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Abstract. Recent advances in high refresh rate displays as well as the
increased interest in high rate of slow motion and frame up-conversion
fuel the demand for efficient and cost-effective multi-frame video inter-
polation solutions. To that regard, inserting multiple frames between
consecutive video frames are of paramount importance for the consumer
electronics industry. State-of-the-art methods are iterative solutions in-
terpolating one frame at the time. They introduce temporal inconsisten-
cies and clearly noticeable visual artifacts.
Departing from the state-of-the-art, this work introduces a true multi-
frame interpolator. It utilizes a pyramidal style network in the temporal
domain to complete the multi-frame interpolation task in one-shot. A
novel flow estimation procedure using a relaxed loss function, and an
advanced, cubic-based, motion model is also used to further boost inter-
polation accuracy when complex motion segments are encountered. Re-
sults on the Adobe240 dataset show that the proposed method generates
visually pleasing, temporally consistent frames, outperforms the current
best off-the-shelf method by 1.57db in PSNR with 8 times smaller model
and 7.7 times faster. The proposed method can be easily extended to in-
terpolate a large number of new frames while remaining efficient because
of the one-shot mechanism. https://chi-chi-zx.github.io/all-at-once/

1 Introduction

Video frame interpolation targets generating new frames for the moments in
which no frame is recorded. It is mostly used in slow motion generation [26],
adaptive streaming [25], and frame rate up-conversion [5]. The fast innovation
in high refresh rate displays and great interests in a higher rate of slow motion
and frame up-conversion bring the needs to multi-frame interpolation.

Recent efforts focus on the main challenges of interpolation, including oc-
clusion and large motions, but they have not explored the temporal consistency
as a key factor in video quality, especially for multi-frame interpolation. Almost
all the existing methods interpolate one frame in each execution, and gener-
ating multiple frames can be addressed by either iteratively generating a mid-
dle frame [19,15,27] or independently creating each intermediate frame for cor-
responding time stamp [10,2,3,17,14]. The former approach might cause error
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propagation by treating the generated middle frame as input. As well, the later
one may suffer from temporal inconsistency due to the independent process for
each frame and causes temporal jittering at playback. Those artifacts are fur-
ther enlarged when more frames are interpolated. An important point that has
been missed in existing methods is the variable level of difficulties in generat-
ing intermediate frames. In fact, the frames closer to the two initial frames are
easier to generate, and those with larger temporal distance are more difficult.
Consequently, the current methods are not optimized in terms of model size and
running time for multi-frame interpolation, which makes them inapplicable for
real-life applications.

On the other hand, most of the state-of-the-art interpolation methods com-
monly synthesize the intermediate frames by simply assuming linear transition
in motion between the pair of input frames. However, real-world motions re-
flected in video frames follow a variety of complex non-linear trends [26]. While
a quadratic motion prediction model is proposed in [26] to overcome this limita-
tion, it is still inadequate to model real-world scenarios especially for non-rigid
bodies, by assuming constant acceleration. As forces applied to move objects in
the real world are not necessarily constant, it results in variation in acceleration.

To this end, we propose a temporal pyramidal processing structure that effi-
ciently integrates the multi-frame generation into one single network. Based on
the expected level of difficulties, we adaptively process the easier cases (frames)
with shallow parts to guide the generation of harder frames that are processed
by deeper structures. Through joint optimization of all the intermediate frames,
higher quality and temporal consistency can be ensured. In addition, we exploit
the advantage of multiple input frames as in [26,13] to propose an advanced
higher-order motion prediction modeling, which explores the variation in ac-
celeration. Furthermore, inspired by [27], we develop a technique to boost the
quality of motion prediction as well as the final interpolation results by intro-
ducing a relaxed loss function to the optical flow (O.F.) estimation module. In
particular, it gives the flexibility to map the pixels to the neighbor of their ground
truth locations at the reference frame while a better motion prediction for the
intermediate frames can be achieved. Comparing to the current state-of-the-art
method [26], we outperform it in interpolation quality measured by PSNR by
1.57dB on the Adobe240 dataset and achieved 8 times smaller in model size and
7.7 times faster in generating 7 frames.

We summarize our contributions as 1) We propose a temporal pyramidal
structure to integrate the multi-frame interpolation task into one single network
to generate temporally consistent and high-quality frames; 2) We propose a
higher-order motion modeling to exploit variations in acceleration involved in
real-world motion; 3) We develop a relaxed loss function to the flow estimation
task to boost the interpolation quality; 4) We optimize the network size and
speed so that it is applicable for the real world applications especially for mobile
devices.
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2 Related work

Recent efforts on frame interpolation have focused on dealing with the main
sources of degradation in interpolation quality, such as large motion and occlu-
sion. Different ideas have been proposed such as estimating occlusion maps [10,28],
learning adaptive kernel for each pixel [19,18], exploring depth information [2]
or extracting deep contextual features [17,3]. As most of these methods inter-
polate frames one at a time, inserting multiple frames is achieved by iteratively
executing the models. In fact, as a fundamental issue, the step-wise implemen-
tation of multi-frame interpolation does not consider the time continuity and
may cause temporally inconsistency. In contrast, generating multiple frames in
one integrated network will implicitly enforce the network to generate tempo-
rally consistent sequences. The effectiveness of the integrated approach has been
verified by Super SloMo [10]; however, their method is not purposely designed
for the task of multi-frame interpolation. Specifically, what has been missed
in [10] is to utilize the error cue from temporal distance between a middle frame
and the input frames and optimize the whole model accordingly. Therefore, the
proposed adaptive processing based on this difficulty pattern can result in a
more optimized solution, which is not considered in the state-of-the-art meth-
ods [10,2,3,26,19].

Given the estimated O.F. among the input frames, one important step in
frame interpolation is modeling the traversal of pixels in between the two frames.
The most common approach is to consider a linear transition and scaling of
the O.F. [28,17,10,15,3,2]. Recent work in [26,4] applied an acceleration-aware
method by also contributing the neighborhood frames of the initial pair. How-
ever, in real life, the force applied to the moving object is not constant; thus, the
motion is not following the linear or quadratic pattern. In this paper, we pro-
pose a simple but powerful higher-order model to handle more complex motions
happen in the real world and specially non-rigid bodies. On the other hand, [10]
imposes accurate estimation the O.F. by the warping loss. However, [27] reveals
that accurate O.F. is not tailored for task-oriented problems. Motivated by that,
we apply a flexible O.F. estimation between initial frames, which gives higher
flexibility to model complex motions.

3 Proposed method

3.1 Algorithm overview

An overview of the proposed method is shown in Fig. 1 where we use four input
frames (I−1, I0, I1 and I2) to generate 7 frames (Iti , ti = i

8 , i ∈ [1, 2, · · · , 7]) be-
tween I0 and I1. We first use two-step O.F. estimation module to calculate O.F.s
(f0→1, f1→0, f1→−1, f0→2) and then use these flows and cubic modeling to pre-
dict the flow between input frames and the new frames. Our proposed temporal
pyramidal network then refines the predicted O.F. and generates an initial esti-
mation of middle frames. Finally, the post processing network further improves
the quality of interpolated frames (Iti) with the similar temporal pyramid.
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Fig. 1: An overview of the proposed multi-frame interpolation method.

3.2 Cubic flow prediction

In this work, we integrate the cubic motion modeling to specifically handle the
acceleration variation in motions. Considering the motion starting from I0 to a
middle time stamp ti as f0→ti , we model object motion by the cubic model as:

f0→ti = v0 × ti +
a0
2
× t2i +

∆a0
6
× t3i , (1)

where v0, a0, and ∆a0 are the velocity, acceleration, and acceleration change
rate estimated at I0, respectively. The acceleration terms can be computed as:

∆a0 = a1 − a0, a0 = f0→1 + f0→−1, a1 = f1→2 + f1→0. (2)

where a0 and a1 are calculated for pixels at I0 and I1 respectively. However, the
∆a0 should be calculated for the pixels correspond to the same real-world point
rather than pixels with the same coordinate in the two frames. Therefore, we
reformulate a1 to calculated ∆a0 based on referencing pixel’s locations at I0 as:

a1 = f0→2 − 2× f0→1. (3)

To calculate v0 in (1), the calculation in [26] does not hold when the accelera-
tion is variable, instead, we apply (1) for ti = 1 to solve for v0 using only the
information computed above

v0 = f0→1 −
a0
2
− a1 − a0

6
. (4)

Finally, f0→ti for any ti ∈ [0, 1] can be expressed based on only O.F. between
input frames by

f0→ti = f0→1 × ti +
a0

2
× (t2i − ti) +

a1 − a0

6
× (t3i − ti). (5)

f1→ti can be computed using the same manner. The detailed derivation and proof
of all the above equations will be provided in the supplementary document.

In Fig. 2, we simulate three different 1-D motions, including constant velocity,
constant acceleration, and variable acceleration, as distinguished in three path
lines. For each motion, the object position at four time stamps of [t0,t1,t2,t3]
are given as shown by gray circles; we apply three predictive models: linear,
quadratic[26] and our cubic model to estimate the location of the object for
time stamp t1.5 blindly (without having the parameters of simulated motions).
The prediction results show that our cubic model is more robust to simulate
different order of motions.
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Fig. 2: A toy example to illustrate the performance of three models (Linear,
Quadratic, and Cubic) in predicting three motion patterns (constant velocity,
constant acceleration, and variant acceleration).

3.3 Motion estimation

Flow estimation module. To estimate the O.F. among the input frames,
the existing frame interpolation methods commonly adopt the off-the-shelf net-
works [26,17,3,2,24,6,8]. However, the existing flow networks are not efficiently
designed for multi-frame input, and some are limited to one-directional flow
estimation. To this end, following the three-scale coarse-to-fine architecture in
SPyNet [22], we design a customized two-stage flow estimation to involve the
neighbor frames in better estimating O.F. between I0 and I1. Both stages are
following similar three-scale architecture, and they optimally share the weights
of two coarser levels. The first stage network is designed to compute O.F. be-
tween two consecutive frames. We use that to estimate f0→−1 and f1→2. In the
finest level of second-stage network, we use I0 and I1 concatenated with −f0→−1
and −f1→2 as initial estimations to compute f0→1 and f1→0. Alongside, we are
calculating the estimation of f0→2 and f1→−1 in the first stage, which are used
in our cubic motion modeling in later steps.
Motion estimation constraint relaxation. Common O.F. estimation meth-
ods try to map the pixel from the first frame to the exact corresponding location
in the second frame. However, TOFlow [27] reveals that the accurate O.F. as a
part of a higher conceptual level task like frame interpolation does not lead to
the optimal solution of that task, especially for occlusion. Similarly, we observed
that a strong constraint on O.F. estimation among input frames might degrade
the motion prediction for the middle frames, especially for complex motion. In
contrast, accepting some flexibility in flow estimation will provide a closer esti-
mation to ground truth motion between frames. The advantage of this flexibility
will be illustrated in the following examples.

Consider the two toy examples, as shown in Fig. 3, where a pixel is moving
on the blue curve in consecutive frames and (x,y) is the pixel coordinate in
frame space. The pixel position is given in four consecutive frames as P−1, P0, P1

and P2 and the aim is to find locations for seven moments between P0 and P1

indicated by blue stars. We consider P0 as a reference point in motion prediction.
The green lines represent ground truth O.F. between P0 and other points. We
predict middle points (green stars) by quadratic [26] and cubic models in (5) as
shown in Fig. 3. The predicted locations are far from the ground truths (blue
stars). However, instead of estimating the exact O.F., giving it a flexibility of



6 Z. Chi et al.

0 2 4 6 8 10
X coordinate of the pixel

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Y 
co

or
di

na
te

 o
f t

he
 p

ix
el

P−1

P0
P1

P−1'

P1'

MSE: 2.72
MSE: 1.21

P2

w/o relaxation
w/ relaxation
GT

(a) Quadratic prediction.

0 2 4 6 8 10
X coordinate of the pixel

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Y 
co

or
di

na
te

 o
f t

he
 p

ix
el

P−1

P0
P1

P2
P−1'

P1'

P2'

MSE: 2.52
MSE: 0.94

w/o relaxation
w/ relaxation
GT

(b) Cubic prediction.

Fig. 3: An example of an object motion path (blue curve) and the motion pre-
diction (with and without relaxation) by Quadratic (a) and Cubic (b) model.

mapping P0 to the neighbor of other points denoted as P
′

−1, P
′

1, P
′

2, a better
prediction of the seven middle locations can be achieved as shown by the red
stars. It also reduces the mean squared error (MSE) significantly. The idea is an
analogy to introduce certain errors to the flow estimation process.

To apply the idea of relaxation, we employ the same unsupervised learning
in O.F. estimation as [10], but with a relaxed warping loss. For example, the loss
for estimating f0→1 is defined as:

Lf0→1
wrelax

=

h−1∑
i=0

z−1∑
j=0

min
m,n

∥∥Iw→1
0 (i, j)− I1(i+m, j + n)

∥∥
1
, for m,n ∈ [−d,+d],

(6)
where Iw→1

0 denotes I0 warped by f0→1 to the reference point I1, d determines
the range of neighborhood and h, z are the image height and width. We use
Lwrelax

for both stages of O.F. estimation. We evaluate the trade-off between
the performance of flow estimation and the final results in Section 4.4.

3.4 Temporal pyramidal network

Considering the similarity between consecutive frames and also the pattern of
difficulty for this task, it leads to the idea of introducing adaptive joint process-
ing. We applied this by proposing temporal pyramidal models.
Temporal pyramidal network for O.F. refinement. The bidirectional O.F.s
f0→ti and f1→ti predicted by (5) are based on the O.F.s computed among the
input frames. The initial prediction may inherit errors from flow estimation and
cubic motion modeling, notably for the motion boundaries [10]. To effectively
improve f0→ti and f1→ti , unlike the existing methods [2,3,15,10,17,28,20,14],
we aim to consider the relationship among intermediate frames and process all
at one forward pass. To this end, we propose a temporal pyramidal O.F. refine-
ment network, which enforces a strong bond between the intermediate frames, as
shown in Fig. 4a. The network takes the concatenation of seven pairs of predicted
O.F.s as input and adaptively refines the O.F.s based on the expected quality
of the interpolation correspond to the distance to I0 and I1. In fact, the closest
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Fig. 4: The pyramidal network model designed for O.F. refinement (a) and adap-
tive pyramidal structure in post processing (b).

ones, It1 and It7 are processed only by one level of pyramid as they are more
likely to achieve higher quality. With the same patterns, (It2 , It6) are processed
by two levels, (It3 , It5) by three levels and finally It4 by the entire four levels of
the network as it is expected to achieve the lowest quality in interpolation.

To fully utilize the refined O.F.s, we warp I0 and I1 by the refined O.F. in
each level as Iw→ti

0 and Iw→ti
1 and feed them to the next level. It is helpful to

achieve better results in the next level as the warped frames are one step closer in
time domain toward the locations in the target frame of that layer compared to
I0 and I1. Thus, the motion between I0 and I1 is composed of step-wise motions,
each measured within a short temporal interval.

Additional to the refined O.F. at each level, a blending mask bti [28] is also
generated. Therefore, the intermediate frames can be synthesized as [28] by

Iti = bti � g(I0, f̂0→ti) + (1− bti)� g(I1, f̂1→ti), (7)

where f̂0→ti and f̂1→ti are refined bidirectional O.F. at ti, � denotes element-
wise multiplication, and g(·, ·) is the bilinear warping function from [28,9].
Temporal pyramidal network for post processing. The intermediate frames
synthesized by (7) may still contain artifacts due to the inaccurate O.F., blending
masks, or synthesis process. Therefore, we introduce a post processing network
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following the similar idea of the O.F. refine network to adaptively refine the in-
terpolated frames Iti . However, as the generated frames are not aligned, feeding
all the frames at the beginning level cannot properly enhance the quality. In-
stead, we input the generated frame separately at different levels of the network
according to the temporal distance, as shown in Fig. 4b. At each time stamp
ti, we also feed the warped inputs Iw→ti

0 and Iw→ti
1 to reduce the error caused

by inaccurate blending masks. Similar to O.F. refinement network, the refined
frames Îti are also fed to the next level as guidance.

For both pyramidal networks, we employ the same sub network for each level
of the pyramid and adopt residual learning to learn the O.F. and frame residuals.
The sub network is composed of two residual blocks proposed by [16] and one
convolutional layer at the input and another at the output. We set the number
of channels in a reducing order for O.F. refinement pyramid, as fewer frames are
dealt with when moving to the middle time step. In contrast, we keep the same
channel numbers for all the levels of post processing module.

3.5 Loss functions

The proposed integrated network for multi-frame interpolation targets tempo-
ral consistency by joint optimization of all frames. To further impose consis-
tency between frames, we apply generative adversarial learning scheme [29] and
two-player min-max game idea in [7] to train a discriminator network D which
optimizes the following problem:

min
G

max
D

Eg∼p(Igt
ti

)[logD(g)] + Ex∼p(I)[log(1−D(G(x)))], (8)

where g = [Igtt1 , · · · I
gt
t7 ] are the seven ground truth frames and x = [I−1, I0, I1, I2]

are the four input frames. We add the following generative component of the
GAN as the temporal loss [29,12]:

Ltemp =

N∑
n=1

−logD(G(x)). (9)

The proposed framework in Fig. 1 serves as a generator and is trained alter-
natively with the discriminator. To optimize the O.F. refinement and post pro-
cessing networks, we apply the `1 loss. The whole architecture is trained by
combining all the loss functions:

L =

7∑
i=1

(
∥∥∥Îti − Igtti ∥∥∥

1
+
∥∥Iti − Igtti ∥∥1) + Lwrelax

+ λLtemp, (10)

where the λ is the weighting coefficient and equals to 0.001.

4 Experiments

In this section, we provide the implementation details and the analysis of the
results of the proposed method in comparison to the other methods and different
ablation studies.
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4.1 Implementation details

To train our network, we collected a dataset of 903 short video clips (2 to 10 sec-
onds) with the frame rate of 240fps and a resolution of 720×1280 from YouTube.
The videos are covering various scenes, and we randomly select 50 videos for val-
idation. From these videos, we created 8463 training samples of 25 consecutive
frames as in [26]. Our model takes the 1st, 9th, 17th, and 25th frames as inputs to
generate the seven frames between the 9th and 17th frames by considering 10th

to 16th frames as ground truths. We randomly crop 352×352 patches and apply
horizontal, vertical as well as temporal flip for data augmentation in training.

To improve the convergence speed, a stage-wise training strategy is adopted
[30]. We first train each module except the discriminator using `1 loss inde-
pendently for 15 epochs with the learning rate of 10−4 by not updating other
modules. The whole network is then jointly trained using (10) and learning rate
of 10−5 for 100 epochs. We use the Adam optimizer [11] and empirically set the
neighborhood range d in (6) to 9. During the training, the pixel values of all im-
ages are scaled to [-1, 1]. All the experiments are conducted on an Nvidia V100
GPU. More detailed network architecture will be provided in the supplementary
material.

4.2 Evaluation datasets

We evaluate the performance of the proposed method on widely used datasets in-
cluding two multi-frame interpolation dataset (Adobe240 [23] and GOPRO [16])
and two single-frame interpolation (Vimeo90K [27] and DAVIS[21]). Adobe240
and GOPRO are initially designed for deblurring tasks with a frame rate of
240fps and resolution of 720×1280. Both are captured by hand-held high-speed
cameras and contain a combination of object and camera motion in different
levels, which makes them challenging for the frame interpolation task. We follow
the same setting as Sec. 4.1 to extract 4276 and 1393 samples of frame patch
for Adobe240 and GOPRO, respectively. DAVIS dataset is designed for video
segmentation, which normally contains large motions. It has 90 videos, and we
extract 2637 samples of 7 frames. As for Vimeo90K, since the interpolation sub-
set only contains triplets, which are not applicable for our methods as we need
more frames for cubic motion modeling. Instead, we use the super-resolution
test set, which contains 7824 samples of 7 consecutive frames. We interpolate 7
frames for Adobe240 and GOPRO and interpolate the 4th (middle) frame for
DAVIS and Vimeo90K by using the 1st, 3rd, 5th and 7th frames as inputs.

4.3 Comparison with the state-of-the-arts

We compare our method with four state-of-the-art frame interpolation methods:
Super SloMo [10], Quadratic [26], DAIN [2], and SepConv [19], where we train
[10] and [26] on our training data and use the model released by authors in
the last two. We use PSNR, SSIM and interpolation error (IE) [1] as evaluation
metrics. For multi-frame interpolation in GOPRO and Adobe240, we borrow
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Table 1: Performance evaluation of the proposed method compared to the state-
of-the-art methods in different datasets.

Methods
Adobe240 GoPro Vimeo90K DAVIS

PSNR SSIM TCC PSNR SSIM TCC PSNR SSIM IE PSNR SSIM IE

SepConv 32.38 0.938 0.832 30.82 0.910 0.789 33.60 0.944 5.30 26.30 0.789 15.61
Super SloMo 31.63 0.927 0.809 30.50 0.904 0.784 33.38 0.938 5.41 26.00 0.770 16.19
DAIN 31.36 0.932 0.808 29.74 0.900 0.759 34.54 0.950 4.76 27.25 0.820 13.17
Quadratic 32.80 0.949 0.842 32.01 0.936 0.822 33.62 0.946 5.22 27.38 0.834 12.46
Ours 34.37 0.959 0.860 32.91 0.943 0.837 34.93 0.951 4.70 27.91 0.837 12.40

Input&GT SepConv Super SloMo DAIN Qudratic Ours

Fig. 5: An example from Adobe240 to visualize the temporal consistency. The
top row shows the middle frames generated by different methods, and the bottom
row shows the interpolation error. Our method experiences less shifting in the
temporal domain.

the concept of Temporal Change Consistency [29] which compares the generated
frames and ground truth in terms of changes between adjacent frames by

TCC(F,G) =

∑6
i=1 SSIM(abs(f i − f i+1), abs(gi − gi+1))

6
, (11)

where, F = (f1, · · · , f7) and G = (g1, · · · , g7) are the 7 interpolated and ground
truth frames respectively. For the multi-frame interpolation task, we report the
average of the metrics for 7 interpolated frames. The results reported in Table 1,
shows that our proposed method consistently performs better than the existing
methods on both single and multi-frame interpolation scenarios. Notably, for
multi-frame interpolation datasets (Adobe240 and GOPRO), our method sig-
nificantly outperforms the best existing method [26] by 1.57dB and 0.9dB. The
proposed method also achieves the highest temporal consistency measured by
TCC thanks to the temporal pyramid structure and joint optimization of the
middle frames, which exploits the temporal relation among the middle frames.

In addition to the TCC, to better show the power of the proposed method
in preserving temporal consistency between frames, Fig. 5 reports Ît4 and IE
generated by different methods from Adobe240. As shown in Fig. 5, the generated
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Table 2: Ablation studies on the network components on Adobe240 and GOPRO.

Methods
Adobe240 GOPRO

PSNR SSIM IE TCC PSNR SSIM IE TCC

w/o post pro.. 33.87 0.954 6.21 0.848 32.63 0.942 6.80 0.831
w/o adv. loss 34.35 0.958 5.89 0.850 32.86 0.942 6.77 0.830

w/o 2nd O.F. 34.24 0.957 5.97 0.854 32.73 0.940 6.91 0.832
w/o O.F. relax. 33.92 0.955 6.14 0.851 32.45 0.936 7.09 0.828
w/o pyr. 33.92 0.954 6.33 0.845 32.37 0.935 7.30 0.820
Full model 34.37 0.959 5.89 0.860 32.91 0.943 6.74 0.837

[1
0
]

[2
6
]

O
u
rs

G
T

It1 It2 It3 It4 It5 It6 It7

Fig. 6: Visualization of the seven intermediate frames of It1 to It7 generated by
our method compared to Quadratic [26] and Super SloMo [10] from GOPRO.

middle frames by different methods are visually very similar to the ground truth.
However, a comparison of the IE reveals significant errors that occurred near the
edges of moving objects caused because of time inconsistency between generated
frames and the ground truth. In contrast, our method generates a high-quality
consistent frame with the ground truth in both spatial and temporal domains.

Another example from GOPRO in Fig. 6, shows the results of the proposed
method in comparison with Super SloMo [10] and Quadratic [26] which they
have not applied any adaptive processing for frames interpolation. As it can be
seen in Fig. 6, at t1 and t7 which are closer to the input frames, all the methods
generate comparable results. However, approaching to the middle frame as the
temporal distance from the input increases, the quality of frames generated by
Super SloMo and Quadratic start to degrade while our method experiences less
degradation and higher quality. Especially for It4 , our improvement is significant,
as also shown by the PSNR values at each time stamp ti in Fig. 9c.

Our method also works better on DAVIS and Vimeo90K, as reported in
Table 1. Fig. 7 shows an example of a challenging scenario that involves both
translational and rotational motion. The acceleration-aware Quadratic can bet-
ter estimate the motion, while others have undergone severe degradation. How-
ever, undesired artifacts are still generated by Quadratic near the motion bound-
ary. In contrast, our method exploits the cubic motion modeling and temporal
pyramidal processing, which better captures this complex motion and generates
comparable results against the ground truth.
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Table 3: Comparison between linear,
quadratic and cubic motion models.

Models
Adobe240 GOPRO

PSNR SSIM IE PSNR SSIM IE

Linear 33.97 0.955 6.13 32.40 0.936 7.09
Quad. 34.24 0.957 5.95 32.70 0.941 6.85
Cubic 34.37 0.959 5.89 32.91 0.943 6.74

Table 4: Comparison between models
generating different number of frames.

Methods
DAVIS Vimeo90K

PSNR SSIM PSNR SSIM

1 frames 27.07 0.819 32.02 0.944
3 frames 27.44 0.816 34.67 0.950
7 frames(no pyr.) 27.25 0.815 34.56 0.950
7 frames 27.91 0.837 34.93 0.951

Inputs SepConv Super
SloMo

DAIN Quadratic Ours GT

Fig. 7: Sample results for interpolating the middle frame for a complex motion
example from DAVIS dataset.

4.4 Ablation studies

Analysis of the model. To explore the impact of different components of the
proposed model, we investigate the performance of our solution when applying
different variations including 1) w/o post pro.: removing post processing; 2) w/o
adv. loss: removing adversarial loss; 3) w/o 2nd O.F.: replace the second stage
flow estimation with the exact same network as the first stage; 4) w/o O.F. re-
lax.: replace Lwrelax

by L`1 ; 5) w/o pyr.: in both pyramidal modules, we place
all the input as the first level of the network, and the outputs are caught at
the last layer. The performance of the above variations evaluated on Adobe240
and GOPRO datasets, as shown in Table 2, reveals that all the listed modifica-
tions lead to degradation in performance. As expected, motion relaxation and
the pyramidal structure are important as they provide more accurate motion
prediction and enforce the temporal consistency among the interpolated frames,
as reflected in TCC. The post processing as its missing in the model also brings
a large degradation is a crucial component that compensates the inaccurate O.F.
and blending process. It is worth noting that even though the quantitative im-
provement of PSNR and SSIM for the adversarial loss is small, it is effective to
preserve the temporal consistency as reported by the TCC values.

Motion models. To investigate the impact of different motion models, we
trained our method with linear and quadratic [26] motion prediction as well.
The reported average quality in Table 3, shows that the cubic modeling has
been dominant in both GOPRO and Adobe240. Importantly, the improvement
by quadratic against linear in the model proposed in [26], is reported to be more
than 1dB, however, we observed 0.27dB and 0.3dB on Adobe240 and GOPRO
datasets. We give credit to the proposed temporal pyramidal processing and
applying motion relaxation. In comparison with the impact of quadratic over
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Table 5: Motion relaxation evaluation for warping, prediction and final results.

Datasets
PSNR(Iw→0

1 , I0) PSNR(I
w→t4
1 , Igt

t4
) PSNR(Ît4 , I

gt
t4

))

L`1
Lwrelax

L`1
Lwrelax

L`1
Lwrelax

DAVIS 30.13 23.37 25.13 25.43 27.15 27.91

Inputs & GT Error (Iw→0
1 ) Error (Iw→t4

1 ) Error (Ît4) Ît4

Fig. 8: Sample results from Vimeo90K to show the comparison between O.F.
estimation with (bottom row) and without (top row) relaxation in terms of the
interpolation error for motion prediction and final interpolation result.

linear, our cubic modeling adds another 0.13dB and 0.21dB improvement on
the Adobe240 and GOPRO, respectively, which shows the necessity of applying
cubic modeling on the complexity of motions we have in different videos.

Constraints relaxation in motion estimation. To investigate the im-
pact of applying motion estimation relaxation in our architecture, we train two
versions of the entire solution, with relaxation (`wrelax

) and without relaxation
(`1). For each case we perform three comparisons, first, I1 warped by f1→0 which
named (Iw→0

1 ) and compare to I0, second, I1 warped by the predicted f1→t4

(before refinement) named by (Iw→t4
1 ) and compared to Igtt4 , and finally, we also

compared the final output of the network with Igtt4 . Table 5 reports results of
evaluation on DAVIS and Fig. 8 shows IE for an example from Vimeo90k. Both
Table 5 and Fig. 8 show that although the relaxation makes the O.F. estimation
between two initial pair poor, it gives better initial motion prediction for the
middle frame as well as the final interpolation result.

Temporal pyramidal structure. The effectiveness of the temporal pyra-
midal structure in interpolating multiple frames has already been verified in
Table 2. To further investigate this impact by also considering the number of
frames it generates, we trained another 3 variations of model including predict-
ing all 7 frames without pyramidal structure, predicting 3 frames (i = 2, 4, 6),
and only 1 middle frame (i = 4) with pyramidal model. Table 4 reports the
interpolation quality of the middle frame on DAVIS and Vimeo90K for all these
cases. The results in Table 4 demonstrate that the interpolation of the middle
frame benefits from the joint optimization with other frames.
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Fig. 9: Efficiency of the proposed method compared to state-of-the-art methods
from the perspective of performance and model size (a), inference speed (b), and
performance trend in multiple frame interpolation (c).

4.5 Efficiency analysis

Considering the wide applications for frame interpolation, especially on mobile
and embedded devices, investigating the efficiency of the solution is crucial. We
report the efficiency of the proposed method in terms of model size, interpolation
quality, and inference time. Fig. 9a reports PSNR values evaluated on Adobe240
in relation with the model sizes. The proposed method outperforms all the meth-
ods in the quality of the results with a large margin while having a significantly
smaller model size. In particular, our method outperforms Quadratic [26] by
1.57dB by using only 12.5% of its parameters. We also show the inference times
for interpolating different numbers of frames in Fig. 9b. To interpolate more
than 8 frames, our method is able to be extended to interpolate more frames
by simply adding more levels in the pyramid. However, higher frame rate videos
are hard to be obtained for training; thus, we adopt the iterative interpolation
method (run 8x model multiple times and drop the corresponding frames). As
reported in Fig. 9b, our method is around 7 times faster than [26] for interpo-
lating more than 8 frames. Our method is the fastest and has the smallest size
while keeping the high-quality results for multi-frame interpolation tasks, which
makes it applicable for low power devices.

5 Conclusions

In this work, we proposed a powerful and efficient multi-frame interpolation
solution that considers prior information and the challenges in this particular
task. The prior information about the difficulty levels among the intermediate
frames helps us to design a temporal pyramidal processing structure. To han-
dle the challenges of real world complex motion, our method benefits from the
proposed advanced motion modeling, including cubic motion prediction and re-
laxed loss function for flow estimation. All these parts together help to integrate
multi-frame generation in a single optimized and efficient network while the tem-
poral consistency of frames and spatial quality are at maximum level beating
the state-of-the-art solutions.
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