Skip to main content

Hierarchical Face Aging Through Disentangled Latent Characteristics

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12348))

Included in the following conference series:

Abstract

Current age datasets lie in a long-tailed distribution, which brings difficulties to describe the aging mechanism for the imbalance ages. To alleviate it, we design a novel facial age prior to guide the aging mechanism modeling. To explore the age effects on facial images, we propose a Disentangled Adversarial Autoencoder (DAAE) to disentangle the facial images into three independent factors: age, identity and extraneous information. To avoid the “wash away” of age and identity information in face aging process, we propose a hierarchical conditional generator by passing the disentangled identity and age embeddings to the high-level and low-level layers with class-conditional BatchNorm. Finally, a disentangled adversarial learning mechanism is introduced to boost the image quality for face aging. In this way, when manipulating the age distribution, DAAE can achieve face aging with arbitrary ages. Further, given an input face image, the mean value of the learned age posterior distribution can be treated as an age estimator. These indicate that DAAE can efficiently and accurately estimate the age distribution in a disentangling manner. DAAE is the first attempt to achieve facial age analysis tasks, including face aging with arbitrary ages, exemplar-based face aging and age estimation, in a universal framework. The qualitative and quantitative experiments demonstrate the superiority of DAAE on five popular datasets, including CACD2000, Morph, UTKFace, FG-NET and AgeDB.

P. Li, H. Huang and R. He—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Face++ research toolkit. megvii inc. http://www.faceplusplus.com ([Online])

  2. Burgess, C.P., et al.: Understanding disentangling in beta-VAE. arXiv preprint arXiv:1804.03599 (2018)

  3. Chen, B.C., Chen, C.S., Hsu, W.H.: Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE Trans. Multimed. 17(6), 804–815 (2015)

    Article  Google Scholar 

  4. Chen, S., Zhang, C., Dong, M., Le, J., Rao, M.: Using ranking-CNN for age estimation. In: CVPR (2017)

    Google Scholar 

  5. De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., Courville, A.C.: Modulating early visual processing by language. In: NeurIPS (2017)

    Google Scholar 

  6. Gao, B.B., Zhou, H.Y., Wu, J., Geng, X.: Age estimation using expectation of label distribution learning. In: IJCAI (2018)

    Google Scholar 

  7. Gao, B.B., Zhou, H.Y., Wu, J., Geng, X.: Age estimation using expectation of label distribution learning. In: IJCAI (2018)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  9. Gulrajani, I., et al.: Pixelvae: a latent variable model for natural images. arXiv preprint arXiv:1611.05013 (2016)

  10. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  11. Hou, X., Shen, L., Sun, K., Qiu, G.: Deep feature consistent variational autoencoder. In: WACV (2017)

    Google Scholar 

  12. Huang, H., He, R., Sun, Z., Tan, T., et al.: Introvae: introspective variational autoencoders for photographic image synthesis. In: NeurIPS (2018)

    Google Scholar 

  13. Kemelmacher-Shlizerman, I., Suwajanakorn, S., Seitz, S.M.: Illumination-aware age progression. In: CVPR (2014)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)

    Google Scholar 

  16. Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002)

    Article  Google Scholar 

  17. Li, P., Hu, Y., He, R., Sun, Z.: Global and local consistent wavelet-domain age synthesis. IEEE Trans. Inf. Forensics Secur. 14, 2943–2957 (2018)

    Google Scholar 

  18. Li, P., Hu, Y., Li, Q., He, R., Sun, Z.: Global and local consistent age generative adversarial networks. In: ICPR (2018)

    Google Scholar 

  19. Li, P., Hu, Y., Wu, X., He, R., Sun, Z.: Deep label refinement for age estimation. Pattern Recogn. 100, 107–178 (2020)

    Google Scholar 

  20. Liu, Y., Li, Q., Sun, Z.: Attribute-aware face aging with wavelet-based generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  21. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: CVPRW (2017)

    Google Scholar 

  22. Moschoglou, S., Ververas, E., Panagakis, Y., Nicolaou, M.A., Zafeiriou, S.: Multi-attribute robust component analysis for facial uv maps. IEEE J. Sel. Top. Signal Process. 12(6), 1324–1337 (2018)

    Article  Google Scholar 

  23. Niu, Z., Zhou, M., Wang, L., Gao, X., Hua, G.: Ordinal regression with multiple output CNN for age estimation. In: CVPR (2016)

    Google Scholar 

  24. Pan, H., Han, H., Shan, S., Chen, X.: Mean-variance loss for deep age estimation from a face. In: CVPR (2018)

    Google Scholar 

  25. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML (2014)

    Google Scholar 

  26. Ricanek, K., Tesafaye, T.: Morph: a longitudinal image database of normal adult age-progression. In: FGR (2006)

    Google Scholar 

  27. Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. 126(2–4), 144–157 (2018)

    Article  MathSciNet  Google Scholar 

  28. Sagonas, C., Ververas, E., Panagakis, Y., Zafeiriou, S.: Recovering joint and individual components in facial data. IEEE Trans. Pattern Anal. Mach. Intell. 40(11), 2668–2681 (2017)

    Article  Google Scholar 

  29. Semeniuta, S., Severyn, A., Barth, E.: A hybrid convolutional variational autoencoder for text generation. arXiv preprint arXiv:1702.02390 (2017)

  30. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: NeurIPS (2015)

    Google Scholar 

  31. Wang, W., et al.: Recurrent face aging. In: CVPR (2016)

    Google Scholar 

  32. Wang, Z., Tang, X., Luo, W., Gao, S.: Face aging with identity-preserved conditional generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  33. Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

    Article  Google Scholar 

  34. Wu, X., Huang, H., Patel, V.M., He, R., Sun, Z.: Disentangled variational representation for heterogeneous face recognition. In: AAAI (2019)

    Google Scholar 

  35. Yang, H., Huang, D., Wang, Y., Jain, A.K.: Learning face age progression: a pyramid architecture of GANs. In: CVPR (2018)

    Google Scholar 

  36. Yang, T.Y., Huang, Y.H., Lin, Y.Y., Hsiu, P.C., Chuang, Y.Y.: SSR-NET: a compact soft stagewise regression network for age estimation. In: IJCAI (2018)

    Google Scholar 

  37. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  38. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: CVPR (2017)

    Google Scholar 

  39. Zhang, Y., Liu, L., Li, C., et al.: Quantifying facial age by posterior of age comparisons. arXiv preprint arXiv:1708.09687 (2017)

  40. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: CVPR (2017)

    Google Scholar 

Download references

Acknowledgement

This work is partially funded by National Natural Science Foundation of China (Grant No. U1836217) and Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project) (NO.2019JZZY010119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran He .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2792 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, P., Huang, H., Hu, Y., Wu, X., He, R., Sun, Z. (2020). Hierarchical Face Aging Through Disentangled Latent Characteristics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12348. Springer, Cham. https://doi.org/10.1007/978-3-030-58580-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58580-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58579-2

  • Online ISBN: 978-3-030-58580-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics