
SoftPoolNet: Shape Descriptor for Point Cloud
Completion and Classification

Yida Wang1, David Joseph Tan2, Nassir Navab1, and Federico Tombari1,2

1 Technische Universität München
2 Google Inc.

Abstract. Point clouds are often the default choice for many appli-
cations as they exhibit more flexibility and efficiency than volumetric
data. Nevertheless, their unorganized nature – points are stored in an
unordered way – makes them less suited to be processed by deep learning
pipelines. In this paper, we propose a method for 3D object completion
and classification based on point clouds. We introduce a new way of orga-
nizing the extracted features based on their activations, which we name
soft pooling. For the decoder stage, we propose regional convolutions, a
novel operator aimed at maximizing the global activation entropy. Fur-
thermore, inspired by the local refining procedure in Point Completion
Network (PCN), we also propose a patch-deforming operation to simu-
late deconvolutional operations for point clouds. This paper proves that
our regional activation can be incorporated in many point cloud architec-
tures like AtlasNet and PCN, leading to better performance for geomet-
ric completion. We evaluate our approach on different 3D tasks such as
object completion and classification, achieving state-of-the-art accuracy.

1 Introduction

Point clouds are unorganized sparse representations of a 3D point set. Compared
to other common representations for 3D data such as 3D meshes and voxel
maps, they are simple and flexible, while being able to store fine details of a
surface. For this reason, they are frequently employed for many applications
within 3D perception and 3D computer vision such as robotic manipulation
and navigation, scene understanding, and augmented/virtual reality. Recently,
deep learning approaches have been proposed to learn from point clouds for 3D
perception tasks such as point cloud classification [4,14,18,19] or point cloud
segmentation [11,13,14,17,23]. Among them, one of the key breakthroughs in
handling unorganized point clouds was proposed by PointNet [18], introducing
the idea of a max pooling in the feature space to yield permutation invariance.

An interesting emerging research trend focusing on 3D data is the so-called
3D completion, where the geometry of a partial scene or object acquired from a
single viewpoint, e.g. through a depth map, is completed of the missing part due
to (self-)occlusion as visualized in Fig. 1. This can be of great use to aid standard
3D perception tasks such as object modeling, scene registration, part-based seg-
mentation and object pose estimation. Most approaches targeting 3D completion

ar
X

iv
:2

00
8.

07
35

8v
1 

 [
cs

.C
V

] 
 1

7 
A

ug
 2

02
0



2 Y. Wang et al.

Input ForkNet FoldingNet

PCNAtlasNetGround Truth
Our Method

Fig. 1: This paper proposes a method that reconstructs 3D point cloud models
with more fine details.

have been proposed for volumetric approaches, since 3D convolutions are natu-
rally suited to this 3D representation. Nevertheless, such approaches bring in the
limitations of this representation, including loss of fine details due to discretiza-
tion and limitations in scaling with the 3D size. Recently, a few approaches have
explored the possibility of learning to complete a point cloud [9,25,26].

This paper proposes an encoder-decoder architecture called SoftPoolNet,
which can be employed for any task that processes a point cloud as input in
order to regress another point cloud as output. One of the tasks and a main
focus for this work is 3D object completion from a partial point cloud.

The theoretical contribution of SoftPoolNet is twofold. We first introduce soft
pooling, a new module that replaces the max-pooling operator in PointNet by
taking into account multiple high-scoring features rather than just one. The intu-
ition is that, by keeping multiple features with high activations rather than just
the highest, we can retain more information while keeping the required permuta-
tion invariance. A second contribution is the definition of a regional convolution
operator that is used within the proposed decoder architecture. This operator
is designed specifically for point cloud completion and relies on convolving local
features to improve the completion task with fine details.

In addition to evaluating SoftPoolNet for point cloud completion, we also
evaluate on the point cloud classification to demonstrate its applicability to
general point cloud processing tasks. In both evaluations, SoftPoolNet obtains
state of the art results on the standard benchmarks.

2 Related work

Volumetric completion. Object [7] and scene completion [20,22] are typically
carried out by placing all observed elements into a 3D grid with fixed resolu-
tion. 3D-EPN [7] completes a single object using 3D convolutions while 3D-
RecGAN [24] further improves the completion performance by using discrimina-
tive training. As scene completion contains objects in different scales and more
random relative position among all of them, SSCNet [20] proposes a 3D volu-
metric semantic completion architecture using dilated convolutions to recognize



SoftPoolNet 3

objects with different scales. ForkNet [22] designs a multi-branch architecture to
generate realistic training data to supplement the training.

Point cloud completion. Object completion based on point cloud data change
partial geometries without using a 3D fixed grid. They represent completed
shapes as a set of points with 3D coordinates. For instance, FoldingNet [25]
deforms a 2D grid from a global feature such as PointNet [18] feature to an
output with a desirable shape. AtlasNet [9] generates an object with a set of
local patches to simulate mesh data. But overlaps between different local patches
makes the reconstruction noisy. MAP-VAE [10] predicts the completed shape by
joining the observed part with the estimated counterpart.

CNNs for point clouds. Existing works like PointConv [23] and PointCNN [13]
index each point with k-nearest neighbour search to find local patches, where
they then apply the convolution kernels on those local patches. Regarding point
cloud deconvolutional operations, FoldingNet [25] uses a 2D grid to help generate
a 3D point cloud from a single feature. PCN [26] further uses local FoldingNet
to obtain a fine-grained output from a coarse point cloud with low resolution
which could be regarded as an alternative to point cloud deconvolution.

3 Soft pooling for point features

Given the partial scan of an object, the input to our network is a point cloud
with Nin points written in the matrix form as Pin = [xi]

Nin
i=1 where each point is

represented as the 3D coordinates xi = [xi, yi, zi]. We then convert each point
into a feature vector fi with Nf elements by projecting every point with a point-
wise multi-layer perceptron [18] (MLP) Wpoint with three layers. Thus, similar

to Pin, we define the Nin × Nf feature matrix as F = [fi]
Nin
i=1. Note that we

applied a softmax function to the output neuron of MLP so that the elements
in fi ranges between 0 and 1.

The main challenge when processing a point cloud is its unstructured ar-
rangement. This implies that changing the order of the points in Pin describes
the same point cloud, but generates a different feature matrix that flows into
our architecture with convolutional operators. To solve this problem, we propose
to organize the feature vectors in F so that their k-th element are sorted in a
descending order, which is denoted as F′k. Note that k should not be larger than
Nf . A toy example of this process is depicted in Fig. 2(a) where we assume that
there are only five points in the point cloud and arrange the five feature vectors
from F = [fi]

5
i=1 to F′k = [fi]i={3,5,1,2,4} by comparing the k-th element of each

vector. Repeating this process for all the Nf elements in fi, all F′k together result
to a 3D tensor F′ = [F′1,F

′
2, . . .F

′
Nf

] with the dimension of Nin ×Nf ×Nf . As

a result, any permutation of the points in Pin generate the same F′.
Sorting the feature vectors in a descending order highlights the ones with the

highest activation values. Thus, by selecting the first Nr feature vectors from
all the F′k as shown in Fig. 2(b), we assemble F∗ that accumulates the features



4 Y. Wang et al.

0.4

0.2

0.9

0.1

0.7

0.9

0.7

0.4

0.2

0.1

sort concatenate

Fig. 2: Toy examples of (a) sorting the the k-th element of the vectors in the
feature matrix F to build F′k and consequently F′ and (b) concatenation of the
first Nr rows of F′k to construct the 2D matrix F∗ which corresponds to the
regions with high activations.

with the highest activations. Altogether, the output of soft pooling is the Nf ·Nr

point features. Since each feature vector corresponds to a point in Pin, we can
interpret the first Nr feature vectors as a region in the point cloud. The effects
of the activations on the 3D reconstruction are illustrated in Fig. 3, where the
point cloud is divided into Nf regions. Later in Sec. 6, we discuss on how to
learn Wpoint by incorporating these regions. That section introduces several loss
functions which optimize towards entropy, Chamfer distance and earth-moving
distance such that each point is optimized to fall into only one region and to be
selected for F∗ by maximizing the k-th element of the feature vector associated
to the same region.

Similar to PointNet [18], we also rely on MLP to build the feature matrix
F. However, PointNet directly applies max-pooling on F to produce a vector
while we try to generalize this approach and sort the feature vectors in order to
assemble a matrix F∗ as illustrated in Fig. 2. Considering the distinction between
the two approaches, we refer our approach as soft pooling. Fundamentally, in
addition to the increased amount of information from our feature vectors, the
advantage of our method is the ability to apply regional convolutional operations
to F∗, as discussed in Sec. 4. The differences are evident in Fig. 4, where the
proposed method achieves detailed results on reconstructing all the six legs while

Fig. 3: Deconstructing the learned regions (unsupervised) that correspond to
different parts of the car.



SoftPoolNet 5

(a) Input (b) Ground Truth (d) Ours(c) PointNet 

Fig. 4: Comparison of our method and PointNet [18] where PointNet reconstructs
the more typical four-leg table instead of six in (c).

PointNet follows the more generic structure of the table with four. This proves
that soft pooling makes our decoder able to take all observable geometries into
account to complete the shape, while the max-pooled PointNet feature cannot
reveal the rarely seen geometry.

4 Regional convolution

Operating on F∗, we introduce the convolutional kernel Wconv that transforms
F∗ to a new set of points Pconv by taking several point features into considera-
tion. We structure Wconv with a dimension of Np ×Nf × 3 where Np represent
the number of points which are taken into consideration such that

Pconv(i, j) =

Nf∑

l=1

Np∑

k=1

F∗(i+ k, l)Wconv(j, k, l) . (1)

Here, the kernel slides only inside each region of features without taking features
from two different regions in one convolutional operation. As the kernel size
allows it to cover Np features, we pad each region with Np−1 duplicated samples
at the end of each region in order to keep the output resolution the same as Nin.
Experimentally, we tried different numbers of Np ranging from 4 to 64 and
evaluated that 32 generates the best results. Learning the values in Wconv is
discussed in Sec. 6.

In addition, we use a convolution stride which is set as a value smaller than
Np to change the output resolution in terms of the number of point features.
With a stride of S, we then take samples every S point feature in F∗. Notice
that, by using a stride which is smaller than 1, we can also upsample F∗ by
interpolating 1

S − 1 new points between two points then apply the convolution
kernel again. This is an essential tool in reconstructing the object from a partial
scan.

5 Network architecture

We build an encoder-decoder architecture which consists of MLP and our re-
gional convolutions, respectively. Serving as the input to our network, we per-
mutate the input scans and resample 1,024 points. If the partial scans have less
than 1,024 points, we then duplicate the missing samples.



6 Y. Wang et al.

Interpolates to a 
higher resolution 16,384 points256 points

R
eg

io
n

al
 

C
o

n
vo

lu
ti

o
n

R
eg

io
n

al
 

C
o

n
vo

lu
ti

o
n

Converts from 
region to points

Fig. 5: Decoder architecture of SoftPoolNet with two regional convolution that
converts the features from the regions to point clouds and interpolates from the
coarse 256 points to a higher resolution with 16,384 points.

Our encoder is a point-wise MLP that generates the output neuron with a
dimension of [512, 512, 8]. We then perform soft pooling as described in Sec. 3
that produces F∗ with the size of [256, 8] by setting Nr to 32 and Nf to 8,
resulting an output of Nf ·Nr = 256 features.

Finally, for the decoder, we propose a two-stage point cloud completion ar-
chitecture which is trained end-to-end. The output of the first is used as the
input of the second point cloud completion network. Both of them produces the
completed point cloud but with different resolutions. Illustrated in Fig. 5, we
construct the decoder with two regional convolutions from Sec. 4. The first out-
put P′out is fixed at 256 while the second Pout produces a maximum resolution
of 16,384.

6 Loss functions

During learning, we evaluate whether the predicted point feature Pout matches
the given ground truth Pgt through the Chamfer distance. Similar to [9,25,26],
we use the regression loss function for the shape completion from a point cloud

Lcomplete(Wpoint,Wconv) = Chamfer(Pout,Pgt) . (2)

We observed that there are two major drawbacks in using this loss function alone
– the reconstructed surface tends to be either curved on the sharp edges such
FoldingNet [25] or having noisy points appear on flat surfaces such as AtlasNet [9]
and PCN [26]. In this work, we tackle these problems by finding local regions
first, then by optimizing the inter- and intra-regional relationships.

Moreover, while FoldingNet [25] sacrifices local details to present the entire
model with a single mesh having smooth surface, AtlasNet [9] and PCN [26] use
local regions (or patches) to increase the details in the 3D model. However, both
of them [9,26] have severe overlapping effects between adjacent regions which
makes the generated object noisy and the regions discontinuous. To solve this
problem, we aim at reducing the overlaps between two adjacent regions.

6.1 Learning activations through regional entropy

Considering that the dimension of a single feature is Nf , we can directly define
Nf regions for all features. Given the probabilities of regions to which the feature



SoftPoolNet 7

fi belong, we want to optimize the inter- and intra-regional relationships among
the features. We directly present the probability of the feature fi belonging to
all Nf regions by applying the softmax function to fi as

P (fk, i) =
fk[i]

∑Nf

j=1 fk[j]
. (3)

Since the information entropy evaluates both the distribution and the confidence
of the probabilities of a set of data, we define the feature entropy and the regional
entropy based on the regional probability of the feature.

The goal of the inter-regional loss function is to similarly distribute the num-
ber of points throughout the regions. We define the regional entropy as

Er = − 1

B

B∑

j=1

R∑

i=1

[(
1

N

N∑

k=1

P (fk, i)

)
· log

(
1

N

N∑

k=1

P (fk, i)

)]
(4)

where B is the batch-size. Here, we want to maximize Er. Considering that the
upper-bound of Er is − log 1

R = log(R), we can then define the inter-regional loss
function as

Linter(Wpoint) = log(R)− Er (5)

in order to acquire a positive loss function. Once Er is close to log(R), each region
would contain similar amount of point features. Interestingly, we can select the
number of regions by evaluating how much the regional entropy Er differs from
its upper-bound. The best number of regions should be the one with a small
Linter. This is evaluated later in Table 6.

On the other hand, the goal of the intra-regional loss function is to boost
the confidence of each feature to be in a single region. The intra-regional loss
function then minimize the feature entropy

Lintra(Wpoint) = − 1

N

1

B

N∑

k=1

B∑

j=1

Nf∑

i=1

P (fk, i) logP (fk, i) . (6)

The optimum case of the feature entropy is for each feature to be a one-hot code,
i.e. when only one element is 1 while the others are zero.

6.2 Reducing the overlapping regions

Although Lintra tries to make each point feature confident about the region to
which it belongs, instances exist where many adjacent points would fall under
different regions. For example, we observe in Fig. 6 that patches from different
regions are stacked on top of each other, producing noisy reconstructions. No-
tably, this introduces unexpected results when fitting a mesh to the point cloud.
Thus, we want to minimize region overlap by optimizing the network to restrict
the connection between adjacent regions to their boundaries.



8 Y. Wang et al.

(a) without (b) with

Fig. 6: Effects of without and with Lboundary where the wings are not planar and
the engines are less visible in (a). Note that the colors represent different regions.

(a) Input (b) Ground Truth
(c) Ours without 

(d) Ours

Fig. 7: Effects of without and with Lpreserve where the seat is missing in (c).

First, each point is assigned to a region with the highest activation. All points
that belong to region i but has activation for region j larger than a threshold
τ are included in the set Bji . Inversely, the points that belong to region j but
have activation for region i larger than τ are added in the set Bij . Note that,

if both sets Bji and Bij are not empty, the regions i and j are then adjacent.

Thus, by minimizing the Chamfer distance between Bji and Bij , we can make the
overlapping sets of points smaller such that the optimal result is a line. We then
define the loss function for the boundary as

Lboundary(Wpoint,Wconv) =

Nf∑

i=1

Nf∑

j=i

Chamfer(Bji ,Bij) (7)

where both Wpoint and Wconv are optimized. After experimenting on different
values of τ from 0.1 to 0.9, we set τ to be 0.3.

6.3 Preserving the features from MLP

After sorting and filtering the features to produce F∗, some feature vectors in
F∗ are duplicated while some vectors from F are missing in F∗. To avoid these,
we introduce the loss function

Lpreserve(Wpoint) = Earth-moving(F∗,F) . (8)

Since the earth moving distance [12] is not efficient when the size of the samples
is large, we then randomly select 256 vectors from F and F∗. Considering that
the feature dimensions in F and F∗ are both Nf , the earth moving distance



SoftPoolNet 9

then takes features with Nf dimension as input. In practice, Fig. 7 visualizes
the effects of Lpreserve in the reconstruction, where removing this loss produce
a large hole on the seat while incorporating this loss builds a well-distributed
point cloud.

7 Experiments

For all evaluations, we train our model with an NVIDIA Titan V and param-
eterize it with a batch size of 8. Moreover, we apply the Leaky ReLU with a
negative slope of 0.2 on the output of each regional convolution output.

7.1 Object completion on ShapeNet

We evaluate the performance of the geometric completion of a single object on
the ShapeNet [5] database where training data are paired point clouds of the
partial scanning and the completed shape. To make it comparable to other ap-
proaches, we adopt the standard 8 category evaluation [26] for a single object
completion. As rotation errors are common in the partial scans, we further eval-
uate our approach against other works on the ShapeNet database with rotations.
We also evaluate the performance on both high and low resolutions which contain
16,384 and 2,048 points, respectively.

We compare against other point cloud completion approaches such as PCN [26],
FoldingNet [25], AtlasNet [9] and PointNet++ [19]. To show the advantages over
volumetric completion, we also compare against 3D-EPN [24] and ForkNet [22]
with an output resolution of 64 × 64 × 64. Notably, we achieve the best results
on most objects and in all types of evaluations as presented in Table 1, Table 2
and Table 3.

An interesting hypothesis is the capacity of Lboundary to be integrated in other
existing approaches. Thus, Table 1 and Table 2 also evaluate this hypothesis
and prove that this activation helps FoldingNet [25], PCN [26] and AtlasNet [9]

Output Resolution = 16,384

Method plane cabinet car chair lamp sofa table vessel Avg.

3D-EPN [7] 13.16 21.80 20.31 18.81 25.75 21.09 21.72 18.54 20.15
ForkNet [22] 9.08 14.22 11.65 12.18 17.24 14.22 11.51 12.66 12.85
PointNet++ [19] 10.30 14.74 12.19 15.78 17.62 16.18 11.68 13.52 14.00
FoldingNet [25] 5.97 10.80 9.27 11.25 12.17 11.63 9.45 10.03 10.07
FoldingNet + Lboundary 5.79 10.61 8.62 10.33 11.56 11.05 9.41 9.79 9.65
PCN [26] 5.50 10.63 8.70 11.00 11.34 11.68 8.59 9.67 9.64
PCN + Lboundary 5.13 9.12 7.58 9.35 9.40 9.31 7.30 8.91 8.26
Our Method 4.01 6.23 5.94 6.81 7.03 6.99 4.84 5.70 5.94

Table 1: Completion evaluated by means of the Chamfer distance (multiplied by
103) with the output resolution of 16,384.



10 Y. Wang et al.

Output Resolution = 2,048

Method plane cabinet car chair lamp sofa table vessel Avg.

FoldingNet [25] 11.18 20.15 13.25 21.48 18.19 19.09 17.80 10.69 16.48
FoldingNet + Lboundary 11.09 19.95 13.11 21.27 18.22 19.06 17.62 10.10 16.30
AtlasNet [9] 10.37 23.40 13.41 24.16 20.24 20.82 17.52 11.62 17.69
AtlasNet + Lboundary 9.25 22.51 12.12 22.64 18.82 19.11 16.50 11.53 16.56
PCN [26] 8.09 18.32 10.53 19.33 18.52 16.44 16.34 10.21 14.72
PCN + Lboundary 6.39 16.32 9.30 18.61 16.72 16.28 15.29 9.00 13.49
TopNet [21] 5.50 12.02 8.90 12.56 9.54 12.20 9.57 7.51 9.72
Our Method 4.76 10.29 7.63 11.23 8.97 10.08 7.13 6.38 8.31
– without Linter 10.82 20.45 15.21 20.19 18.05 18.58 15.65 8.81 15.97
– without Lintra 5.23 16.10 12.49 14.62 13.90 12.37 12.96 5.72 11.67
– without Linter, Lintra 10.91 20.54 15.27 20.28 18.16 18.66 15.75 8.91 16.06
– without Lboundary 5.46 10.98 8.27 11.95 9.51 10.92 7.78 7.40 9.03
– without Lpreserve 10.29 19.75 14.13 19.35 17.88 18.21 15.23 8.11 15.37

Table 2: Completion evaluated using the Chamfer distance (multiplied by 103)
with the output resolution of 2,048.

Output Resolution = 1,024

Method plane cabinet car chair lamp sofa table vessel Avg.

3D-EPN [7] 6.20 7.76 8.70 7.68 10.73 8.08 8.10 8.17 8.18
PointNet++ [19] 5.96 11.62 6.69 11.06 18.58 10.26 8.61 8.38 10.14
FoldingNet [25] 15.64 22.13 17.46 29.74 32.00 24.57 18.99 21.88 22.80
PCN [26] 3.88 7.07 5.50 6.81 8.46 7.24 6.01 6.27 6.40
DeepSDF [16] 3.88 - - 5.63 - 4.68 - - -
LGAN [3] 3.32 - - 5.59 - - - - -
MAP-VAE [10] 3.23 - - 5.57 - - - - -
Our Method 2.52 5.49 4.08 5.20 6.17 5.25 4.61 5.80 4.89

Table 3: Completion results using the Earth-Moving distance (multiplied by 102)
with the output resolution of 1,024. We report the values of DeepSDF [16] from
their original paper by rescaling according to the difference of point density.

perform better. Nevertheless, even with such improvements, the complete version
of the proposed method still outperforms them.

7.2 Car completion on KITTI

The KITTI [8] dataset present partial scans of real-world cars using Velodyne
3D laser scanner. We adopt the same training and validating procedure for car
completion as proposed by PCN [26]. We train a car completion model based on
the training data generated from ShapeNet [5] and test our completion method
on sparse point clouds generated from the real-world LiDAR scans. For each
sample, the points within the bounding boxes are extracted with 2,483 partial



SoftPoolNet 11

Method Fidelity MMD Consistency

FoldingNet [25] 0.03155 0.02080 0.01326
AtlasNet [9] 0.03461 0.02205 0.01646
PCN [26] 0.02800 0.01850 0.01163
Our Method 0.02171 0.01465 0.00922

PCN [26] (rotate) 0.03352 0.02370 0.01639
Our Method (rotate) 0.02392 0.01732 0.01175

Table 4: Car completion on LiDAR scans from KITTI.

point clouds. Each point cloud is then transformed to the box’s coordinates to
be completed by our model then transformed back to the world frame. PCN [26]
proposed three metrics to evaluate the performance of our model: (1) Fidelity,
i.e. the average distance from each point in the input to its nearest neighbour in
the output (i.e. measures how well the input is preserved); (2) Minimal Match-
ing Distance (MMD), i.e. the Chamfer distance between the output and the
car’s point cloud nearest neighbor from ShapeNet (i.e. measures how much the
output resembles a typical car); and, (3) Consistency, the average Chamfer dis-
tance between the completion outputs of the same instance in consecutive frames
(i.e. measures how consistent the networks outputs are against variations in the
inputs).

Table 4 shows that we achieve state of the art on the metrics compared
to FoldingNet [25], AtlasNet [9] and PCN [26]. When we introduce random
rotations on the bounding box in order to simulate errors in the initial stages,
we still acquire the lowest errors.

7.3 Classification on ModelNet and PartNet

We evaluate the performance of the features in term of classification on Mod-
elNet10 [27], ModelNet40 [27] and PartNet [15] datasets. ModelNet40 contains
12,311 CAD models in 40 categories. Here, the training data contains 9,843
samples and the testing data contains 2,468 samples. Following RS-DGCNN [2],
a linear Support Vector Machine [6] (SVM) is trained on the representations
learned in an unsupervised manner on the ShapeNet dataset. RS-DGCNN [2]
divides the point cloud of the objects into several regions by positioning the ob-
ject in a pre-defined voxel grid, then use the regional information to help train
latent feature. In Table 5, the proposed method outperforms RS-DGCNN [2] by
1.64% accurracy on ModelNet40 dataset, which shows that our feature contains
better categorical information. Notably, similar results are also acquired from
ModelNet10 [27] and PartNet [15] with their respective evaluation strategy.

7.4 Ablation study

Loss functions. In the reconstruction and classification experiments, Table 2
and Table 5 also include the ablation study that investigates the effects of the



12 Y. Wang et al.

Method ModelNet40 [27] ModelNet10 [27] PartNet [15]

VConv-DAE 75.50% 80.50% -
3D-GAN 83.30% 91.00% 74.23%
Latent-GAN 85.70% 95.30% -
FoldingNet 88.40% 94.40% -
VIP-GAN 90.19% 92.18% -
RS-PointNet [2] 87.31% 91.61% 76.95%
RS-DGCNN [2] 90.64% 94.52% -
KCNet [1] 91.0% 94.4% -

Our Method 92.28% 96.14% 84.32%
– without Linter 89.40% 95.75% 81.13%
– without Lintra 83.70% 90.21% 79.28%
– without Linter, Lintra 82.97% 90.02% 78.41%
– without Lboundary 88.26% 95.01% 80.86%
– without Lpreserve 86.09% 92.27% 79.05%

Table 5: Object classification on ModelNet40 [27], ModelNet40 [27] and Part-
Net [15] datasets in terms of accuracy.

loss functions from Sec. 6. For both experiments, we notice all loss functions are
critical to achieve good results since each of them focuses on different aspects.

Activations. Since the number of regions is one of the hyper-parameters in our
approach, we evaluate on the performance with different number of regions quan-
titatively in Table 6. These results demonstrate that the accuracy for the shape
completion is increasing as the number of regions increases from 2 to 8, then
the performance gradually drops as the number of regions continues to increase
from 8 to 32. By observing Linter at the same time, we find that it achieves the
minimum value of 0.20 when there are 8 regions as well. This proves that Linter

can be used as an indicator for whether the expected number of regions could
be used or not.

Moreover, Fig. 8 shows the regional activations when we shuffle the sequence
of points in the partial scan. We can see that both the reconstructed geometry
relative sub-regions are identical. So, it illustrates that, by using the proposed
regional activations, our model is permutation invariant, which indicates that
the reordered point cloud is suitable to perform convolutions.

(Nf , Nr) (2, 128) (4, 64) (8, 32) (16, 16) (32, 8)

Chamfer Distance 7.80 6.31 5.94 6.27 6.75
Linter 0.41 0.67 0.20 0.49 1.33

Table 6: Influence of Nf and Nr on the Chamfer distance (multiplied by 103)
and Linter.



SoftPoolNet 13

1 2 3 4 5 6

Fig. 8: With identical results, this evaluation shows the robustness of the recon-
struction when we randomly shuffle the input point cloud.

Point cloud versus volumetric data. In addition to achieving worse numerical re-
sults in Sec. 7.1, volumetric approaches have smaller resolutions than the point
cloud approaches due to the memory constraints. The difference becomes more
evident in Fig. 9, where ForkNet [22] is limited by a 64×64×64 grid. Nevertheless,
both the volumetric and point cloud approaches have difficulty in reconstruct-
ing thin structures. For instance, the volumetric approach tends to ignore the
joints between the wheels and car chassis in Fig. 9 while FoldingNet [25] and
AtlasNet [9] only use large surface to cover the area of wheels. In contrast, our
approach is capable of reconstructing the thin structures quite well. Moreover,
in Table 7, we also achieve the lowest inference time compared to all point cloud
and volumetric approaches.

Method Size (MB) Inference Time (s) Closed Surface Type of Data

3D-EPN [7] 420 - Yes Volumetric
ForkNet [22] 362 - Yes Volumetric
FoldingNet [25] 19.2 0.05 Yes Points
AtlasNet [9] 2 0.32 No Points
PCN [26] 54.8 0.11 No Points
DeepSDF [16] 7.4 9.72 Yes SDF
Our Method 37.2 0.04 Yes Points

Table 7: Overview of the object completion methods. The inference time is the
amount of time to conduct inference on a single sample.



14 Y. Wang et al.

In
p

u
t

O
u

r 
M

et
h

o
d

Fo
ld

in
gN

et
A

tl
as

N
et

P
C

N
G

ro
u

n
d

 T
ru

th
Fo

rk
N

et

Failure Case

Fig. 9: Evaluated on ShapeNet [5], comparison of shape completion based on
ForkNet [22], FoldingNet [25], AtlasNet [9] and PCN [26] against our method.

8 Conclusion

This paper introduced the SoftPool idea as a novel and general way to extract
rich deep features from unordered point sets such as 3D point clouds. Also,
it proposed a state-of-the-art point cloud completion approach by designing a
regional convolution network for the decoding stage. Our numerical evaluation
reflects that our approach achieves the best results on different 3D tasks, while
our quantitative results illustrate the reconstruction and completion ability of
our method with respect to ground truth.



SoftPoolNet 15

References

1. Mining point cloud local structures by kernel correlation and graph pooling. In:
CVPR (2018) 12

2. Self-supervised deep learning on point clouds by reconstructing space. In: NIPS
(2019) 11, 12

3. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3D point clouds. In: Dy, J., Krause, A. (eds.) Proceed-
ings of the 35th International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 80, pp. 40–49. PMLR, Stockholmsmssan, Stock-
holm Sweden (10–15 Jul 2018) 10

4. Arief, H.A., Arief, M.M., Bhat, M., Indahl, U.G., Tveite, H., Zhao, D.: Density-
adaptive sampling for heterogeneous point cloud object segmentation in au-
tonomous vehicle applications. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops. pp. 26–33 (2019) 1

5. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015) 9, 10, 14

6. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297
(1995) 11

7. Dai, A., Qi, C.R., Nießner, M.: Shape completion using 3d-encoder-predictor cnns
and shape synthesis. In: Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR). vol. 3 (2017) 2, 9, 10, 13

8. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research 32(11), 1231–1237 (2013)
10

9. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mch ap-
proach to learning 3d surface generation. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2018) 2, 3, 6, 9, 10, 11, 13, 14

10. Han, Z., Wang, X., Liu, Y.S., Zwicker, M.: Multi-angle point cloud-vae: Unsu-
pervised feature learning for 3d point clouds from multiple angles by joint self-
reconstruction and half-to-half prediction. In: The IEEE International Conference
on Computer Vision (ICCV) (October 2019) 3, 10

11. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with
superpoint graphs. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 4558–4567 (2018) 1

12. Li, P., Wang, Q., Zhang, L.: A novel earth mover’s distance methodology for image
matching with gaussian mixture models. In: The IEEE International Conference
on Computer Vision (ICCV) (December 2013) 8

13. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on x-
transformed points. In: Advances in Neural Information Processing Systems. pp.
820–830 (2018) 1, 3

14. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network
for point cloud analysis. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 8895–8904 (2019) 1

15. Mo, K., Zhu, S., Chang, A.X., Yi, L., Tripathi, S., Guibas, L.J., Su, H.: PartNet: A
large-scale benchmark for fine-grained and hierarchical part-level 3D object under-
standing. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2019) 11, 12



16 Y. Wang et al.

16. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 165–174
(2019) 10, 13

17. Pham, Q.H., Nguyen, T., Hua, B.S., Roig, G., Yeung, S.K.: Jsis3d: Joint semantic-
instance segmentation of 3d point clouds with multi-task pointwise networks and
multi-value conditional random fields. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 8827–8836 (2019) 1

18. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 652–660 (2017) 1, 3, 4, 5

19. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: Advances in Neural Information Processing
Systems (NIPS) (2017) 1, 9, 10

20. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic
scene completion from a single depth image. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). IEEE (2017) 2

21. Tchapmi, L.P., Kosaraju, V., Rezatofighi, H., Reid, I., Savarese, S.: Topnet: Struc-
tural point cloud decoder. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 383–392 (2019) 10

22. Wang, Y., Tan, D.J., Navab, N., Tombari, F.: Forknet: Multi-branch volumetric
semantic completion from a single depth image. In: Proceedings of the IEEE In-
ternational Conference on Computer Vision. pp. 8608–8617 (2019) 2, 3, 9, 13,
14

23. Wu, W., Qi, Z., Fuxin, L.: Pointconv: Deep convolutional networks on 3d point
clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 9621–9630 (2019) 1, 3

24. Yang, B., Rosa, S., Markham, A., Trigoni, N., Wen, H.: Dense 3d object recon-
struction from a single depth view. IEEE transactions on pattern analysis and
machine intelligence (2018) 2, 9

25. Yang, Y., Feng, C., Shen, Y., Tian, D.: Foldingnet: Point cloud auto-encoder via
deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. pp. 206–215 (2018) 2, 3, 6, 9, 10, 11, 13, 14

26. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: Pcn: Point completion net-
work. In: 2018 International Conference on 3D Vision (3DV). pp. 728–737. IEEE
(2018) 2, 3, 6, 9, 10, 11, 13, 14

27. Zhirong Wu, Song, S., Khosla, A., Fisher Yu, Linguang Zhang, Xiaoou Tang, Xiao,
J.: 3d shapenets: A deep representation for volumetric shapes. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1912–1920
(2015) 11, 12



SoftPoolNet: Shape Descriptor for Point Cloud
Completion and Classification

Yida Wang1, David Joseph Tan2, Nassir Navab1, and Federico Tombari1,2

1 Technische Universität München
2 Google Inc.

1 Comparison of SoftPoolNet to PointNet and PCN

Our architecture is composed by two parts: encoder and decoder. The encoder
takes the partial scan as input. We process the partial scans with our novel soft
pooling to produce the ordered feature F ∗. Then, the decoder takes the feature
F ∗ as input and apply our regional convolution twice to produce the point clouds
with resolutions of 256 and 16,384 successively.

Notably, there are some similar components between our encoder and Point-
Net [?], as well as our decoder and PCN [?]. The following sections discuss the
distinction in more detail.

1.1 Distinction of our encoder from PointNet

Each point on the cloud goes through the multi-layer perceptron (MLP) to
accumulate the feature vectors into the matrix F. Then, we sort the feature
vectors in a descending order based on the k-th element of each vector. The
sorted matrix is denoted as F′i. After independently sorting all Nf elements,
we collect the matrices to form the tensor F′ as shown in Fig. 1(a). We then
build our softpool feature by taking the first Nr elements of each matrix and
concatenate them to F∗.

concatenate concatenate

Fig. 1: Comparison between (a) our soft-pool operation and (b) max-pooling
from PointNet, where the feature from PointNet is only a subset of our feature.

ar
X

iv
:2

00
8.

07
35

8v
1 

 [
cs

.C
V

] 
 1

7 
A

ug
 2

02
0



2 Y. Wang et al.

When comparing our softpool feature F∗ with the feature from PointNet [?]
denoted as FPN, PointNet executes a max-pooling operation on F′ as illustrated
in Fig. 1(b). Assuming that both features are derived from the same F′ produced
by an MLP, we can conclude that FPN is a subset of our feature where

FPN =
[
F′1[1], F′2[2], F′3[3], . . . F′Nf

[Nf ]
]

(1)

only takes the one value of each matrix while our method takes the first Nr rows.
Due to this, the dimensionality of the feature are then distinct. PointNet takes
a vector with 1,024 values while we take Nr ×Nf ×Nf .

Notably, both our softpool feature and the PointNet feature are permutation
invariant, which means that F∗ and FPN are the same irrelevant of the order of
the input points. This is one of the most important aspect when handling point
clouds since this data is unordered.

1.2 Distinction of our decoder from PCN

Based on our decoder architecture in the paper, the resulting feature from the
encoder undergoes two successive regional convolution operations. The first con-
verts the features to a course point cloud P′out with 256 points. From there, the
second regional convolution interpolates from the coarse to a fully-packed point
cloud with 16,384 points which is denoted as Pout.

Compared to PCN [?], both approaches execute a coarse-to-fine approach
which is performed by our second regional convolution. However, the architecture
and the method are different.

Given P′out, PCN [?] duplicates P′out 64 times and appends a 2D coordinates
of an 8× 8 grid. Then, they use MLP to produce Pout that locally deforms the
2D grids around each point similar FoldingNet [?]. In contrast, we interpolate 63
samples between every 2 points of P′out and use the proposed regional convolution
to produce Pout. Compared to MLP in PCN, our regional convolution takes more
local samples into account to produce a point in the higher resolution.

2 Ablation study on the softpool feature F∗

Using our architecture trained with Nr = 32, we present the qualitative results
when only a subset of the rows is selected. The objective is to investigate which
parts of the object each region reconstructs first. In Fig. 2, we start by limiting
with the first two rows of the feature matrix then increasing Nr to reach 32. By
selecting the first 2 features, we observe that the softpool feature focuses on a
skeleton of the object without large surfaces. Although the regions reconstruct
different parts of the object, they tend to cover the important components like
the wings of plane and the wheels of car. As we increase Nr from 2 to 32, the
object is slowly completed without huge overlaps between different regions.

In addition to the first 32 rows when setting Nr, we also looked into the
rows beyond 32. The lamp in Fig. 3 focuses on the following ranges: [33 : 64],



SoftPoolNet 3

Fig. 2: Results when choosing the first subsets of Nr with the following ranges:
[1 : 2], [1 : 4], [1 : 8], [1 : 16] and [1 : 32] when the architecture is trained with
Nr = 32.

Fig. 3: Results when choosing different ranges of rows from F′ to form F∗ instead
of selecting the first Nr = 32 rows.

[65 : 96], [97 : 128] and [129 : 169]. Although the shape of the lamp starts to
deform as we go beyond 32, our reconstruction results still captures its overall
shape even when we select the range [129 : 169]. Therefore, this proves that our
feature is not constrained to the first 32 rows when sorting and demonstrates
the robustness of our softpool feature.



4 Y. Wang et al.

3 Ablation study on τ

When computing for Lboundary, we introduced the threshold τ to compute the
sets. In Table 1, we then evaluate different values of τ and investigate its behavior
with respect to the Chamfer distance. The table demonstrates that the results
are not sensitive to the τ , where the thresholds between 0.2-0.9 generate a small
difference in the Chamfer distance (with less than 1) from the chosen threshold
of 0.3. Notably, compared to the related work, any threshold between 0.1 to 0.9
outperforms the other methods.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Chamfer Distance 7.08 5.99 5.94 6.12 6.19 6.18 6.21 6.25 6.71

Table 1: Sensitivity of the average Chamfer distance (multiplied by 103) to the
threshold τ .

4 Ablation study on Nr, Nr and Lboundary

We investigate the influence of increasing the weight of Lboundary on the recon-
struction as we change the number of regions Nf and the number selected rows
Nr. While we chose the best option with Nr set to 8 and Nr set to 32, Table 2
also shows that a larger weight on Lboundary improves the performance when the
number of regions is larger, e.g. when Nf is 32.

(Nf , Nr) (2, 128) (4, 64) (8, 32) (16, 16) (32, 8)

1 ×Lboundary 7.80 6.31 5.94 6.27 6.75
2 ×Lboundary 7.80 6.31 5.91 6.25 6.72
10 ×Lboundary 7.82 6.29 5.95 6.01 6.19

Table 2: Influence of Nf , Nr and the weight of Lboundary for object completion
on the average Chamfer distance (multiplied by 103).


