Skip to main content

Discriminative Partial Domain Adversarial Network

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12372))

Included in the following conference series:

Abstract

Domain adaptation (DA) has been a fundamental building block for Transfer Learning (TL) which assumes that source and target domain share the same label space. A more general and realistic setting is that the label space of target domain is a subset of the source domain, as termed by Partial domain adaptation (PDA). Previous methods typically match the whole source domain to target domain, which causes negative transfer due to the source-negative classes in source domain that does not exist in target domain. In this paper, a novel Discriminative Partial Domain Adversarial Network (DPDAN) is developed. We first propose to use hard binary weighting to differentiate the source-positive and source-negative samples in the source domain. The source-positive samples are those with labels shared by two domains, while the rest in the source domain are treated as source-negative samples. Based on the above binary relabeling strategy, our algorithm maximizes the distribution divergence between source-negative samples and all the others (source-positive and target samples), meanwhile minimizes domain shift between source-positive samples and target domain to obtain discriminative domain-invariant features. We empirically verify DPDAN can effectively reduce the negative transfer caused by source-negative classes, and also theoretically show it decreases negative transfer caused by domain shift. Experiments on four benchmark domain adaptation datasets show DPDAN consistently outperforms state-of-the-art methods.

H. Tuo—This work is supported by National Natural Science Foundation of China(Grant No.61673262 and 61175028) and Shanghai key project of basic research(Grant No.16JC1401100)

J. Yan—Partial work was done when Junchi Yan was with Tencent AI Lab as visiting scholar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, Z., Long, M., Wang, J., Jordan, M.I.: Partial transfer learning with selective adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  2. Cao, Z., Ma, L., Long, M., Wang, J.: Partial adversarial domain adaptation. In: The European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  3. Donahue, J., et al.: Decaf: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning (ICML) (2014)

    Google Scholar 

  4. G. Cai, Y. Wang, M.Z.L.H.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  5. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 59:1–59:35 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Gong, B., Shi, Y., Sha, F., Grauman., K.: Geodesic flow kernel for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets (2014)

    Google Scholar 

  8. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical report (2007)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  10. Hoffman, J., et al.: Cycada: cycleconsistent adversarial domain adaptation. In: Proceedings of the 35th International Conference on Machine Learning (ICML), vol. 2, pp. 1994–2003 (2018)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS) (2012)

    Google Scholar 

  12. Jain, L.P., Scheirer, W.J., Boult, T.E.: Multi-class open set recognition using probability of inclusion. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 393–409. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_26

    Chapter  Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  14. Long, M., Cao, Y., Wang, J., Jordan., M.I.: Learning transferable features with deep adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  15. Long, M., Cao, Z., Wang, J., I, J.M.: Transferable features with deep adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  16. Long, M., Zhu, H., Wang, J., Jordan., M.I.: Deep transfer learning with joint adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML) (2017)

    Google Scholar 

  17. Luo, Z., Zou, Y., Hoffman, Y., Li, F.: Label efficient learning of transferable representations across domains and tasks. In: Advances in Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  18. Otsu, N.: A threshold selection method from grey-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  19. Pan, Y., Yao, T., Li, Y., Wang, Y., Ngo, C., Mei, T.: Transferable prototypical networks for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn:towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28, pp. 91–99 (2015)

    Google Scholar 

  21. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  22. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  23. Saito, K., Kim, D., Sclaroff, S., Saenko, K.: Universal domain adaptation through self-supervision. arXiv preprint (2020)

    Google Scholar 

  24. Sugiyama, M., Krauledat, M., Muller, K.R.: Covariate shift adaptation by importance weighted cross validation. J. Mach. Learn. Res. (JMLR) 8, 985–1005 (2007)

    MATH  Google Scholar 

  25. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  26. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell., T.: Simultaneous deep transfer across domains and tasks. In: IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  27. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  28. Wang, C., Tuo, H., Wang, J., Qiao, L.: Discriminative transfer learning via local and global structure preservation. Signal Image Video Process. 13(4), 753–760 (2019). https://doi.org/10.1007/s11760-018-1405-7

  29. Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: The visual domain adaptation challenge. arXiv preprint (2017)

    Google Scholar 

  30. Wang, X., Li, L., Wei, W., Long, M., Wang, J.: Transferable attention for domain adaptation. In: The Association for the Advance of Artificial Intelligence (AAAI) (2019)

    Google Scholar 

  31. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems (NIPS) (2014)

    Google Scholar 

  32. Zhang, J., Ding, Z., Li, W., Ogunbona, P.: Importance weighted adversarial nets for partial domain adaptation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  33. Zhong, H., Tuo, H., Wang, C., Ren, X., Hu, J., Qiao, L.: Source-constraint adversarial domain adaptation, pp. 2486–2490 (2019). https://doi.org/10.1109/ICIP.2019.8803282

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongya Tuo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 123 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, J. et al. (2020). Discriminative Partial Domain Adversarial Network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58583-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58582-2

  • Online ISBN: 978-3-030-58583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics