1906.11172v1 [cs.CV] 26 Jun 2019

arxXiv

Learning Data Augmentation Strategies for Object Detection

Barret Zoph; Ekin D. Cubuk; Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, Quoc V. Le
Google Research, Brain Team
{barretzoph, cubuk, golnazg, tsungyi, shlens, gvl}@google.com

Abstract

Data augmentation is a critical component of training
deep learning models. Although data augmentation has
been shown to significantly improve image classification,
its potential has not been thoroughly investigated for ob-
ject detection. Given the additional cost for annotating
images for object detection, data augmentation may be of
even greater importance for this computer vision task. In
this work, we study the impact of data augmentation on ob-
ject detection. We first demonstrate that data augmenta-
tion operations borrowed from image classification may be
helpful for training detection models, but the improvement
is limited. Thus, we investigate how learned, specialized
data augmentation policies improve generalization perfor-
mance for detection models. Importantly, these augmenta-
tion policies only affect training and leave a trained model
unchanged during evaluation. Experiments on the COCO
dataset indicate that an optimized data augmentation policy
improves detection accuracy by more than +2.3 mAP, and
allow a single inference model to achieve a state-of-the-art
accuracy of 50.7 mAP. Importantly, the best policy found
on COCO may be transferred unchanged to other detection
datasets and models to improve predictive accuracy. For ex-
ample, the best augmentation policy identified with COCO
improves a strong baseline on PASCAL-VOC by +2.7 mAP.
Our results also reveal that a learned augmentation pol-
icy is superior to state-of-the-art architecture regulariza-
tion methods for object detection, even when considering
strong baselines. Code for training with the learned policy
is available online. '

1. Introduction

Deep neural networks are powerful machine learning
systems that work best when trained on vast amounts of
data. To increase the amount of training data for neural
networks, much work was devoted to creating better data

*Equal contribution.
lgithub.com/tensorflow/tpu/tree/master/models/
official/detection

5K 10K 20K 40K 80K
training examples

Figure 1: Learned augmentation policy systematically
improves object detection performance. Left: Learned
augmentation policy applied to example from COCO
dataset [25]. Right: Mean average precision for RetinaNet
[24] with a ResNet-50 backbone on COCO [25] with and
without learned augmentation policy (red and black, respec-
tively).

augmentation strategies [3, 42, 21]. In the image domain,
common augmentations include translating the image by a
few pixels, or flipping the image horizontally. Most modern
image classifiers are paired with hand-crafted data augmen-
tation strategies [2 1, 44, 16, 18, 56].

Recent work has shown that instead of manually design-
ing data augmentation strategies, learning an optimal policy
from data can lead to significant improvements in general-
ization performance of image classification models [22, 45,

3, 33,31, 54,2,43,37, 5]. For image classification models,
data can be augmented either by learning a generator that
can create data from scratch [33, 31, 54, 2, 43], or by learn-
ing a set of transformations as applied to already existing
training set samples [5, 37]. For object detection models,
the need for data augmentation is more crucial as collect-
ing labeled data for detection is more costly and common
detection datasets have many fewer examples than image
classification datasets. It is, however, unclear how to aug-
ment the data: Should we directly reuse data augmentation
strategies from image classification? What should we do

with the bounding boxes and the contents of the bounding
boxes?

In this work, we create a set of simple transformations
that may be applied to object detection datasets and then
transfer these transformations to other detection datasets
and architectures. These transformations are only used dur-
ing training and not test time. Our transformations include
those that can be applied to the whole image without af-
fecting the bounding box locations (e.g. color transforma-
tions borrowed from image classification models), trans-
formations that affect the whole image while changing the
bounding box locations (e.g., translating or shearing of the
whole image), and transformations that are only applied to
objects within the bounding boxes. As the number of trans-
formations becomes large, it becomes non-trivial to man-
ually combine them effectively. We therefore search for
policies specifically designed for object detection datasets.
Experiments show that this method achieves very good per-
formance across different datasets, dataset sizes, backbone
architectures and detection algorithms. Additionally, we in-
vestigate how the performance of a data augmentation pol-
icy depends on the number of operations included in the
search space and how the effective of the augmentation
technique varies as dataset size changes.

In summary, our main contributions are as follows:

e Design and implement a search method to combine
and optimize data augmentation policies for object de-
tection problems by combining novel operations spe-
cific to bounding box annotations.

e Demonstrate consistent gains in cross-validated ac-
curacy across a range of detection architectures and
datasets. In particular, we exceed state-of-the-art re-
sults on COCO for a single model and achieve com-
petitive results on the PASCAL VOC object detection.

e Highlight how the learned data augmentation strate-
gies are particularly advantageous for small datasets by
providing a strong regularization to avoid over-fitting
on small objects.

2. Related Work

Data augmentation strategies for vision models are of-
ten specific dataset or even machine learning architectures.
For example, state-of-the-art models trained on MNIST use
elastic distortions which effect scale, translation, and ro-
tation [42, 4, 47, 40]. Random cropping and image mir-
roring are commonly used in classification models trained
on natural images [51, 21]. Among the data augmentation
strategies for object detection, image mirror and multi-scale
training are the most widely used [15]. Object-centric crop-
ping is a popular augmentation approach [27]. Instead of

cropping to focus on parts of the image, some methods ran-
domly erase or add noise to patches of images for improved
accuracy [9, 53, 13], robustness [50, 12], or both [29]. In
the same vein, [48] learns an occlusion pattern for each ob-
ject to create adversarial examples. In addition to cropping
and erasing, [10] adds new objects on training images by
cut-and-paste.

To avoid the data-specific nature of data augmentation,
recent work has focused on learning data augmentation
strategies directly from data itself. For example, Smart
Augmentation uses a network that generates new data by
merging two or more samples from the same class [22].
Tran et al. generate augmented data, using a Bayesian ap-
proach, based on the distribution learned from the training
set [45]. DeVries and Taylor used simple transformations
like noise, interpolations and extrapolations in the learned
feature space to augment data [8]. Ratner et al., used gen-
erative adversarial networks to generate sequences of data
augmentation operations [37]. More recently, several pa-
pers used the AutoAugment [5] search space with improved
the optimization algorithms to find AutoAugment policies
more efficiently [17, 23].

While all of the above approaches have worked on clas-
sification problems, we take an automated approach to find-
ing optimal data augmentation policies for object detection.
Unlike classification, labeled data for object detection is
more scarce because it is more costly to annotate detection
data. Compared to image classification, developing a data
augmentation strategy for object detection is harder because
there are more ways and complexities introduced by distort-
ing the image, bounding box locations, and the sizes of the
objects in detection datasets. Our goal is to use the vali-
dation set accuracy to help search for novel detection aug-
mentation procedures using custom operations that gener-
alize across datasets, dataset sizes, backbone architectures
and detection algorithms.

3. Methods

We treat data augmentation search as a discrete optimiza-
tion problem and optimize for generalization performance.
This work expands on previous work [5] to focus on aug-
mentation policies for object detection. Object detection
introduces an additional complication of maintaining con-
sistency between a bounding box location and a distorted
image. Bounding box annotations open up the possibility of
introducing augmentation operations that uniquely act upon
the contents within each bounding box. Additionally, we
explored how to change the bounding box locations when
geometric transformations are applied to the image.

We define an augmentation policy as a unordered set of
K sub-policies. During training one of the K sub-policies
will be selected at random and then applied to the cur-
rent image. Each sub-policy has NV image transformations

Batch 4

Sub-policy 1

Sub-policy 2

Sub-policy 3

Sub-policy 4

Sub-policy 5

Sub-policy 1. (Color, 0.2, 8), (Rotate, 0.8, 10)

Sub-policy 2. (BBox-Only_ShearY, 0.8, 5)

Sub-policy 3. (SolarizeAdd, 0.6, 8), (Brightness, 0.8, 10)
Sub-policy 4. (ShearyY, 0.6, 10), (BBox-Only._Equalize,0.6, 8)
Sub-policy 5. (Equalize, 0.6, 10), (TranslateX, 0.2, 2)

Figure 2: Examples of learned augmentation sub-policies. 5 examples of learned sub-policies applied to one example
image. Each column corresponds to a different random sample of the corresponding sub-policy. Each step of an augmentation
sub-policy consists of a triplet corresponding to the operation, the probability of application and a magnitude measure. The
bounding box is adjusted to maintain consistency with the applied augmentation. Note the probability and magnitude are
discretized values (see text for details).

which are applied sequentially. We turn this problem of
searching for a learned augmentation policy into a discrete
optimization problem by creating a search space [5]. The
search space consists K = 5 sub-policies with each sub-
policy consisting of N = 2 operations applied in sequence
to a single image. Additionally, each operation is also asso-
ciated with two hyperparameters specifying the probability
of applying the operation, and the magnitude of the opera-
tion. Figure 2 (bottom text) demonstrates 5 of the learned
sub-policies. The probability parameter introduces a notion
of stochasticity into the augmentation policy whereby the
selected augmentation operation will be applied to the im-
age with the specified probability.

In several preliminary experiments, we identified 22 op-
erations for the search space that appear beneficial for ob-
ject detection. These operations were implemented in Ten-
sorFlow [1]. We briefly summarize these operations, but
reserve the details for the Appendix:

e Color operations. Distort color channels, without
impacting the locations of the bounding boxes (e.g.,
Equalize, Contrast, Brightness). 2

e Geometric operations. Geometrically distort the im-
age, which correspondingly alters the location and
size of the bounding box annotations (e.g., Rotate,
ShearX, TranslationY, etc.).

e Bounding box operations. Only distort the
pixel content contained within the bounding
box annotations (e.g., BBox-Only.Equalize,
BBox_Only_Rotate, BBox_Only F1lipLR).

Note that for any operations that effected the geometry
of an image, we likewise modified the bounding box size
and location to maintain consistency.

We associate with each operation a custom range of pa-
rameter values and map this range on to a standardized
range from O to 10. We discretize the range of magnitude
into L uniformly-spaced values so that these parameters are
amenable to discrete optimization. Similarly, we discretize
the probability of applying an operation into M uniformly-
spaced values. In preliminary experiments we found that
setting . = 6 and M = 6 provide a good balance be-
tween computational tractability and learning performance
with an RL algorithm. Thus, finding a good sub-policy be-
comes a search in a discrete space containing a cardinality
of (22LM)?. In particular, to search over 5 sub-policies, the
search space contains roughly (22 x 6 x 6)2*5 ~ 9.6 x 10%®
possibilities and requires an efficient search technique to
navigate this space.

2The color transformations largely derive from transformation in the
Python Image Library (PIL). https://pillow.readthedocs.io/
en/5.1.x/

Many methods exist for addressing the discrete opti-
mization problem including reinforcement learning [55],
evolutionary methods [38] and sequential model-based op-
timization [26]. In this work, we choose to build on previ-
ous work by structuring the discrete optimization problem
as the output space of an RNN and employ reinforcement
learning to update the weights of the model [55]. The train-
ing setup for the RNN is similar to [55, 56, 6, 5]. We employ
the proximal policy optimization (PPO) [41] for the search
algorithm. The RNN is unrolled 30 steps to predict a sin-
gle augmentation policy. The number of unrolled steps, 30,
corresponds to the number of discrete predictions that must
be made in order to enumerate 5 sub-policies. Each sub-
policy consists of 2 operations and each operation consists
of 3 predictions corresponding to the selected image trans-
formation, probability of application and magnitude of the
transformation.

In order to train each child model, we selected 5K im-
ages from the COCO training set as we found that search-
ing directly on the full COCO dataset to be prohibitively
expensive. We found that policies identified with this sub-
set of data generalize to the full dataset while providing
significant computational savings. Briefly, we trained each
child model® from scratch on the 5K COCO images with
the ResNet-50 backbone [16] and RetinaNet detector [24]
using a cosine learning rate decay [30]. The reward signal
for the controller is the mAP on a custom held-out valida-
tion set of 7392 images created from a subset of the COCO
training set.

The RNN controller is trained over 20K augmentation
policies. The search employed 400 TPU’s [20] over 48
hours with identical hyper-parameters for the controller as
[56]. The search can be sped up using the recently devel-
oped, more efficient search methods based on population
based training [17] or density matching [23]. The learned
policy can be seen in Table 7 in the Appendix.

4. Results

We applied our automated augmentation method on the
COCO dataset with a ResNet-50 [16] backbone with Reti-
naNet [24] in order to find good augmentation policies to
generalize to other detection datasets. We use the top policy
found on COCO and apply it to different datasets, dataset
sizes and architecture configurations to examine generaliz-
ability and how the policy fares in a limited data regime.

4.1. Learning a data augmentation policy

Searching for the learned augmentation strategy on 5K
COCO training images resulted in the final augmentation

3We employed a base learning rate of 0.08 over 150 epochs; image size
was 640 X 640; o = 0.25 and v = 1.5 for the focal loss parameters;
weight decay of 1e — 4; batch size was 64

https://pillow.readthedocs.io/en/5.1.x/
https://pillow.readthedocs.io/en/5.1.x/

policy that will be used in all of our results. Upon inspec-
tion, the most commonly used operation in good policies is
Rotate, which rotates the whole image and the bounding
boxes. The bounding boxes end up larger after the rotation,
to include all of the rotated object. Despite this effect of the
Rotate operation, it seems to be very beneficial: it is the
most frequently used operation in good policies. Two other
operations that are commonly used are Equalize and
BBox_Only_TranslateY. Equalize flattens the his-
togram of the pixel values, and does not modify the location
or size of each bounding box. BBox_Only_TranslateY
translates only the objects in bounding boxes vertically, up
or down with equal probability.

4.2. Learned augmentation policy systematically
improves object detection

We assess the quality of the top augmentation policy on
the competitive COCO dataset [25] on different backbone
architectures and detection algorithms. We start with the
competitive RetinaNet object detector * employing the same
training protocol as [13]. Briefly, we train from scratch with
a global batch size of 64, images were resized to 640 x 640,
learning rate of 0.08, weight decay of le — 4, a = 0.25
and v = 1.5 for the focal loss parameters, trained for 150
epochs, used stepwise decay where the learning rate was
reduced by a factor of 10 at epochs 120 and 140. All models
were trained on TPUs [20].

The baseline RetinaNet architecture used in this and
subsequent sections employs standard data augmentation
techniques largely tailored to image classification training
[24]. This consists of doing horizontal flipping with 50%
probability and multi-scale jittering where images are ran-
domly resized between 512 and 786 during training and
then cropped to 640x640.

Our results using our augmentation policy on the above
procedures are shown in Tables 1 and 2. In Table 1
the learned augmentation policy achieves systematic gains
across a several backbone architectures with improvements
ranging from +1.6 mAP to +2.3 mAP. In comparison, a
previous state-of-the-art regularization technique applied to
ResNet-50 [13] achieves a gain of +1.7% mAP (Table 2).

To better understand where the gains come from, we
break the data augmentation strategies applied to ResNet-
50 into three parts: color operations, geometric operations,
and bbox-only-operations (Table 2). Employing color op-
erations only boosts performance by +0.8 mAP. Combining
the search with geometric operations increases the boost in
performance by +1.9 mAP. Finally, adding bounding box-
specific operations yields the best results when used in con-
junction with the previous operations and provides +2.3%
mAP improvement over the baseline. Note that the policy

4https://github.com/tensorflow/tpu

Backbone Baseline Our result Difference
ResNet-50 36.7 39.0 +2.3
ResNet-101 38.8 40.4 +1.6
ResNet-200 39.9 42.1 +2.2

Table 1: Improvements with learned augmentation pol-
icy across different ResNet backbones. All results employ
RetinaNet detector [24] on the COCO dataset [25].

Method mAP
baseline 36.7
baseline + DropBlock [13] 38.4
Augmentation policy with color operations | 37.5
+ geometric operations 38.6
+ bbox-only operations 39.0

Table 2: Improvements in object detection with learned
augmentation policy. All results employ RetinaNet detec-
tor with ResNet-50 backbone [24] on COCO dataset [25].
DropBlock shows gain in performance employing a state-
of-the-art regularization method [13].

found was only searched using SK COCO training exam-
ples and still generalizes extremely well when trained on
the full COCO dataset.

4.3. Exploiting learned augmentation policies
achieves state-of-the-art object detection

A good data augmentation policy is one that can trans-
fer between models, between datasets and work well for
models trained on different image sizes. Here we exper-
iment with the learned augmentation policy on a differ-
ent backbone architecture and detection model. To test
how the learned policy transfers to a state-of-the-art detec-
tion model, we replace the ResNet-50 backbone with the
AmoebaNet-D architecture [38]. The detection algorithm
was changed from RetinaNet [24] to NAS-FPN [14]. Addi-
tionally, we use ImageNet pre-training for the AmoebaNet-
D backbone as we found we are not able to achieve com-
petitive results when training from scratch. The model was
trained for 150 epochs using a cosine learning rate decay
with a learning rate of 0.08. The rest of the setup was iden-
tical to the ResNet-50 backbone model except the image
size was increased from 640 x 640 to 1280 x 1280.

Table 3 indicates that the learned augmentation policy
improves +1.5% mAP on top of a competitive, detection ar-
chitecture and setup. These experiments additionally show
that the augmentation policy transfers well across a differ-
ent backbone architecture, detection algorithm, image sizes
(i.e. 640 — 1280 pixels), and training procedure (train-
ing from scratch — using ImageNet pre-training) . We can
extend these results even further by increasing the image
resolution from 1280 to 1536 pixels and likewise increasing

the number of detection anchors’ following [49]. Since this
model is significantly larger than the previous models, we
increase the number of sub-policies in the learned policy by
combining the top 4 policies from the search, which leads
to a 20 sub-policy learned augmentation.

This result of these simple modifications is the first
single-stage detection system to achieve state-of-the-art,
single-model results of 50.7 mAP on COCO. We note that
this result only requires a single pass of the image, where
as the previous results required multiple evaluations of the
same image at different spatial scales at test time [32]. Ad-
ditionally, these results were arrived at by increasing the
image resolution and increasing the number of anchors -
both simple and well known techniques for improving ob-
ject detection performance [49, 19]. In contrast, previous
state-of-the-art results relied on roughly multiple, custom
modifications of the model architecture and regularization
methods in order to achieve these results [32]. Our method
largely relies on a more modern network architecture paired
with a learned data augmentation policy.

4.4. Learned augmentation policies transfer to
other detection datasets.

To evaluate the transferability of the learned policies to
an entirely different dataset and another different detec-
tion algorithm, we train a Faster R-CNN [39] model with
a ResNet-101 backbone on PASCAL VOC dataset [11]. We
combine the training sets of PASCAL VOC 2007 and PAS-
CAL VOC 2012, and test our model on the PASCAL VOC
2007 test set (4952 images). Our evaluation metric is the
mean average precision at an IoU threshold of 0.5 (mAP50).
For the baseline model, we use the Tensorflow Object De-
tection API [19] with the default hyperparameters: 9 GPU
workers are utilized for asynchronous training where each
worker processes a batch size of 1. Initial learning rate is set
to be 3 x 10~*, which is decayed by 0.1 after 500K steps.
Training is started from a COCO detection model check-
point. When training with our data augmentation policy, we
do not change any of the training details, and just add our
policy found on COCO to the pre-processing. This leads to
a 2.7% improvement on mAPS50 (Table 4).

4.5. Learned augmentation policies mimic the per-
formance of larger annotated datasets

In this section we conducted experiments to determine
how the learned augmentation policy will perform if there
is more or less training data. To conduct these experiments
we took subsets of the COCO dataset to make datasets with

3Specifically, we increase the number of anchors from 3 x 3t0 9 x 9
by changing the aspect ratios from {1/2, 1, 2} to {1/5, 1/4, 1/3, 1/2, 1,
2,3,4, 5}. When making this change we increased the strictness in the
IoU thresholding from 0.5/0.5 to 0.6/0.5 due to the increased number of
anchors following [49]. The anchor scale was also increased from 4 to 5 to
compensate for the larger image size.

the following number of images: 5000, 9000, 14000, 23000
(see Table 5). All models trained in this experiment are
using a ResNet-50 backbone with RetinaNet and are trained
for 150 epochs without using ImageNet pretraining.

As we expected, the improvements due to the learned
augmentation policy is larger when the model is trained on
smaller datasets, which can be seen in Fig. 3 and in Table 5.
We show that for models trained on 5,000 training samples,
the learned augmentation policy can improve mAP by more
than 70% relative to the baseline. As the training set size is
increased, the effect of the learned augmentation policy is
decreased, although the improvements are still significant.
It is interesting to note that models trained with learned aug-
mentation policy seem to do especially well on detecting
smaller objects, especially when fewer images are present in
the training dataset. For example, for small objects, apply-
ing the learned augmentation policy seems to be better than
increasing the dataset size by 50%, as seen in Table. 5. For
small objects, training with the learned augmentation policy
with 9000 examples results in better performance than the
baseline when using 15000 images. In this scenario using
our augmentation policy is almost as effective as doubling
your dataset size.

~
o

[=)]
o

1%
o

IS
o

W
o

N
o

% improvement with learned augmentation

=
o

5000 10000 15000 20000
Training examples

Figure 3: Percentage improvement in mAP for objects of
different sizes due to the learned augmentation policy.

Another interesting behavior of models trained with the
learned augmentation policy is that they do relatively better
on the harder task of AP75 (average precision IoU=0.75). In
Fig. 4, we plot the percentage improvement in mAP, AP50,
and AP75 for models trained with the learned augmenta-
tion policy (relative to baseline augmentation). The relative
improvement of AP75 is larger than that of AP50 for all
training set sizes. The learned data augmentation is partic-
ularly beneficial at AP75 indicating that the augmentation
policy helps with more precisely aligning the bounding box

Architecture ‘ Change ‘ # Scales ‘ mAP ‘ mAPs mAPy mAP;
MegDet [32] ‘ ‘ multiple ‘ 50.5 ‘ - - -
baseline [14] 1 47.0 30.6 50.9 61.3
AmoebaNet + NAS-FPN | + learned augmentation 1 48.6 32.0 534 62.7
+ 1 anchors, 1 image size 1 50.7 34.2 55.5 64.5

Table 3: Exceeding state-of-the-art detection with learned augmentation policy. Reporting mAP for COCO validation set.
Previous state-of-the-art results for COCO detection evaluated a single image at multiple spatial scales to perform detection
at test time [32]. Our current results only require a single inference computation at single spatial scale. Backbone model
is AmoebaNet-D [38] and the NAS-FPN detection system [14]. For the 50.7 result, in addition to using the learned data
augmentation policy, we increase the image size from 1280 to 1536 and the number of detection anchors from 3x3 to 9x9.

plane bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
baseline |86.6 82.2 75.9 63.4 62.3 84.7 86.8 92.0 55.5 83.3 63.1 89.2 89.4 85.0 856 50.7 76.2 73.0 86.6 76.3
ours 88.0 83.3 78.0 659 63.5 855 87.4 93.1 585 83.9 652 90.1 90.2 859 86.6 552 78.6 76.6 88.6 80.3

mean
76.0
78.7

Table 4: Learned augmentation policy transfer to other object detection tasks. Mean average precision (%) at IoU
threshold 0.5 on a Faster R-CNN detector [39] with a ResNet-101 backbone trained and evaluated on PASCAL VOC 2007
[11]. Note that the augmentation policy was learned from the policy search on the COCO dataset.

training Baseline Our results

set size | mAPs mAPy mAP; mAP | mAPs mAPy mAP; mAP
5000 1.9 7.1 9.7 6.5 32 9.8 12.7 8.7
9000 4.3 12.3 176 11.8 7.1 16.8 223 151
14000 6.8 17.5 239 164 9.5 22.1 29.8 199
23000 10.0 243 333 226 11.9 27.8 36.8 253

Table 5: Learned augmentation policy is especially beneficial for small datasets and small objects. Mean average
precision (mAP) for RetinaNet model trained on COCO with varying subsets of the original training set. mAPs, mAPy
and mAP;, denote the mean average precision for small, medium and large examples. Note the complete COCO training set
consists of 118K examples.The same policy found on the 5000 COCO images was used in all of the experiments. The models

in the first row were trained on the same 5000 images that the policies were searched on.

prediction. This suggests that the augmentation policy par-
ticularly helps with learned fine spatial details in bounding
box position — which is consistent with the gains observed
with small objects.

4.6. Learned data augmentation improves model
regularization

In this section, we study the regularization effect of the
learned data augmentation. We first notice that the final
training loss of a detection models is lower when trained
on a larger training set (see black curve in Fig. 5). When
we apply the learned data augmentation, the training loss is
increased significantly for all dataset sizes (red curve). The
regularization effect can also be seen by looking at the L,
norm of the weights of the trained models. The Lo norm of
the weights is smaller for models trained on larger datasets,
and models trained with the learned augmentation policy
have a smaller Ly norm than models trained with baseline
augmentation (see Fig. 6).

5. Discussion

In this work, we investigate the application of a learned
data augmentation policy on object detection performance.
We find that a learned data augmentation policy is effective
across all data sizes considered, with a larger improvement
when the training set is small. We also observe that the
improvement due to a learned data augmentation policy is
larger on harder tasks of detecting smaller objects and de-
tecting with more precision.

We also find that other successful regularization tech-
niques are not beneficial when applied in tandem with a
learned data augmentation policy. We carried out several
experiments with Input Mixup [52], Manifold Mixup [46]
and Dropblock [13]. For all methods we found that they
either did not help nor hurt model performance. This is
an interesting result as the proposed method independently
outperforms these regularization methods, yet apparently
these regularization methods are not needed when applying
a learned data augmentation policy.

Future work will include the application of this method

B
o

=8 mMAP
@=® mAP50
®=8® mAP75

w
o
»

N
o

% improvement with learned augmentation

=
o

5000 10000 15000 20000
Training examples

Figure 4: Percentage improvement due to the learned aug-
mentation policy on mAP, AP50, and AP75, relative to
models trained with baseline augmentation.

0.7 A -
o=@ Baseline

®=® Learned augmentation

o
o

Training loss
(=]
(9]

0.4

e

5000 10000 15000 20000
Training examples

Figure 5: Training loss vs. number of training examples for
baseline model (black) and with the learned augmentation
policy (red).

to other perceptual domains. For example, a natural exten-
sion of a learned augmentation policy would be to seman-
tic [28] and instance segmentation [34, 7]. Likewise, point
cloud featurizations [35, 36] are another domain that has
a rich set of possibilities for geometric data augmentation
operations, and can benefit from an approach similar to the
one taken here. Human annotations required for acquiring
training set examples for such tasks are costly. Based on
our findings, learned augmentation policies are transferable
and are more effective for models trained on limited training
data. Thus, investing in libraries for learning data augmen-
tation policies may be an efficient alternative to acquiring

0.5 -

o=@ Baseline
®=® Learned augmentation
0.4
2
L
o
[}
=
03
£
_
o
&
o~
)
0.2
e
0.1 T T T
5000 10000 15000 20000

Training examples

Figure 6: Lo norm of the weights of the baseline (black)
and our (red) models at the end of training. Note that the Lo
norm of the weights decrease with increasing training set
size. The learned augmentation policy further decreases the
norm of the weights.

additional human annotated data.

Acknowledgments

We thank Ruoming Pang and the rest of the Brain team
for their help.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Is-
ard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensor-
flow: A system for large-scale machine learning. In
Proceedings of the 12th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’ 16,
pages 265-283, Berkeley, CA, USA, 2016. USENIX
Association. 4

[2] A. Antoniou, A. Storkey, and H. Edwards. Data
augmentation generative adversarial networks. arXiv
preprint arXiv:1711.04340, 2017. 1

[3] H. S. Baird. Document image defect models. In
Structured Document Image Analysis, pages 546-556.
Springer, 1992. 1

[4] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-
column deep neural networks for image classifica-
tion. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3642—
3649. IEEE, 2012. 2

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and
Q. V. Le. Autoaugment: Learning augmentation poli-
cies from data. arXiv preprint arXiv:1805.09501,
2018. 1,2, 4

E. D. Cubuk, B. Zoph, S. S. Schoenholz, and Q. V. Le.
Intriguing properties of adversarial examples. arXiv
preprint arXiv:1711.02846, 2017. 4

J. Dai, K. He, and J. Sun. Instance-aware semantic
segmentation via multi-task network cascades. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3150-3158, 2016. 8

T. DeVries and G. W. Taylor. Dataset augmentation in
feature space. arXiv preprint arXiv:1702.05538, 2017.
1,2

T. DeVries and G. W. Taylor. Improved regularization
of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552,2017. 2, 13

D. Dwibedi, I. Misra, and M. Hebert. Cut, paste and
learn: Surprisingly easy synthesis for instance detec-
tion. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1301-1310, 2017.
2

M. Everingham, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes
(voc) challenge. International journal of computer vi-
sion, 88(2):303-338, 2010. 6, 7

N. Ford, J. Gilmer, N. Carlini, and D. Cubuk. Adver-
sarial examples are a natural consequence of test error
in noise. arXiv preprint arXiv:1901.10513, 2019. 2

G. Ghiasi, T.-Y. Lin, and Q. V. Le. DropBlock: A
regularization method for convolutional networks. In
Advances in Neural Information Processing Systems,
pages 10750-10760, 2018. 2, 5,7

G. Ghiasi, T.-Y. Lin, R. Pang, and Q. V. Le. NAS-FPN:
Learning scalable feature pyramid architecture for ob-
ject detection. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019. 5,
7

R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollar,
and K. He. Detectron, 2018. 2

K. He, X. Zhang, S. Ren, and J. Sun. Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770-778, 2016. 1, 4

D. Ho, E. Liang, 1. Stoica, P. Abbeel, and X. Chen.
Population based augmentation: Efficient learning
of augmentation policy schedules. arXiv preprint
arXiv:1905.05393,2019. 2, 4

J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation
networks. arXiv preprint arXiv:1709.01507, 2017. 1

[19]

[26]

[27]

J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,
A. Fathi, 1. Fischer, Z. Wojna, Y. Song, S. Guadar-
rama, et al. Speed/accuracy trade-offs for modern
convolutional object detectors. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 7310-7311, 2017. 6

N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, et al. In-datacenter performance analysis
of a tensor processing unit. In 2017 ACM/IEEE 44th
Annual International Symposium on Computer Archi-
tecture (ISCA), pages 1-12. IEEE, 2017. 4, 5

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In Advances in Neural Information Process-
ing Systems, 2012. 1,2

J. Lemley, S. Bazrafkan, and P. Corcoran. Smart
augmentation learning an optimal data augmentation
strategy. IEEE Access, 5:5858-5869, 2017. 1,2

S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim. Fast
autoaugment. arXiv preprint arXiv:1905.00397,2019.
2,4

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar.
Focal loss for dense object detection. In Proceedings
of the IEEFE international conference on computer vi-
sion, pages 2980-2988, 2017. 1,4, 5

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollar, and C. L. Zitnick. Microsoft
coco: Common objects in context. In European con-
ference on computer vision, pages 740-755. Springer,
2014. 1,5

C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-
Fei, A. Yuille, J. Huang, and K. Murphy. Pro-
gressive neural architecture search. arXiv preprint
arXiv:1712.00559, 2017. 4

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox
detector. In European conference on computer vision,
pages 21-37. Springer, 2016. 2

J. Long, E. Shelhamer, and T. Darrell. Fully convo-
lutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 3431-3440, 2015. 8

R. G. Lopes, D. Yin, B. Poole, J. Gilmer, and E. D.
Cubuk. Improving robustness without sacrificing
accuracy with patch gaussian augmentation.
preprint arXiv:1906.02611, 2019. 2

I. Loshchilov and F. Hutter. SGDR: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 4

arXiv

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

S. Mun, S. Park, D. K. Han, and H. Ko. Generative
adversarial network based acoustic scene training set
augmentation and selection using svm hyper-plane. In
Detection and Classification of Acoustic Scenes and
Events Workshop, 2017. 1

C. Peng, T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia,
G. Yu, and J. Sun. Megdet: A large mini-batch object
detector. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018. 6, 7

L. Perez and J. Wang. The effectiveness of data aug-
mentation in image classification using deep learning.
arXiv preprint arXiv:1712.04621, 2017. 1

P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollar.
Learning to refine object segments. In European Con-
ference on Computer Vision, pages 75-91. Springer,
2016. 8

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet:
Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages
652-660, 2017. 8

C.R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a
metric space. In Advances in Neural Information Pro-
cessing Systems, pages 5099-5108, 2017. 8

A. J. Ratner, H. Ehrenberg, Z. Hussain, J. Dunnmon,
and C. Ré. Learning to compose domain-specific
transformations for data augmentation. In Advances in
Neural Information Processing Systems, pages 3239—
3249,2017. 1,2

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Reg-
ularized evolution for image classifier architecture
search. In Thirty-Third AAAI Conference on Artificial
Intelligence, 2019. 4, 5,7

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn:
Towards real-time object detection with region pro-
posal networks. In Advances in neural information
processing systems, pages 91-99, 2015. 6, 7

I. Sato, H. Nishimura, and K. Yokoi. Apac: Aug-
mented pattern classification with neural networks.
arXiv preprint arXiv:1505.03229, 2015. 2

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
0. Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017. 4

P. Y. Simard, D. Steinkraus, J. C. Platt, et al. Best
practices for convolutional neural networks applied to
visual document analysis. In Proceedings of Interna-

tional Conference on Document Analysis and Recog-
nition, 2003. 1, 2

[43]

[44]

[47]

[48]

L. Sixt, B. Wild, and T. Landgraf. = Rendergan:
Generating realistic labeled data. arXiv preprint
arXiv:1611.01331,2016. 1

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich,
et al. Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2015. 1

T. Tran, T. Pham, G. Carneiro, L. Palmer, and 1. Reid.
A bayesian data augmentation approach for learning
deep models. In Advances in Neural Information Pro-
cessing Systems, pages 2794-2803, 2017. 1, 2

V. Verma, A. Lamb, C. Beckham, A. Courville,
I. Mitliagkis, and Y. Bengio. Manifold mixup: En-
couraging meaningful on-manifold interpolation as a
regularizer. arXiv preprint arXiv:1806.05236, 2018. 7

L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fer-
gus. Regularization of neural networks using dropcon-
nect. In International Conference on Machine Learn-
ing, pages 1058-1066, 2013. 2

X. Wang, A. Shrivastava, and A. Gupta. A-fast-
rcnn: Hard positive generation via adversary for ob-
ject detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2606-2615, 2017. 2

T. Yang, X. Zhang, Z. Li, W. Zhang, and J. Sun.
Metaanchor: Learning to detect objects with cus-
tomized anchors. In Advances in Neural Information
Processing Systems, pages 318-328, 2018. 6

D. Yin, R. G. Lopes, J. Shlens, E. D. Cubuk, and
J. Gilmer. A fourier perspective on model robustness
in computer vision. arXiv preprint arXiv:1906.08988,
2019. 2

S. Zagoruyko and N. Komodakis. Wide residual net-
works. In British Machine Vision Conference, 2016.
2

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz.
mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412,2017. 7

Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang.
Random erasing data augmentation. arXiv preprint
arXiv:1708.04896, 2017. 2, 13

X. Zhu, Y. Liu, Z. Qin, and J. Li. Data augmentation
in emotion classification using generative adversarial
networks. arXiv preprint arXiv:1711.00648, 2017. 1
B. Zoph and Q. V. Le. Neural architecture search with
reinforcement learning. In International Conference
on Learning Representations, 2017. 4

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le.
Learning transferable architectures for scalable image

recognition. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 1, 4

A. Appendix

Operation Name Description Range of
magnitudes

ShearX(Y) Shear the image and the corners of the bounding boxes along the horizontal (vertical) axis with [-0.3,0.3]
rate magnitude.

TranslateX(Y) Translate the image and the bounding boxes in the horizontal (vertical) direction by magnitude [-150,150]
number of pixels.

Rotate Rotate the image and the bounding boxes magnitude degrees. [-30,30]

Equalize Equalize the image histogram.

Solarize Invert all pixels above a threshold value of magnitude. [0,256]

SolarizeAdd For each pixel in the image that is less than 128, add an additional amount to it decided by the [0,110]
magnitude.

Contrast Control the contrast of the image. A magnitude=0 gives a gray image, whereas magnitude=1 [0.1,1.9]
gives the original image.

Color Adjust the color balance of the image, in a manner similar to the controls on a colour TV set. A [0.1,1.9]
magnitude=0 gives a black & white image, whereas magnitude=1 gives the original image.

Brightness Adjust the brightness of the image. A magnitude=0 gives a black image, whereas magnitude=1 [0.1,1.9]
gives the original image.

Sharpness Adjust the sharpness of the image. A magnitude=0 gives a blurred image, whereas magnitude=1 [0.1,1.9]
gives the original image.

Cutout [9, 53] Set a random square patch of side-length magnitude pixels to gray. [0,60]

BBox_Only_X Apply X to each bounding box content with independent probability, and magnitude that was

chosen for X above. Location and the size of the bounding box are not changed.

Table 6: Table of all the possible transformations that can be applied to an image. These are the transformations that are
available to the controller during the search process. The range of magnitudes that the controller can predict for each of the
transforms is listed in the third column. Some transformations do not have a magnitude associated with them (e.g. Equalize).

Operation 1 P M Operation 2 P M
Sub-policy 1 TranslateX 0.6 4 Equalize 0.8 10
Sub-policy 2 BBox_Only_TranslateY 0.2 2 Cutout 08 8
Sub-policy 3 ShearY 1.0 2 BBox_Only_TranslateY 0.6 6
Sub-policy 4 Rotate 0.6 10 Color 1.0 6

Sub-policy 5 No operation No operation

Table 7: The sub-policies used in our learned augmentation policy. P and M correspond to the probability and magnitude
with which the operations were applied in the sub-policy. Note that for each image in each mini-batch, one of the sub-policies
is picked uniformly at random. The No operation is listed when an operation has a learned probability or magnitude of 0.

