Skip to main content

Mind the Discriminability: Asymmetric Adversarial Domain Adaptation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12369))

Included in the following conference series:

Abstract

Adversarial domain adaptation has made tremendous success by learning domain-invariant feature representations. However, conventional adversarial training pushes two domains together and brings uncertainty to feature learning, which deteriorates the discriminability in the target domain. In this paper, we tackle this problem by designing a simple yet effective scheme, namely Asymmetric Adversarial Domain Adaptation (AADA). We notice that source features preserve great feature discriminability due to full supervision, and therefore a novel asymmetric training scheme is designed to keep the source features fixed and encourage the target features approaching to the source features, which best preserves the feature discriminability learned from source labeled data. This is achieved by an autoencoder-based domain discriminator that only embeds the source domain, while the feature extractor learns to deceive the autoencoder by embedding the target domain. Theoretical justifications corroborate that our method minimizes the domain discrepancy and spectral analysis is employed to quantize the improved feature discriminability. Extensive experiments on several benchmarks validate that our method outperforms existing adversarial domain adaptation methods significantly and demonstrates robustness with respect to hyper-parameter sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://imageclef.org/2014/adaptation.

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010). https://doi.org/10.1007/s10994-009-5152-4

    Article  MathSciNet  Google Scholar 

  2. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3722–3731 (2017)

    Google Scholar 

  3. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: Advances in Neural Information Processing Systems, pp. 343–351 (2016)

    Google Scholar 

  4. Cao, Z., Ma, L., Long, M., Wang, J.: Partial adversarial domain adaptation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 135–150 (2018)

    Google Scholar 

  5. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, 09–15 June 2019, Long Beach, California, USA, vol. 97, pp. 1081–1090. PMLR (2019)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. French, G., Mackiewicz, M., Fisher, M.: Self-ensembling for visual domain adaptation. In: International Conference on Learning Representations, no. 6 (2018)

    Google Scholar 

  9. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, Lille, France, 07–09 July 2015, vol. 37, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  10. Ganin, Y.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  11. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_36

    Chapter  Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: Proceedings of the 35th International Conference on Machine Learning, pp. 1989–1998 (2018)

    Google Scholar 

  15. Hsu, Y.C., Lv, Z., Kira, Z.: Learning to cluster in order to transfer across domains and tasks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  17. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial onenergy-based learning. Predicting Struct. Data 1 (2006)

    Google Scholar 

  18. Li, Z., Zhang, Y., Wei, Y., Wu, Y., Yang, Q.: End-to-end adversarial memory network for cross-domain sentiment classification. In: IJCAI, pp. 2237–2243 (2017)

    Google Scholar 

  19. Liang, J., He, R., Sun, Z., Tan, T.: Distant supervised centroid shift: a simple and efficient approach to visual domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2975–2984 (2019)

    Google Scholar 

  20. Liu, H., Long, M., Wang, J., Jordan, M.: Transferable adversarial training: a general approach to adapting deep classifiers. In: International Conference on Machine Learning, pp. 4013–4022 (2019)

    Google Scholar 

  21. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 469–477 (2016)

    Google Scholar 

  22. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, pp. 97–105. ICML 2015 (2015)

    Google Scholar 

  23. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  24. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  25. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

    Article  Google Scholar 

  26. Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  27. Ranzato, M., Boureau, Y.L., Chopra, S., LeCun, Y.: A unified energy-based framework for unsupervised learning. In: Artificial Intelligence and Statistics, pp. 371–379 (2007)

    Google Scholar 

  28. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2988–2997. JMLR. org (2017)

    Google Scholar 

  29. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3723–3732 (2018)

    Google Scholar 

  30. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: The European Conference on Computer Vision, ECCV, September 2018

    Google Scholar 

  31. Sankaranarayanan, S., Balaji, Y., Castillo, C.D., Chellappa, R.: Generate to adapt: aligning domains using generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8503–8512 (2018)

    Google Scholar 

  32. Shu, R., Bui, H.H., Narui, H., Ermon, S.: A dirt-t approach to unsupervised domain adaptation. In: Proceedings 6th International Conference on Learning Representations (2018)

    Google Scholar 

  33. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  34. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4068–4076 (2015)

    Google Scholar 

  35. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Computer Vision and Pattern Recognition (CVPR), vol. 1, p. 4 (2017)

    Google Scholar 

  36. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. CoRR abs/1412.3474 http://arxiv.org/abs/1412.3474 (2014)

  37. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings CVPR, pp. 5018–5027 (2017)

    Google Scholar 

  38. Vu, T.H., Jain, H., Bucher, M., Cord, M., Perez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern RecognitionCVPR, June 2019

    Google Scholar 

  39. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, Stockholmsmässan, Stockholm Sweden, 10–15 July 2018, vol. 80, pp. 5423–5432. PMLR (2018)

    Google Scholar 

  40. Xu, R., Li, G., Yang, J., Lin, L.: Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1426–1435 (2019)

    Google Scholar 

  41. Yang, J., Zou, H., Cao, S., Chen, Z., Xie, L.: Mobileda: towards edge domain adaptation. IEEE Internet Things J. 7, 6909–6918 (2020)

    Article  Google Scholar 

  42. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. In: Proceedings 5th International Conference on Learning Representations (2017)

    Google Scholar 

  43. Zhou, X., Karpur, A., Gan, C., Luo, L., Huang, Q.: Unsupervised domain adaptation for 3D keypoint estimation via view consistency. In: ECCV, pp. 137–153 (2018)

    Google Scholar 

  44. Zou, H., Yang, J., Zhou, Y., Xie, L., Spanos, C.J.: Robust wifi-enabled device-free gesture recognition via unsupervised adversarial domain adaptation. In: 2018 27th International Conference on Computer Communication and Networks (ICCCN), pp. 1–8. IEEE (2018)

    Google Scholar 

  45. Zou, H., Zhou, Y., Yang, J., Liu, H., Das, H.P., Spanos, C.J.: Consensus adversarial domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5997–6004 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Xie .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 76 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Zou, H., Zhou, Y., Zeng, Z., Xie, L. (2020). Mind the Discriminability: Asymmetric Adversarial Domain Adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12369. Springer, Cham. https://doi.org/10.1007/978-3-030-58586-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58586-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58585-3

  • Online ISBN: 978-3-030-58586-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics