classification with three pre-processing
steps as different modalities, (ii) Emotion recognition with videos, audios, and texts as
three modalities and (iii) disease prediction on medical imaging with the Structural mag-
netic resonance imaging (sSMRI) and Positron emission tomography (PET) modalities.
On these tasks, our method consistently outperforms the baseline methods especially
when a limited percentage of labeled data are provided. To validate the benefit of jointly
learning, we visualize that some cases of Alzheimer’s Disease whose label are difficult
to be predicted via supervised learning with single modality; while our jointly learned
single modal classifier is able to correctly classify such hard samples.

The contributions can be summarized as follows: (i) We propose a novel information-
theoretic approach TCGM for semi-supervised multi-modality learning, which can
effectively utilize information across all modalities. By maximizing the total correlation
gain among all the modalities, the classifiers for different modalities cooperatively
discover the information intersection across all the modalities - the ground truth. (ii) To
the best of our knowledge, TCGM is the first in the literature that can be theoretically
proved that, under the conditional independence assumption, it can identify the ground-
truth Bayesian classifier given each modality. Further, by aggregating these classifiers,
our method can learn the Bayesian classifier given all modalities. (iii) We achieve the
state-of-the-art results on various semi-supervised multi-modality tasks including news
classification, emotion recognition and disease prediction of medical imaging.

2 Related Work

Semi-supervised multi-modal learning It is commonly believed in the literature that
information of label is shared across all modalities. Existing work, which can be roughly
categorized into two branches, suffers from either stronger but not reasonable assump-
tions or failure to capture the information (i.e., label) shared by all modalities. The first
branch applies the co-training algorithm proposed by Blum et. al [6]. [17,3,12,21,11]
use weak classifiers trained by the labeled data from each modality to bootstrap each
other by generating labels for the unlabeled data. However, the underlying compatible
condition of such a method, which assumes the same conditional distributions for data
point labels in each modality, may not be consistent with the real settings.

The second branch of work [26,28,9,31,10,18] centers on learning joint represen-
tations that project unimodal representations all together into a multi-modal space in
an unsupervised way and then using the labeled data from each modality to train a
classifier to predict the label of the learned joint representation. A representative of
such a framework is the soft-Hirschfeld-Gebelein-Rényi (HGR) framework [3 1], which
proposed to maximize the correlation among non-linear representations of each modality.
However, HGR only measures the linear dependence between pair modalities, since it
follows the principle of maximizing the correlation between features of different modali-
ties. In contrast, our framework, i.e., Total Correlation Gain Maximization can pursue
information about higher-order dependence. Due to the above reasons, both branches
can not avoid learning a naive solution that classifies all data points into the same class.
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To overcome these limitations, we propose an information-theoretic loss function
based on Total Correlation which can not only require the assumption in the first branch
of work but also can be able to identify the ground-truth label, which is the information
intersection among these modalities. Therefore, our method can avoid the trivial solution
and can learn the optimal, i.e., the Bayesian Posterior classifiers of each modality.

Total Correlation/Mutual information maximization Total Correlation [29], as an exten-
sion of Mutual Information, measures the amount of information shared by M (M > 2)
variables. There are several works in the literature that have combined Mutual Informa-
tion (M = 2) with deep learning algorithms and have shown superior performance on
various tasks. Belghazi er allet@tokeeonedot[4] presents a mutual information neural
estimator, which are utilized in a handful of applications based on the mutual informa-
tion maximization (e.g., unsupervised learning of representations [14], learning node
representations within graph-structured data [30]). Kong and Schoenebeck [19] provide
another mutual information estimator in the co-training framework for the peer prediction
mechanism, which has been combined with deep neural networks for crowdsourcing [8].
Xu et.al [32] proposes an alternative definition of information, which is more effective
for structure learning. However, those three estimators can only be applied to two-view
settings. To the best of our knowledge, there are no similar studies that focus on a general
number of modalities, which is very often in real applications. In this paper, we propose
to leverage Total Correlation to fill in such a gap.

3 Preliminaries

Notations Given a random variable X, X denotes its realization space and x € X
denotes an instance. The Py denotes the probability distribution function over X and
p(z) = dPx(x) denotes the density function w.r.t the Lebesgue measure. Further, given
a finite set X', Ay denotes the set of all distributions over X. For every integer M, [ M ]
denotes the set {1,2, ..., M}. For a vector v, v; denotes its i-th element.

Total Correlation The Total Correlation (TC), as an extension of mutual information,
measures the “amount of information" shared by M (> 2) random variables:

M
TC(X', .., X™) = Y H(X") -H(X",...,xM), (1)

=1

where H is the Shannon entropy. As defined, the TC degenerates to mutual information
when M = 2. The Zﬁ\fl H(X") measures the total amount of information when treating
X1, ..., XM independently; while the H(X!, ..., X™) measures the counterpart when
treating these M variables as a whole. Therefore, the difference between them implies
the redundant information, i.e., the information shared by these M variables.

Similar to mutual information, the TC is equivalent to the Kullback-Leibler (KL)-
divergence between Py1, ,u and product of marginal distribution ®_ Py m:

dPXlx,,,XXJW
8~ p.__
x..xxM d®M

m=1

TC(X', ... XM) = Dky, (dPx1s xaont || d @y Pam) = Ep_, I
X7n

(@)
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where Dk, (P || Q) =Ep log . Intuitively, larger KL divergence between joint and
marginal distribution 1nd1cates more dependence among these M variables. To better
characterize such a property, we give a formal definition of “Point-wise Total Correlation"
(PTC):

Definition 1 (Point-wise Total Correlation). Given M random variables X', ..., XM,
the Point-wise Total Correlation on (z*,...,2™) e X1 x ... x XM ie, PTC(z", ..., 2™M)
is defined as:
p(xt, ... aM)
PTC(z',...,zM) = log =2~ L
p(z!)...p(z)

]\/I
Further, the R(x!, ...,2™) := ;3(5;)“% is denoted as the joint-margin ratio.

Remark 1. The Point-wise Total Correlation can be understood as the point-wise distance

between joint distribution and the marginal distribution. In more details, as noted from

[15], by applying first-order Taylor-expansion, we have log 2 E g ~logl+ p(@)-a(@) _

a(z)
%. Therefore, the expected value of PTC(+) can well measure the amount of

information shared among these variables, which will be shown later in detailed.

For simplicity, we denote pl™1(z) := p(z',...,2™M) and ¢!™1(x) := TTM, p(?).
According to dual representation in [27], we have the following lower bound for KL
divergence between p and ¢, and hence TC.

Lemma 1 (Dual version of f-divergence [27]).

Dkr, (p[M] [ q[M]) > SugEﬂpr[M] [9(2)] _Ex~q[M] [eg(w)—l] 3)
ge

where G is the set of functions that maps X' x X% x --- x XM to R. The equality
holds if and only if g(x',2%,...,2M) = 1 + PTC(z?, ..., ™), and the supremum is
DKL (p[M] || q[M]) = EP[M] (PTC)

The Lemma 1 is commonly utilized for estimation of Mutual information [4] or
optimization as variational lower bound in the machine learning literature. Besides, it
also informs that the PTC is the optimal function to describe the amount of informa-
tion shared by these M variables. Indeed, such shared information is the information
intersection among these variables, i.e., conditional on such information, these M vari-
ables are independent of each other. To quantitatively describe this, we first introduce
the conditional total correlation (CTC). Similar to TC, CTC measures the amount of
information shared by these M variables conditioning on some variable Z:

Definition 2 (Conditional Total Correlation (CTC)). Given M + 1 random variables
X1, ..., XM 7 the Conditional Total Correlation (CTC(X?,..., XM|Z)) is defined as

M
CTC(X', ..., xM|2)= Y H(X'|Z2) -H(X",....,XM|2)

i=1
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4 Method

Problem statement In the semi-supervised muli-modal learning scenario, we have access

to an unlabeled dataset D,, = {xZ[M] }; and a labeled dataset D; = {(J:Z[M] ,¥i) }i. Each la-
bel y; € C, where C denotes the set of classes. Each datapoint xl[M] ={al 22, aM|at
X™} consists of M modalities, where X™ denotes the domain of the m-th modal-
ity. Datapoints and labels in D; are i.i.d. samples drawn from the joint distribution
UX[}\ILy(ZCl,ZCQ,...,xj\/[,y) = Pr(X! =2, X2 =22,..., XM = 2M Y = ). Data
My .o

m.e

points in D, are i.i.d. samples drawn from joint distribution U y(ary (2, 22, ... @
Yeee Uxnn y(z!,22,..., 2™ y = ¢). Denote the prior of the ground truth labels by
p* = (Pr(Y = ¢)).. Upon the labeled and unlabeled datasets, our goal is to train M
classifiers AlM] := {h' h2 ... hM} and an aggregator ¢ such that Ym, h™ : X — A
predicts the ground truth 3 based on a m-th modality ™ and ¢ : X' x X%x---x XM - A¢
predicts the ground truth y based on all of the modalities :["].

Outline We will first introduce the assumptions regarding the ground truth label Y and
prior distribution on (X1, ..., X™ V") in section 4.1. In section 4.2, we will present our
method, i.e., maximize the total correlation gain on unlabeled dataset D,,. Finally, we
will introduce our algorithm for optimization in section 4.3.

4.1 Assumptions for Identification of Y

In this section, we first introduce two basic assumptions to ensure that the ground-truth
label can be identified. According to Proposition 2.1 in [1], the label Y can be viewed
as the generating factor of data X . Such a result can be extended to multiple variables
(please refer supplementary for details), which implies that Y is the common generating
factor of X!, ..., XM Motivated by this, it is natural to assume that the ground truth
label Y is the "information intersection" among X!, ..., X i.e., all of the modalities
are independent conditioning on the ground-truth:

Assumption 1 (Conditional Independence). Conditioning onY, X', X2, ..., XM are

independent, i.e., Yz, ... z™,

Pr(xM = oMy = ¢) = [[Pr(X™ =2™|Y =c), for anyceC.

On the basis of this assumption, one can immediately get the conditional total
correlation gain CTC(X?,..., X™|Y) = 0. In other words, conditioning on Y, there
is no extra information shared by these M modalities, which is commonly assumed in
the literature of semi-supervised learning [22,6,13,20]. However, the Y may not be the
unique information intersection among these M modalities. Specifically, the following
lemma establishes the rules for such information intersection to hold:

Lemma 2. Given assumption 1, R(x', ..., 2™) (Joint-marginal ratio definition 1) has

1 My _ I Pr(Y = X™ =2™)
Rz, ...,z )—C; (Pr(¥ = )71

Further;, the optimal g in lemma I satisfies g(x!,...,2™) = 1+ log ¥ pec %.
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In other words, in addition to {Pr(Y = ¢|X™ = 2™) },,,, P, there are other solutions
{agr,...,azm }, 7 with a,: € Ac (for i € C) and r € Ac that can make the g optimal, as
long as its joint-marginal ratio is equal to the ground-truth one:

s Hm o pr o) )

ceC rg)M_l

To make {Pr(Y =¢|X™ =2™)},,,, p; identifiable w.r.t a trivial permutation, we make
the following trivial assumption on Pr(X*, ..., XM Y.

Assumption 2 (Well-defined Prior). The solutions {a,1,...,azm }, 7% and {by1, ..., by}, 10

for Eq. (4) are equivalent under the permutation [] : C = C: agm = [[bym, r® = [T70.

4.2 Total Correlation Gain Maximization (TCGM)

Assumption | indicates that the label Y is the generating factor of all modalities, and
assumption 2 further ensures its uniqueness under permutation. Our goal is to learn the
ground-truth label Y which is the information intersection among M modalities. In this
section, we propose a novel framework, namely Total Correlation Gain Maximization
(TCGM) to capture such an information intersection, which is illustrated in Figure. 2.
To the best of our knowledge, we are the first to theoretically prove the identification of
ground truth classifiers on semi-supervised multi-modality data, by generalizing [19,8]
that can only handle two views in multi-view scenario. The high-level spirit is designing
TC-induced loss over classifiers of every modality. By maximizing such a loss, these
classifiers can converge to Bayesian posterior, which is the optimal solution of TC as
expectation of the loss. First, we introduce the basic building blocks for our method.

Classifiers hI™] n order to leverage the powerful representation ability of deep neural
network (DNN), each classifier 2™ (z™; ©™) is modeled by a DNN with parameters
©™. For each modality m, we denote the set of all such classifiers by H™ and H[*]
{HY, H? ... HM},

Modality Classifiers-Aggregator ¢ Given M classifiers for each modality h[*] and a

distribution p = (p.). € Ac, the aggregator ¢ which predicts the ground-truth label by
aggregating classifiers of all modalities, is constructed by

TR — LUt eR

where Normalize(v) := - forall v e Ac.

M
—_———

Reward Function R We define a reward function R : A¢ x ... x A¢ — R that measures
the "amount of agreement” among these classifiers. Note that the desired classifiers
should satisfy Eq. (4).

Inspired by Lemma 1, we can take the empirical total correlation gain of N samples,
i.e., the lower bound of Total Correlation as our maximization function. Specifically,
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given a reward function R, the empirical total correlation with respect to classifiers RIM],
a prior p € A¢ measures the empirical "amount of agreement” for these M classifiers at
the same sample (z}, ..., #M) € D,,, with additionally a punishment of them on different
samples: x}l e X1, ,x%f e XM with iy #ig # ... 00

1
TCGRI(eM s hM,p) = = SR (@), oo Y (@)

1 R(A (zL ), k™ (M ))-1
" NUY(N - M)! 2 e ' "

i1 FioFF NS

®)

for simplicity we denote TCg[R]({xZ[M] N RMI py as TCg™Y) . Intuitively, we
expect our classifiers to be consistent on the same sample; on the other hand, to disagree
on different samples to avoid learning a trivial solution that classifies all data points into
the same class.

Definition 3 (Bayesian posterior classifiers/aggregator). The hg,M] and (. are called

Bayesian posterior classifiers and Bayesian posterior aggregator if they satisfy
Vi, K7 (2™)e = Pr(Y = ¢ X™ = 2™); G (atM), = Pr(Y = ¢ XM = o [M]),

Note that from Eq. (5) that our maximization goal, i.e., TC' g(N ) relies on the form of
reward function R. The following Lemma tells us the form of optimal reward function,
with which we can finally give an explicit form of TC'g").

Lemma 3. The R, that maximizes the expectation of TCg™N) can be represented as
the Point-wise Total Correlation function, which is the function of Bayesian classifiers
and the prior of ground truth labels (p}).:

Ru(h (@), kM (™)) = 1+ PTC(a, ey 2™) = 1 + log 3 W
ceC Pc

Total Correlation Gain Bring R, to Eq. (5), we have:

1 ™ (x™)e
O Y A p) =1+ L 105y ML

N i ceC (pc)
— ' ' Z Z M_lm . (6)

N/(N_M) i1#i9%%ips ceC (Pe)

As inspired by Lemma 3, we have that these Bayesian posterior classifiers are maximizers
of the expected total correlation gain. Therefore, we can identify the equivalent class of
Bayesian posteriors by minimizing —7'C'¢‘™) on unlabeled dataset D,,. By additionally
minimize expected cross entropy (CE) loss on D;, we can identify the unique Bayesian
classifiers since they are respectively the minimizers of CE loss.

Theorem 3 (Main theorem). Define the expected total correlation gain eTC g(h[M 1 p):
1 M N\ ._ [M]. p[M]
erCg(h*,...,h" p):= ErEM]~UX[M] (TCg(:Ui ih 7]3))

Given the conditional independence assumption | and well-defined prior assumption 2,
we have that the maximum value of €T Cg is Total Correlation of M modalities, i.e.,
TC(X?Y,...,X™). Besides,
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Ground-truth — Maximizer (th],p*) is a maximizer of €TCg(h™],p). In other
words, VhIM] ¢ HIMY ¢ Ac, eTCg(hl,...,hM p*) > eTCg(h',...,h™ p). The
corresponding optimal aggregator is C, i.e., Cx (M), = Pr(Y = ¢| X M] = z[M]),

Maximizer — (Permuted) Ground-truth If the prior is well defined, then for any maxi-
mizer of eT'Cyg, (WM. ), there is a permutation [] : C — C such that:

W (a™)e =P(Y = [[(0)|X™ =a™), pe = P(Y =[] (c)) %)

The proof is in Appendix A. Note from our main theorem that by maximizing the
eT'Cyg, we can get the total correlation of M modalities, which is the ground-truth
label Y, and also the equivalent class of Bayesian posterior classifier under permutation
function. In order to identify the Bayesian posterior classifiers, we can further minimize
cross-entropy loss on labeled data D; since the Bayesian posterior classifiers are the only
minimizers of the expected cross-entropy loss. On the other hand, compared with only
using D; to train classifiers, our method can leverage more information from D,,, which
can be shown in the experimental result later.

4.3 Optimization

Since €1'Clg is intractable, we alternatively maximize the empirical total correlation gain,
ie., TCg™) to learn the optimal classifiers. To identify the unique Bayesian posteriors,
we should further utilize labeled dataset D; in a supervised way. Our whole optimization
process is shown in Appendix, which adopts iteratively optimization strategy that is
roughly contains two steps in each round: (i) We train the M classifiers using the classic
cross entropy loss on the labeled dataset D; and (ii) using our information-theoretic loss
function L1c on the unlabeled dataset D,,. To learn the Bayesian posterior classifiers
more accurately, the (ii) can help to learn the equivalent class of Bayesian Posterior
Classifiers and (i) is to learn the correct and unique classifiers. As shown in Figure 2,

by optimizing E%) (Eq. (5) with B denoting the number of samples in each batch), we
reward the M classifiers for their agreements on the same data point and punish the M
classifiers for their agreements on different data points.

Loss function Lcg for labeled data 'We use the classic cross entropy loss for labeled
data. Formally, for a batch of data points {:rEM] 11'3:1 drawn from labeled data D;, the

cross entropy loss Lcg for each classifier h™ is defined as LCE({(xEM], yi) Y2 M) o=
% Yi—log(h™(z")y,)-

Loss function E(Tf) for unlabeled data For a batch of data points {xZ[M] }B | drawn from

unlabeled data D,,, our loss function ng) = —TC’g(B ) that is defined in Eq. (6) with N
replaced by number of batch size B. When N is large, we only sample a fixed number
of samples from product of marginal distribution to estimate the second term in Eq. (6),
which makes training more amenable.

Prediction After optimization, we can get the classifiers {h,, }.,. The prior p. can

be estimated from data, i.e., p. = %ﬂuw) Then based on Eq. (7), we can get
the aggregator classifier ¢ for prediction. Specifically, given a new sample (] the

predicted label is § := arg max, ¢ (#[M1)...
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reward for their agreements. punish for their agreements
on the same data point on different data points
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Fig. 2. Empirical Total Correlation Gain T'C’ g(N)

Time Complexity The overall time complexity for optimizing our TCGM is linear scale
to the number of modalities, i.e., O (M ). Please refer to appendix for detailed analysis.

S5 Preliminary experiments

We first conduct a simulated experiment on syn-
thetic data to validate our theoretical result of
TCGM. Specifically, we will show the effective-
ness of Total Correlation Gain 7'C'g for unsuper-
vised clustering of data. Further, with few labeled
data, our TCGM can give accurate classification.
In more detail, we synthesize the data of three
modalities from a specific Gaussian distribution

Accuracy
5
3
3

3
®

—— TCGM Classification

P(X'y) (i = 1,2,3). The clustering accuracy is HR
. . a == TCGM Clustering
calculated as classification accuracy by assuming mo SR
the label is known. As shown in Figure 3, our . "

10 12
Percentage of labeled data

method TCGM has competitive performance com-
pared to well established clustering algorithms K- . .
means++ [2] and spectral clustering [25]. Based Fig. 3. Clustering and classification ac-
on the promising unsupervised learning result, as curacy.

shown by the light blue line (the top line) in Fig-

ure 3, our method can accurately classify the data

even with only a small portion of labeled data. In contrast, HGR [31] degrades since it
can only capture the linear dependence and fail when higher-order dependency exists.

6 Applications

In this section, we evaluate our method on various multi-modal classification tasks:
(i) News classification (Newsgroup) (ii) Emotion recognition: IEMOCAP, MOSI and
(>iii) Disease prediction of Alzheimer’s Disease on 3D medical Imaging: Alzheimer’s
Disease Neuroimaging Initiative (ADNI). Our method TCGM is compared with : CE
separately trains classifiers for each modality by minimizing cross entropy loss of only
labeled data; HGR [31] learns representation by maximizing correlation of different
modalities; and LMF [23] performs multimodal fusion using low-rank tensors. The
optimal hyperparameters are selected according to validation accuracy, among which the
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learning rate is optimized from {0.1,0.01,0.001,0.0001}. All experiments are repeated
five times with different random seeds. The mean test accuracies and standard deviations
of single classifiers the aggregator () are reported.

6.1 News Classification

Dataset Newsgroup [5] 8isa group of news classification datasets. Following [16],
each data point has three modalities, PAM, SMI and UMI, collected from three different
preprocessing steps °. We evaluate TCGM and the baseline methods on 3 datasets from
Newsgroup: News-M2, News-M5, News-M10. They contain 500, 500, 1000 data points
with 2, 5, 10 categories respectively. Following [33], we use 60% for training, 20% for
validation and 20% for testing for all of these three datasets.

Implementation details We synthesize two different label rates (the percentage of labeled
data points in each modality): {10%, 30%} for each dataset. We follow [33] for classifiers.
Adam with default parameters and learning rate v, = 0.0001,~; = 0.01 is used as the
optimizer during training. Batch size is set to 32. We further compare with two additional
baselines: VAT [24] uses adversarial training for semi-supervised learning; PVCC [33]
that considers the consistency of data points under different modalities.

PAM SMI LMI Al PAM SMI LMI Al PAM SMI LMI Al
CE  7820+421 8420£701 77404503 92004224 CE 64204390 67804820 5340%472 78004689 CE 27804440 31704486 3100£374 38.10+547
VAT 8060602 B8400+474 75804277 9080205 VAT  6560+182 6680+838 5240329 7940594 VAT 3070£125 3060+402 2740£305 3720520
PVCC  8080+£277 80.60+£297 7840+7.64 92204335  PVCC 67804838 67.00+122 54601602 7900+628  PVCC 3180289 34104311 3110+414  4640+508

HGR - - - 92404219 HGR - - - 79804740  HGR - - - 38204372
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Fig. 4. Test accuracies (mean =+ std. dev. ) on Newsgroups datasets

As shown in Fig. 4, TCGM achieves the best classification accuracy for both single
classifier and aggregators, especially when the label rate is small. This shows the efficacy
of utilizing the cross-modal information during training as compared to others that
are unable to utilize the cross-modal information. Moreover, we can achieve further
improvement by aggregating classifiers on all modalities, which shows the benefit of
aggregating knowledge from different modalities.

6.2 Emotion Recognition

Dataset We evaluate our methods on two multi-modal emotion recognition datasets:
IEMOCAP dataset [7] and MOSI dataset [34]. The goal for both datasets is to identify

$http://qwone.com/~jason/20Newsgroups/
® PAM (Partitioning Around Medoids preprocessing), SMI (Supervised Mutual Information
preprocessing) and UMI (Unsupervised Mutual Information preprocessing)
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speaker emotions based on the collected videos, audios and texts. The IEMOCAP consists
of 151 sessions of recorded dialogues, with 2 speakers per session for a total of 302
videos across the dataset. The MOSI is composed of 93 opinion videos from YouTube
movie reviews. We follow the settings in [23] for the data splits of training, validation
and test set. For [IEMOCAP, we conduct experiments on three different emotions: happy,
angry and neutral emotions; for MOSI dataset we consider the binary classification of
emotions: positive and negative.

Implementation details We synthesize three label rates for each dataset (the percent-
age of labeled data points in each modality): {0.5%,1%,1.5%} for IEMOCAP and
{1%, 2%, 3%} for MOSI. For a fair comparison, we follow architecture setting in [23].
We adopt the modality encoder architectures in [23] as the single modality classifiers for
CE and TCGM, while adopting the aggregator on the top of modality encoders for LMF
and HGR. Adam with default parameters and learning rate v, = 0.0001,~; = 0.001 is
used as the optimizer. The batch size is set to 32.

We report the AUC (Area under ROC curve) for the aggregators on all the modalities
and single modality classifiers by different methods. We only report the AUC of LMF
and HGR on all modalities since they do not have single modality classifiers. For single
modality classifiers, we show results on the text modality on happy emotion (d), audio
modality on neutral emotion (e) the video modality on angry emotion on IEMOCAP; and
(h) the video modality (i) the audio modality on MOSI. Please refer to supplementary
material for complete experimental result. As shown in Figure 5, aggregators trained by
TCGM outperform all the baselines given only tiny fractions of labeled data. TCGM
improves the AUC of the single modality classifiers significantly, which shows the
efficacy of utilizing the cross-modal information during the training of our method. As
label rates continue to grow, the advantage of our method over CE decreases since more
information is provided for CE to learn the ground-truth label.

Our method also outperforms other methods in terms of the prediction based on all
the modalities, especially when the label rate is small. This shows the superiority of our
method when dealing with a limited amount of annotations.

6.3 Disease prediction of Alzheimer’s Disease

Dataset Early prediction of Alzheimer’s Disease (AD) is attracting increasing attention
since it is irreversible and very challenging. Besides, due to privacy issues and high
collecting costs, an efficient classifier with limited labeled data is desired. To validate
the effectiveness of our method on this challenging task, we only keep labels of a limited
percentage of data, which is obtained from the most popular Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset'’, with 3D images SMRI and PET. DARTEL
VBM pipeline [2] is implemented to pre-process the SMRI data, and then images of PET
were reoriented into a standard 91 x 109 x 91 voxel image grid in MNI152 space, which
is same with sMRIs’. To limit the size of images, only the hippocampus on both sides
are extracted as input in the experiments. We denote subjects that convert to Alzheimer’s
disease (MCI,) as AD, and subjects that remain stable (MCI;) as NC (Normal Control).
Our dataset contains 300 samples in total, with 144 AD and 156 NC. We randomly
choose 60% for training, 20% for validation and 20% for testing stage.

0 yww.loni.ucla.edu/ADNI
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Fig.5. (a,b,c) AUC of Aggregators on happy, angry and neutral emotion recognition on
IEMOCAP data: (d, e,f) AUC on text, audio and video modality modality classifiers on
IEMOCAP: AUC of other composition of (modality, emotion) are listed in supplementary mate-
rial. (g,h,i) AUC on MOSI data: AUC of (g) Aggregators on all modalities and single classifiers
on (h) Video modality (i) Audio modality.

Implementation details We synthesize two different label rates (the percentage of labeled
data points): {10%,50%}. DenseNet is used as the classifier. Two 3D convolutional
layers with the kernel size 3 x 3 x 3 are adopted to replace the first 2D convolutional
layers with the kernel size 7 x 7. We use four dense blocks with the size of (6,12, 24, 16).
To preserve more low-level local information, we discard the first max-pooling layer that
follows after the first convolution layer. Adam with default parameters and learning rate
Yu =1 = 0.001 are used as the optimizer during training. We set Batch Size as only 12
due to the large memory usage of 3D images. Random crop of 64 x 64 x 64, random flip
and random transpose are applied as data augmentation.

Figure 6 shows the accuracy of classifiers for each modality and the aggregator. Our
method TCGM outperforms the baseline methods in all settings especially when the
label rate is small, which is desired since it is costly to label data.
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SMRI PET All SMRI PET All
CE 5448+876  5862+323  62.07+2.72 CE 63.79+3.66 60.69+2.83  6552+3.66
HGR - - 60.34 + 5.59 HGR - - 66.22 +4.16
TCGM 63.44+2.83 62.41+3.53 65.17+1.44 TCGM 65.86+3.09 62.76+1.97 67.24+2.10
ADNI, Label Rate 10% ADNI, Label Rate 50%

Fig. 6. Test accuracies (mean + std.) on ADNI dataset

SN NN S

MCI! (sMRI)  MCI? (sMRI) AD (sMRI) NC (sMRI)
MCI! (PET)  MCI? (PET) AD (PET) NC (PET)

Fig. 7. Volume (sMRI, top line) and SUV (PET, bottom line) of MCI}:, MCI?, AD and NC. Darker
color implies smaller volume and SUYV, i.e., more probability of being AD.

To further illustrate the advantage of our model over others in terms of leveraging the
knowledge of another modality, we visualize two MCl,s, denoted as MCI}; and MCIE,
which are mistakenly classified as NC by CE’s classifier for sMRI and PET modality,
respectively. The volume and standardized uptake value (SUV) (a measurement of the
degree of metabolism), whose information are respectively contained by SsMRI and PET
data, are linearly mapped to the darkness of the red and blue. Darker color implies
smaller volume and SUYV, i.e., more probability of being AD. As shown in Figure 7,
the volume (SUV) of MCI}: (MCIE) is similar to NC, hence it is reasonable for CE
to mistakenly classify it by only using the information of volume (SUV). In contrast,
TCGM for each modality can correctly classify both cases as AD, which shows the
better learning of the information intersection (i.e., the ground truth) during training,
facilitated by the leverage of knowledge from another modality.

7 Conclusion

In this paper, we propose an information-theoretic framework on multi-modal data,
Total Correlation Gain Maximization (TCGM), in the scenario of semi-supervised
learning. Specifically, we learn to infer the ground truth labels shared by all modalities
by maximizing the total correlation gain. Conditioning on a common assumption that
all modalities are independent given the ground truth label, it can be theoretically
proved our method can learn the Bayesian posterior classifier for each modality and the
Bayesian posterior aggregator for all modalities. Extensive experiments on Newsgroup,
IEMOCAP, MOSI and ADNI datasets are conducted and achieve promising results,
which demonstrates the benefit and utility of our framework.
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A Proofs

proof of Lemma 3. Note that the expected form of Eq. (5) is the right hand side of

Eq. (3), since {J:Z[M] }; are i.i.d from joint distribution U y(r. Therefore, from Lemma 1,
one can immediately get the conclusion. O

Lemma 4. Given a joint distribution p(z?, ...,z y), where y is a discrete random
variable, we can always find M independent random variables 24 2M such that
2 Lyand x™ = [, (y,z2™), form e [M].

Proof. This proof is a generalization of the Proposition in [1]. For z1,..., 25/ ixd
Uniform(0,1), then from [1] we have 2|y = F;, |, (z) where F, () = P(z"™ <

tly) where P(z™ < t|y) is the cumulative distribution function of p(z™|y). O

Lemma 5. Given assumption 1, then the Marginal-joint ratio (definition 1) R(x!, ..., xM)

has

Hmp(y|1‘m)

R(z!,...,z™) = e

B yeC p(y

Further, the optimal g to make the equality holds in Lemma 1 has

Hmp(y|;z:m)

1 M

g(a*, ...,z ) =1+log E —_—
gee ply)M-1

Proof.

R((El QTM) _ p(xlv“'ax]w)

I, p(x™)
~ Zyp(:rl,...,x
© yp(am)
Tyt aMy)p(y)
B Inp(2™)

Xy mmp(@tly)p(y)
B ITnp(z™)
Tmp(ylz™)

v p(y)M-t

One can immediately gets the conclusion for g from Lemma 1. O

M y)

Theorem 4 (Main theorem). Define the expected total correlation gain TCg(h', ..., h™  p)

as
- [M], ;[M]
f”EM] iiid. Ut (ACTC(xi 7h ap))

TCg(ht,...,hM p) =E

Given the conditional independence assumption 1 and well-defined prior assumption 2,
we have that
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. M . .
Ground-truth — Maximizer (hE ] ,P*) is a maximizer of MaXy., pmeHm peAc TCg(ht,..

in other words, YhM1 ¢ HIM] pe Ag,
TCg(ht,...hM p*) >TCg(h',....hM p*)

Maximizer — (Permuted) Ground-truth If the prior is well defined, then for any maxi-
mizer of TC'g, (™1, p), there is a permutation 7 : C - C such that:

B (@) = POY = 7(QIX™ = ™), Be = P(Y =7(c))
Proof. We have

11y hy (2™)
TCg(hlv ey hMap) = Ex[Mh—UX[M] (1 +log Z 7)

yeC p*(y)]\/l_l
HnLhT (mm)
-E,ono — (®
Vi y;c p*(y)M_l
Ground-truth — Maximizer From definition 1, i.e.,
R (x™)e =P(Y =clz™), (p*)c =P(Y =¢)

Inspired by Lemma 3 and 1, we have that the T'C g(hEM] ,p”) can achieve the maximum
value, which equals to TC(X?, ..., z).

Maximizer — (Permuted) Ground-truth For any maximizer (h[™] p), we have from
Lemma 3 that

R(WMM p) =1+ PTC(z, ..., M),

which means that the (iL[M 1. p) satisfies Eq. (4). With assumption 2, we have that there
exists a permutation pi : C — C such that

A (™). = P(Y = 7(c)|X™ = 2™), p. = P(Y = 7(c)).

B Algorithm
We show the pipeline of TCGM in Alg 1.

Time Complexity The overall loss function of our TCGM method is composed of

Lcg which is O(M) since it is repeatedly implemented for M classifiers and E%) ,

as the addition of two terms, namely the term (a) (% Yilog Y e %) and the

term (b) (5r7mgys Sineizersing Sece %) in Eq. (6). The term (a) with N
samples generated from joint distribution p(z!,..., M ) for each modality; hence, the
optimization of the term (a) is O(M ). For term (b) with N!/(N —M)! samples generated
from marginal distribution I7,,p(z™), it is the sum of N terms by grouping terms with
h™(x*) for each i € [N] with h™(2T*),..., k™ (z}}) form € [M] calculated ahead
(which is O(M)), hence is linear scale with respect to M. Therefore, the time complexity
for our loss function is O(M).

h M

D),
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Algorithm 1 TCGM Optimization

Require: Unlabeled dataset D,, = {xEM]},', labeled dataset D; = {(mEM],yi)}i, M classifiers
{h™(;0™)}M_,, epoch number T, learning rate -y,,y;, batch size N and hyperparameter p.
for epocht =1 - T do

form=1- M do
for batch b = 1 — [|D;|/B] do
Randomly sample a batch of samples:
By = {(="),y:)} 2, from D
Compute the Lcg loss:
L« Lce(Bi;h™(50™))
Update ©™: O™ « O™ — ,Yl%
end for
end for
for batch b = 1 - [(|D.| + |Di|)/B] do
Randomly sample a batch of samples:
Buul = {a:EM] 5. from D, uD,
Compute the Lrc loss:
L < Lrc(Buw; {h"(:0™) 1, P)
Update O ym, @™ « @™ - 'yu%
end for
end for

C Extended experiments results

We show the complete result of single modality classifiers on Emotion Recognition task
in Figure 6.
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Fig. 8. AUC of single modality classifiers by CE and TCGM.



