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Abstract. This paper proposes a novel deep convolutional model, Tri-
Points Based Line Segment Detector (TP-LSD), to detect line segments
in an image at real-time speed. The previous related methods typically
use the two-step strategy, relying on either heuristic post-process or extra
classifier. To realize one-step detection with a faster and more compact
model, we introduce the tri-points representation, converting the line
segment detection to the end-to-end prediction of a root-point and two
endpoints for each line segment. TP-LSD has two branches: tri-points ex-
traction branch and line segmentation branch. The former predicts the
heat map of root-points and the two displacement maps of endpoints. The
latter segments the pixels on straight lines out from background. More-
over, the line segmentation map is reused in the first branch as structural
prior. We propose an additional novel evaluation metric and evaluate our
method on Wireframe and YorkUrban datasets, demonstrating not only
the competitive accuracy compared to the most recent methods, but also
the real-time run speed up to 78 FPS with the 320× 320 input.

Keywords: Line Segment Detection, Low-level vision, Deep learning

1 Introduction

Compact environment description is an important issue in visual perception.
For man-made environments with various flat surfaces, line segments can en-
code the environment structure, providing fundamental information to the up-
stream vision tasks, such as vanishing point estimation [17, 19], 3D structure
reconstruction [16], distortion correction [24], and pose estimation [4, 14].

With the rapid advance of deep learning, deep neural networks are applied
to line segment detection. As shown in Fig. 1a, the existing methods have two
steps. With the top-down strategy it first detects the region of a line and then
squeezes the region into a line segment [22], which might be affected by regional
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Fig. 1: Overview. (a) Compared to the existing two-step methods, TP-LSD de-
tects multiple line segments simultaneously in one step, providing better effi-
ciency and compactness. (b) Inference speed and F-score on Wireframe test set.

textures and does not have an explicit definition of endpoints. With the bottom-
up strategy it first detect junctions and then organize them to line segments
using grouping algorithm [7, 8], or extra classifier [23, 25, 28], which might be
prone to the inaccurate junction predictions caused by local ambiguity. The
two-step strategy might also limit the inference speed in real-time applications.

Considering the above problems, we propose the tri-points (TP) representa-
tion, which uses a root-point as the unique identity to localize a line segment,
and the two corresponding end-points are represented by their displacements
w.r.t the root-point. Thus a TP encodes the length, orientation and location of
a line segment. Moreover, inspired by that human perceive line segments accord-
ing to straight lines, we leverage the straight line segmentation map as structural
prior to guide the inference of TPs, by embedding feature aggregation modules
which fuse the line-map with TP related features. Accordingly, Tri-Points Based
Line Segment Detector (TP-LSD) is designed, which has three parts: feature
extraction backbone, TP extraction branch, and line segmentation branch.

As to the evaluation of line segment detection, the current metrics either treat
a line segment as a set of pixels, or use squared euclidean distance to judge the
matching degree, which cannot reflect the various relationships between line seg-
ments such as intersection and overlapping. Therefore we propose a new metric
named line matching average precision from a camera model perspective.

In summary, the main contributions of this paper are as follows:

– We utilize the TP representation to encode line segment, based on which
TP-LSD is proposed to realize the real-time and compact one-step detec-
tion pipeline. The synthesis of local root-point detection and global shape
inference makes the detection more robust to various textures and spatial-
distributions.

– A novel evaluation metric is designed based on the spatial imaging geometry,
so that the relative spatial relationship between line segments is reflected
more distinctively.
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– Our proposed method obtains the state-of-the-art performance on two public
LSD benchmarks. The average inference speed achieves up to 78 FPS, which
significantly promotes the LSD applications in real-time tasks.

2 Related Work

2.1 Hand-crafted Feature Based Methods

Line segment detection is a long-standing task in computer vision. Traditional
methods [1,2,6,12] usually depend on low-level cues like image gradients, which
are used to construct line segments with predefined rules. However, the hand-
crafted line segment detectors are sensitive to the threshold settings and image
noise. Another way to detect line segments applies Hough transform [21], which
is able to use the entire image’s information but difficult to identify the endpoints
of line segments.

2.2 Deep Edge and Line Segment Detection

In the past few years, CNN-based methods have been introduced to solve the
edge detection problem. HED [20] treats edge detection problem as pixel-wise
binary classification, and achieves significant performance improvement com-
pared to traditional methods. Following this breakthrough, numerous methods
for edge detection have been proposed [11,15]. However, edge maps lack explicit
geometric information for compact environment representation.

Most recently, CNN-based method has been realized for line segment detec-
tion. Huang et al. [8] proposed DWP, which includes two parallel branches to
predict junction map and line heatmap in an image, then merges them as line
segments. Zhang et al. [25] and Zhou et al. [28] utilize a point-pair graph rep-
resentation for line segments. Their methods (PPGNet and L-CNN) first detect
junctions, then use an extra classifier to create an adjacency matrix to identify
whether a point-pair belongs to the same line segment. Xue e al. [22] creatively
presented regional attraction of line segment maps, and proposed AFM to predict
attraction field maps from raw images, followed by a squeeze module to produce
line segments. Furthermore, Xue et al. [23] proposed a 4-D holistic attraction
field map (H-AFM) to better parameterize line segments, and proposed HAWP
with L-CNN pipeline. Though learning-based methods have significant advan-
tages over the hand-crafted ones. However, their two-step strategy might limit
their real-time performance, and rely on extra classifier or heuristic post-process.
Moreover, the relationship between line-map and line segments is under-utilized.

2.3 Object Detection

Current object detectors represent each object by an axis-aligned bounding box
and classify whether its content is a specific object or background [5, 10]. Re-
cently, keypoint estimation has been introduced to object detection to avoid the
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Fig. 2: Line segment representation.

dependence on generating boxes. CornerNet [9] detects two bounding box corners
as keypoints, while ExtremeNet [27] detects the top-, left-, bottom-, right-most
and center points of all objects. These two models both require a grouping stage
to form objects based on the extracted keypoints. CenterNet [26] represents ob-
jects by the center of bounding boxes, and regresses other properties directly
from image features around the center location. Such anchor-free based meth-
ods have achieved good detection accuracy with briefer structure, motivated by
which we adopt a similar strategy to detect line segments.

3 Tri-Points representation

The Tri-Points (TP) representation is inspired by how people model a long nar-
row object. Intuitively, we usually find a root point on a line, then extend it from
the root-point to two opposite directions and determine the endpoints. TP con-
tains three key-points and their spatial relationship to encode a line segment.
The root-point localizes the center of a line segment. The two end-points are
represented by two displacement vectors w.r.t the root point, as illustrated in
Fig. 2c, 2d. It is similar to SPM [13] used in human pose estimation. The conver-
sion from a TP to a vectorized line segment, which is denotes as TP generation
opperation, is expressed by,

(xs, ys) =(xr, yr) + ds(xr, yr)

(xe, ye) =(xr, yr) + de(xr, yr) (1)

where (xr, yr) denotes the root-point of a line segment. (xs, ys) and (xe, ye)
represent its start-point and end-point, respectively. Generally, the most left
point is the start-point. Specially, if line segment is vertical, the upper point is
the start-point. ds(xr, yr) and de(xr, yr) denote the predicted 2D displacements
from root-point to its corresponding start-point and end-point, respectively.

4 Methods

Based on the proposed Tri-Points, a one-step model TP-LSD is proposed for line
segment detection, whose architecture is shown in Fig. 3. A U-shape network is
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Fig. 3: An overview of our network architecture.

used to generate shared features, which are then fed to two branches: 1) TP
extraction branch, which contains a root-point detection task and a displace-
ment regression task; 2)line segmentation branch, which generates a pixel-wise
line-map. These two branches are bridged by feature aggregation modules. Fi-
nally, after processed by point filter module, the filtered TPs are transformed to
vectorized line segment instances with TP generation operation.

4.1 TP Extraction Branch

Root-Point Detection The first task in TP extraction branch is to detect root
points. Similar to CenterNet [26], each pixel is classified to discriminate whether
it is a root-point. The output activation function is sigmoid function.

MCM. Because of the narrow and even long shape of line segment, it re-
quires a large receptive field to classify the center of line segment. Therefore,
a mixture convolution module (MCM) is introduced to provide the adap-
tive and expanded reception field, by cascading three convolution layers, a 3×3
deformable convolutional layer, and two 3 × 3 atrous convolutional layers with
dilation rate= 2, whose strides are all set as 1.

Displacement Regression The second task in TP extraction branch is to
regress the two displacements of the start and end points w.r.t a root-point in the
continuous domain. The sparse maps for the displacements are inferred by one
3×3 deformable convolutional, two 3×3 convolutional and a 1×1 convolutional
layers, whose strides are all set as 1. With the output maps, we can index the
related displacements by positions. Given a root point (xr, yr), the corresponding
displacements are indexed as ds(xr, yr) and de(xr, yr). Then the coordinates of
the start- and end-points can be obtained by Eq. (1).

4.2 Line Segmentation Branch

Pixel-wise map of straight lines is easier to obtain because the precise deter-
mination of end-points is not required. Based on the idea that line segment is
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highly related to straight line, we use a straight line segmentation branch to pro-
vide prior knowledge for line segment detection. First, straight line can serve as
spatial attention cue. Second, a root-point must be localized on a straight line.
As is shown in Fig. 3, the line segmentation branch has two 3×3 convolutional
layers with the stride 1. The output activation function is sigmoid function, so
that the line-map P (L) has the pixel values ranging within (0, 1).

FAM. From the multi-modal feature fusion prospective, we present a fea-
ture aggregating module (FAM) to aggregate the structural prior of line-map
with the TP extraction branch. Given a line-map P (L) from the line segmenta-
tion branch, the straight line activation map Al is obtained by tanh(w×P (L)+b)
where w, b denotes the parameters of a 1 × 1 convolutional layer, and the tanh
gating function indicates whether a pixel is activated or suppressed according
to its relative position to a straight line. The shared feature is firstly aggregated
with the straight line activation map Al by concatenation, and then fed to the
root-point detection sub-branch, as shown in Fig. 3. For the displacement regres-
sion sub-branch, similarly, the straight line activation map and the root-point
activation map are obtained by 1×1 conv and tanh, then fused with the shared
feature map by concatenation, as shown in Fig. 3. Thus the prior knowledge of
straight line and root point can benifit the displacement regression.

PFM. The line-map can also be leveraged to filter the noisy root-points that
lies out of line. We consider the root-point confidence map as a probability dis-
tribution P (R|L) conditioned on line existence. Thus the root-point confidence
map P (R|L) can be refined by the multiplication with the line confidence map
P (L), which is called point filter module (PFM), as given by

P̃ (R) = P̃ (R|L)× P̃ (L)α (2)

where the power coefficient α ∈ (0, 1) is to adjust the contribution of line-map.

4.3 Training and Inference

Feature extractor. A U-shape network is used as the feature extractor. After a
backbone encoder, there are four decoder blocks. Each decoder block is formed by
a bi-linear interpolation based up-sampling and a residual block. Skip connection
is used to aggregate multi-scale features by concatenating the low level features
with the high level features. The output of the feature extractor is a 64-channel
feature map, whose size is the same with the input image, or optionally half of
the input size for faster inference. This feature map is used as the shared features
for the following branches.

Loss. In training stage, the input image is resized to 320 × 320, and the
outputs include a line-map, a root-point confidence map, and four displacement
maps, whose ground truths are generated from the raw line segment labels. The
three tasks’ losses are combined as Eq. (3), where λroot,disp,line = {50, 1, 20}.

Ltotal = λrootLroot + λdispLdisp + λlineLline (3)

The ground truth of root-point confidence map is constructed by marking the
root-point positions on a zero-map and then smoothed by a scaled 2D Gaussian
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kernel truncated by a 5 × 5 window, so that the root-point has the highest
confidence 1, and its nearby pixels have lower confidence. A weighted binary
cross-entropy loss Lroot is used to supervise this task. The ground truths of
the displacement maps are constructed by assigning displacement values at the
root-point positions on the zero-maps. For each ground truth line segment, its
mid-point is considered as the root point. For the pixels within a 5× 5 window
centered at the mid-point, we calculate the displacements from it to the start-
and end-points, then assigned the displacement values to these pixels. After all
the ground truth line segments are visited, the final displacements maps are used
for smoothed L1 loss Ldisp based regression learning. Note that only the root-
points and its 5× 5 neighbourhood window are involved in the loss calculation.
As to the line segmentation sub-task, the ground truth of line segmentation map
are constructed by simply draw the line segments on a zero map and the learning
is supervised by the weighted binary cross entropy loss Lline.

In the inference stage, after the root-point confidence map is produced, the
non-maximum suppression is operated to extract the exact root-point positions.
Afterwards, we use the extracted root-points and their corresponding displace-
ments to generate line segments from TPs with Eq. (1).

5 Evaluation Metrics

In this section, we briefly introduce two existed evaluation metrics: pixel based
metric and structural average precision, and then design a novel metric, line
matching average precision.

Pixel based metric: For a pixel on a detected line segment, if its minimum
distance to all the ground truth pixels is within the 1 percent of the image
diagonal size, it is regarded as true positive. After evaluating all the pixels on
the detected line segments, the F-score FH can be calculated [8, 22, 28]. The
limitation is that it cannot reveal the continuity of line segment. For example, if
a long line segment is broken into several short ones, the F-score is high but these
split line segments is not suitable for 3D reconstruction or wireframe parsing.

Structural Average Precision: The structural average precision (sAP) [28]
uses the sum of squared error (SSE) between the predicted end-points and
their ground truths as evaluation metric. The predicted line segment will be
counted as a true positive detection when its SSE is less than a threshold, such
as ε = 5, 10, 15. However, line segment matching could be more complicated than
point pair correspondence. For example, in Fig. 4b, 4c, it is shown that sAP is
not discriminative enough for some different matching situations.

Line Matching Average Precision: To better reflect the various line seg-
ment matching situations in term of direction and position as well as length,
the Line Matching Score (LMS) is proposed. LMS contains two parts: Scoreθ
denotes the differences in angle and position, and Scorel denotes the matching
degree in length. The LMS is calculated by

LMS = Scoreθ × Scorel (4)
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Fig. 4: Evaluation metrics for line segment detection. (a) The geometric explana-
tion of the proposed line matching score (LMS). The blue and red line segments
on the normalized image plane correspond to the detection and ground truth,
respectively, which determine two planes together with the optical center C. In
(b) and (c), the different matching situations could have the same SSE score 8
with sAP metric. In contrast, the LMS gives the discriminative scores.

Inspired by 3D line reconstruction, Scoreθ is calculated in the 3D camera
frame as shown in Fig. 4a. A line segment and the camera’s optical center jointly
determine a unique plane whose normal vector is n. Thus, given a predicted
and a ground truth line segments, they determine two 3D planes, and the angle
between their normal vectors is used to measure the directional matching degree.
The angle is equal to 0 if and only if the two line segments are collinear. To
calculate Scoreθ, Firstly, a ground truth line segment is aligned to the center of
the image plane by subtracting the coordinates of the midpoint lm = (xm, ym)

>
.

The endpoints of detected line segment is also subtracted by lm. Then, the
endpoints are projected from the 2D image plane li = (xi, yi)

>
, i = s, e onto

the 3D normalized image plane by dividing the camera focal length, i.e. l̄i =(
xi
f ,

yi
f , 1

)>
. Finally, the normal vectors ngt and npred are obtained by cross-

multiplying their endpoint l̄s × l̄e, respectively. Scoreθ is given by,

Scoreθ =

{
1− θ(ngt,npred)

ηθ
, if θ(ngt,npred) < ηθ

0, otherwise
(5)

where θ () is to calculate the angle between two vectors with the unit degree. ηθ
is a minimum threshold.

Scorel demonstrates the overlap degree of two line segment. The ratio of
overlap length against the ground truth length is η1. The ratio of overlap length
against the projection length is η2.

η1 =
Lpred ∩ Lgt
Lgt

, η2 =
Lpred ∩ Lgt
Lpred |cos(α)|

(6)

where L is the length of line segment and Lpred ∩ Lgt is the overlap length of
the predicted line segment projected to the ground truth line segment. α is the
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(a) GT (b) sAP10 Matching (c) LAP Matching

Fig. 5: Comparison of line matching evaluation results using different metrics.
(a) The ground truth line segments marked by red. (b) Line matching result
using sAP10 metric. (c) Line matching result using proposed LAP metric. In (b)
and (c), the mismatched and matched line segments are marked by blue and red,
respectively. The endpoints are marked by cyan.

angle between the two line segments in 2D image. Then Scorel is calculated by,

Scorel =

{
η1+η2

2 , if η1 ≥ ηl, and η2 ≥ ηl
0, otherwise

(7)

where ηl denotes a minimum threshold. Since the focal length of a camera might
be unknown for public data sets, to make a fair comparison, we firstly re-scale
the detected line segments with the same ratio of resizing the original image to
the resolution 128 × 128, and set a virtual focal length f = 24. Besides we set
ηθ = 10◦ and ηl = 0.5 in this work.

Using LMS to determine true positive, i.e. a detected line segment is con-
sidered to be true positive if LMS> 0.5, we can calculate the Line Matching
Average Precision (LAP) on the entire test set.LAP is defined as the area under
the precision recall curve.

Analysis of metric on real image. We compare the line matching evalu-
ation results between SSE used in sAP and LMS used in LAP on a real image,
as shown in Fig. 5. Comparing the areas labeled by yellow boxes in Fig. 5b
and Fig. 5a, the detected line segments have obvious error direction compared
to ground truth. However, SSE gives the same tolerance for line segments with
different lengths, and accepts them as true positive matches. In contrast, as
shown in Fig. 5c, LMS could better capture the direction errors and give the
correct judgement. As shown by the green boxes in Fig. 5a and Fig. 5c, for the
line segment with the correct direction but the slightly shorter length compared
with the ground truth, namely, whose Scorel is lower than 1 but greater than
ηl, LMS will accept it while SSE would not. Considering that the direction of
line segments are more important in upper-level applications such as SLAM, this
deviation can be acceptable.
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(a) Image (b) model 1 (c) model 2 (d) model 3 (e) model 4

Fig. 6: Gradient based interpretation of root-point detection. (a) Raw image and
the root points (white dots) of three line segments. (b-e) The gradient saliency
maps of the input layer backpropogated from the three root points detected by
the four different models, based on Guided Back-propogation method [17].

6 Experiments

Experiments are conducted on Wireframe dataset [8] and YorkUrban dataset [3].
Wireframe contains 5462 images of indoor and outdoor man-made environments,
among which 5000 images are used for training. To validate the generalization
ability, we also evaluate on YorkUrban Dataset [3], which has 102 test images.

We use the standard data augmentation procedure to expand the diversity
of training samples, including horizontal and vertical flip, rotation and scaling.
The hardware configuration includes four NVIDIA RTX 2080Ti GPUs and an
Intel Xeon Gold 6130 2.10 GHz CPU. We use the ADAM optimizer with an
initial learning rate of 1× 10−3, which is divided by 10 at the 150th, 250th, and
350th epoch. The total training epoch is 400.

6.1 Analysis of TP-LSD

We run a series of ablation experiments to study our proposed TP-LSD on Wire-
frame dataset. The evaluation results are shown in Table 1. FH refers to pixel
based metric [8]. sAP10 is the structural average precision [28] with threshold
of 10. LAP is the proposed metric. As presented in Table 1, all the proposed
modules present contributions to the performance improvements.

LSB. After integrating the line-map segmentation branch with the TP ex-
traction branch without cross-branch guidance, the multi-task learning improves
the performance from 0.782 to 0.808, because the line segmentation learning can
guide the model to learn more line-awareness features.

FAM. FAM combines the cross-branch guidance with the line-map segmen-
tation branch. Although the FH metric increases indicating the better pixel
localization accuracy, sAP10 and LAP are slightly decreased, because of the a
larger number of line segments are detected.

MCM. Mixture Convolution Module is applied in root-point detection sub-
branch. Compared to the standard convolution layers, MCM improves the LAP
scores significantly, showing a better matching degree.
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Table 1: Ablation study of TP-LSD on Wireframe dataset. ”LSB”, ”FAM” and
”MCM” refer to line segmentation branch, feature aggregate module and mix-
ture convolution module, respectively. α is the contribution ratio of line-map
as Eq. (2). ”R/S” refers to the rotation and scale data augmentation strategy.
”Avg. line Num.” means the average number of detected line segments whose
confidence are greater than 0.2.

No. LSB FAM MCM PFM R/S FH sAP10 LAP Avg. line

1 - X 0.782 56.8 58.6 116.1
2 X - X 0.808 59.2 61.4 113.6
3 X X - X 0.810 60.4 59.2 138.0
4 X X X 0 X 0.810 61.3 60.9 /
5 X X X 1 X 0.811 60.0 60.1 /
6 X X X 0.5 X 0.816 60.6 60.6 /
7 X X X 0.5 × 0.813 60.0 60.1 /

PFM. With PFM and the contribution ratio of α = 0.5, the precision is
increased while the recall slightly decreased, which lead to a better overall ac-
curacy. The decrease in sAP10 and LAP is due to the reduced confidence of the
root-points after PFM.

Augmentation. The 7th row in Table 1 shows the data augmentation with
only horizontal and vertical flip. Compared to the result in 6th row, the lower
performance shows that the rotation and scaling based data augmentation can
further improve the performance.

Interpretability. To explore what the network learned from the line segment
detection task, we use Guided Backpropogation [18] to visualize which pixels are
important for the root-point detection. Guided Backpropogation interprets the
pixels’ importance degree on the input image, by calculating the gradient flow
from the output layer to the input images. The gradients flowed to the input
images from the three specific detected root-point are visualized in Fig. 6. We
find that the network automatically learns to localize the saliency region w.r.t a
root-point, which is along a complete line segment. It shows that the root point
detection task is mainly based on the line feature.

Furthermore, the integration of LSB lead to the higher influence of on-line
pixels to root point prediction. Comparing Fig. 6c to Fig. 6b, the former presents
higher gradient values along the line. The saliency maps obtained by model No.
3 and model No. 4 are cleaner, and the saliency regions are more concentrated
on specific line segments. With the introduction of MCM in model No. 4, the
response of long line segment could be improved with a lager receptive field,
which can be shown by the comparison between Fig. 6d and Fig. 6e.
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Table 2: Evaluation results of different line segment detection methods. ”/”
means that the score is too slow to be meaningful. The best two scores are
shown in red and blue.

Method
Input
Size

Wireframe dataset YorkUrban dataset
FPS

FH sAP5 sAP10 LAP FH sAP5 sAP10 LAP

LSD [6] 320 0.641 6.7 8.8 18.7 0.606 7.5 9.2 16.1 100
DWP [8] 512 0.727 / / 6.6 0.652 / / 3.1 2.2
AFM [22] 320 0.773 18.3 23.9 36.7 0.663 7.0 9.1 17.5 12.8
L-CNN [28] 512 0.775 58.9 62.8 59.8 0.646 25.9 28.2 32.0 11.1
L-CNN(P) [28] 512 0.817 52.4 57.3 57.9 0.675 20.9 23.1 26.8 5.2

TP-LSD-Lite 320 0.804 56.4 59.7 59.7 0.681 24.8 26.8 31.2 78.2
TP-LSD-Res34 320 0.816 57.5 60.6 60.6 0.674 25.3 27.4 31.1 42.2
TP-LSD-HG 512 0.820 50.9 57.0 55.1 0.673 18.9 22.0 24.6 53.4
TP-LSD-Res34 512 0.806 57.6 57.2 61.3 0.672 27.6 27.7 34.3 18.1

6.2 Comparison with other methods

We compare our proposed TP-LSD with LSD1 [6], DWP2 [8], AFM3 [22], L-
CNN4 and L-CNN with post-process (L-CNN(P)) [28]. The source codes and
their model weights provided by the authors are available online, except that we
reproduced DWP by ourselves. FH , sAP and LAP are used to evaluate those
methods quantitatively. For TP-LSD, we tried a series of minimum thresholds
of the root-point detection confidence, ranging within (0.1, 0.8) with the step
4γ = 0.05. LSD is evaluated with − log(NFA) in 0.01×{1.750, ..., 1.7519}, where
NFA is the number of false positive detections. For other methods, we use the
author recommended threshold array listed in [8, 22,28].

We evaluate the methods on Wireframe and YorkUrban dataset. We use the
model No. 6 in Section 6.1 as the representative model, named as TP-LSD-
Res34. Furthermore, we alter the backbone with Hourglass used in L-CNN [28]
to form TP-LSD-HG. To achieve a faster speed, TP-LSD-Lite is realized by using
the output of the last second layer of the decoder as the shared feature. Thus
the input to the task branches has the smaller size of 160×160. And the final
output of the task branches are upsampled back to 320×320 with the bi-linear
interpolation.

The precision-recall curves are depicted in Fig. 7 and the detection perfor-
mances are reported in Table 2. Fig. 7a and Fig. 7b show that TP-LSD out-
performs other line segment detection methods, according to the pixel based
PR curves. In addition, our one-step method provides the comparable detection
performance compared to the two-step L-CNN that requires post-processing.

1 http://www.ipol.im/pub/art/2012/gjmr-lsd/
2 https://github.com/huangkuns/wireframe
3 https://github.com/cherubicXN/afm-cvpr2019
4 https://github.com/zhou13/lcnn

http://www.ipol.im/pub/art/2012/gjmr-lsd/
https://github.com/huangkuns/wireframe
https://github.com/cherubicXN/afm-cvpr2019
https://github.com/zhou13/lcnn
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Fig. 7: Precision-recall curves of line segment detection. The models are trained
on Wireframe dataset and tested on both Wireframe and YorkUrban datasets.
Scores below 0.1 are not plotted. The PR curves for LAP of DWP are not ploted
for its lower score.

We then evaluate the methods with the sAP and the proposed LAP. The
precision recall curve of LAP in two datasets are drawn in Fig. 7c and Fig. 7d.
The performances of AFM and LSD are limited by length prediction of line
segments. As to DWP, the inaccurate direction prediction might affect the de-
tection. Our method and L-CNN present the higher scores, which shows that
these two methods perform better not only in detection but also in alignment.
Moreover, our method has the better precision than L-CNN in higher recall re-
gion. Though the higher FH is obtained by TP-LSD-HG, the decreases of sAP
and LAP were caused by the lower recall rate due to the lower feature map
resolution. TP-LSD-Lite gets comparable generalization performance on both
dataset. YorkUrban dataset is more challenging because only the line segments
which satisfy the Manhattan World assumption are labeled out as ground truth,
which causes lower precision.

Visualization and Discussion In Fig. 8, several results of line segment
detection are visualized. LSD detected some noisy local textures without seman-
tic meaning. Recent CNN-based methods have shown good noise-suppression
ability because they obtain high-level semantics. AFM does not have explicit
endpoint definition, limiting the accuracy of end-points localization. It also pre-
sented many short line segments. DWP gives a relatively cleaner detection result,
but there exist some incorrectly connected junction pairs, caused by inaccurate
junctions predictions and sub-optimal heuristic combination algorithm. L-CNN,
which has a junction detector and an extra line segment classifier, has good visu-
alization results. However, its line segment detection result rely on the junction
detection and line feature sampling, which might be prone to missed junction
and nearby texture variation. In comparison, the proposed TP-LSD method is
capable to detect line segments in complicated even low-contrast environments
as is shown on the first and the sixth rows in Fig. 8.

Inference Speed Based on NVIDIA RTX2080Ti GPU and Intel Xeon Gold
6130 2.10 GHz CPU, the inference speed is reported in Table 2. With the image
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size of 320 × 320, the proposed TP-LSD achieve the real-time speed up to 78
FPS, offering the potential to be used in real-time applications like SLAM.

7 Conclusion

This paper proposes a faster and more compact model TP-LSD for line seg-
ment detection with the one-step strategy. Tri-points representation is used to
encodes a line segment with three keypoints, based on which the line-segment
detection is realized by end-to-end inference. Furthermore, the straight line-map
is produced based on segmentation task, and is used as structural prior cues
to guide the extraction of TPs. Both quantitatively and qualitatively, TP-LSD
shows the improved performances compared to the existing models. Besides, our
method achieves 78 FPS speed, showing potential to be integrated with real-
time applications, such as vanishing point estimation, 3D reconstruction and
pose estimation.

(a) LSD (b) DWP (c) AFM (d) L-CNN (e) Ours (f) GT

Fig. 8: Quanlitative evaluation of line detection methods on Wireframe dataset
and YorkUrban dataset. The line segments and their end-points are marked by
orange and cyan colors, respectively.
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26. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. ArXiv abs/1904.07850
(2019)
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