Skip to main content

HGNet: Hybrid Generative Network for Zero-Shot Domain Adaptation

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12372))

Included in the following conference series:

Abstract

Domain Adaptation as an important tool aims to explore a generalized model trained on well-annotated source knowledge to address learning issue on target domain with insufficient or even no annotation. Current approaches typically incorporate data from source and target domains for training stage to deal with domain shift. However, most domain adaptation tasks generally suffer from the problem that measuring the domain shift tends to be impossible when target data is inaccessible. In this paper, we propose a novel algorithm, Hybrid Generative Network (HGNet) for Zero-shot Domain Adaptation, which embeds an adaptive feature separation (AFS) module into generative architecture. Specifically, AFS module can adaptively distinguish classification-relevant features from classification-irrelevant ones to learn domain-invariant and discriminative representations when task-relevant target instances are invisible. To learn high-quality feature representation, we also develop hybrid generative strategy to ensure the uniqueness of feature separation and completeness of semantic information. Extensive experimental results on several benchmarks illustrate that our method achieves more promising results than state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  2. Cai, R., Li, Z., Wei, P., Qiao, J., Zhang, K., Hao, Z.: Learning disentangled semantic representation for domain adaptation. In: IJCAI, vol. 2019, p. 2060. NIH Public Access (2019)

    Google Scholar 

  3. Chen, T.H., Liao, Y.H., Chuang, C.Y., Hsu, W.T., Fu, J., Sun, M.: Show, adapt and tell: adversarial training of cross-domain image captioner. In: ICCV, pp. 521–530 (2017)

    Google Scholar 

  4. Chen, Z., Zhuang, J., Liang, X., Lin, L.: Blending-target domain adaptation by adversarial meta-adaptation networks. In: CVPR, pp. 2248–2257 (2019)

    Google Scholar 

  5. Cicek, S., Soatto, S.: Unsupervised domain adaptation via regularized conditional alignment. In: ICCV, pp. 1416–1425 (2019)

    Google Scholar 

  6. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: IJCNN, pp. 2921–2926. IEEE (2017)

    Google Scholar 

  7. Ding, Z., Li, S., Shao, M., Fu, Y.: Graph adaptive knowledge transfer for unsupervised domain adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_3

    Chapter  Google Scholar 

  8. Ding, Z., Ming, S., Fu, Y.: Latent low-rank transfer subspace learning for missing modality recognition. In: AAAI (2014)

    Google Scholar 

  9. Dong, J., Cong, Y., Sun, G., Zhong, B., Xu, X.: What can be transferred: unsupervised domain adaptation for endoscopic lesions segmentation. In: CVPR, June 2020

    Google Scholar 

  10. Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.: Covariate shift by kernel mean matching. In: Dataset Shift in Machine Learning, vol. 3, no. 4, p. 5 (2009)

    Google Scholar 

  11. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR, pp. 4893–4902 (2019)

    Google Scholar 

  12. Koniusz, P., Tas, Y., Porikli, F.: Domain adaptation by mixture of alignments of second-or higher-order scatter tensors. In: CVPR, pp. 4478–4487 (2017)

    Google Scholar 

  13. Kumar, A., et al.: Co-regularized alignment for unsupervised domain adaptation. In: NeurIPS, pp. 9345–9356 (2018)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Liu, H., Long, M., Wang, J., Jordan, M.: Transferable adversarial training: a general approach to adapting deep classifiers. In: ICML, pp. 4013–4022 (2019)

    Google Scholar 

  16. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML, pp. 2208–2217. JMLR.org (2017)

    Google Scholar 

  17. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: CVPR, pp. 2507–2516 (2019)

    Google Scholar 

  18. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: ICCV, pp. 5715–5725 (2017)

    Google Scholar 

  19. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: ICML, pp. 10–18 (2013)

    Google Scholar 

  20. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In: AAAI (2018)

    Google Scholar 

  21. Peng, K.-C., Wu, Z., Ernst, J.: Zero-shot deep domain adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 793–810. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_47

    Chapter  Google Scholar 

  22. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: ICCV, pp. 1406–1415 (2019)

    Google Scholar 

  23. Pinheiro, P.O.: Unsupervised domain adaptation with similarity learning. In: CVPR, pp. 8004–8013 (2018)

    Google Scholar 

  24. Roy, S., Siarohin, A., Sangineto, E., Bulo, S.R., Sebe, N., Ricci, E.: Unsupervised domain adaptation using feature-whitening and consensus loss. In: CVPR, pp. 9471–9480 (2019)

    Google Scholar 

  25. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR, pp. 3723–3732 (2018)

    Google Scholar 

  26. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)

    Google Scholar 

  27. Wang, J., Jiang, J.: Conditional coupled generative adversarial networks for zero-shot domain adaptation. In: ICCV, pp. 3375–3384 (2019)

    Google Scholar 

  28. Wang, X., Li, L., Ye, W., Long, M., Wang, J.: Transferable attention for domain adaptation. In: AAAI, vol. 33, pp. 5345–5352 (2019)

    Google Scholar 

  29. Wulfmeier, M., Bewley, A., Posner, I.: Addressing appearance change in outdoor robotics with adversarial domain adaptation. In: IROS, pp. 1551–1558. IEEE (2017)

    Google Scholar 

  30. Xia, H., Ding, Z.: Structure preserving generative cross-domain learning. In: CVPR, pp. 4364–4373 (2020)

    Google Scholar 

  31. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  32. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: ICML, pp. 5423–5432 (2018)

    Google Scholar 

  33. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: CVPR, pp. 2528–2535. IEEE (2010)

    Google Scholar 

  34. Zhang, W., Ouyang, W., Li, W., Xu, D.: Collaborative and adversarial network for unsupervised domain adaptation. In: CVPR, pp. 3801–3809 (2018)

    Google Scholar 

  35. Zhang, Y., Tang, H., Jia, K., Tan, M.: Domain-symmetric networks for adversarial domain adaptation. In: CVPR, pp. 5031–5040 (2019)

    Google Scholar 

  36. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: ICCV, pp. 2020–2030 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengming Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, H., Ding, Z. (2020). HGNet: Hybrid Generative Network for Zero-Shot Domain Adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58583-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58582-2

  • Online ISBN: 978-3-030-58583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics