Skip to main content

Dual Adversarial Network for Deep Active Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12369))

Abstract

Active learning, reducing the cost and workload of annotations, attracts increasing attentions from the community. Current active learning approaches commonly adopted uncertainty-based acquisition functions for the data selection due to their effectiveness. However, data selection based on uncertainty suffers from the overlapping problem, i.e., the top-K samples ranked by the uncertainty are similar. In this paper, we investigate the overlapping problem of recent uncertainty-based approaches and propose to alleviate the issue by taking representativeness into consideration. In particular, we propose a dual adversarial network, namely DAAL, for this purpose. Different from previous hybrid active learning methods requiring multi-stage data selections i.e., step-by-step evaluating the uncertainty and representativeness using different acquisition functions, our DAAL learns to select the most uncertain and representative data points in one-stage. Extensive experiments conducted on three publicly available datasets, i.e., CIFAR10/100 and Cityscapes, demonstrate the effectiveness of our method—a new state-of-the-art accuracy is achieved.

S. Wang—Intern at Tencent Jarvis Lab.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Summary is a sparse subset of video frames which optimally represent the input video.

References

  1. Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 37–45 (2015)

    Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 5050–5060 (2019)

    Google Scholar 

  4. Brinker, K.: Incorporating diversity in active learning with support vector machines. In: Proceedings of the 20th International Conference on Machine Learning (ICML 2003), pp. 59–66 (2003)

    Google Scholar 

  5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  6. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1422–1430 (2015)

    Google Scholar 

  7. Ebrahimi, S., Rohrbach, A., Darrell, T.: Gradient-free policy architecture search and adaptation. arXiv preprint arXiv:1710.05958 (2017)

  8. Elhamifar, E., Sapiro, G., Yang, A., Shankar Sasrty, S.: A convex optimization framework for active learning. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 209–216 (2013)

    Google Scholar 

  9. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1183–1192. JMLR.org (2017)

    Google Scholar 

  10. Gao, M., Zhang, Z., Yu, G., Arik, S.O., Davis, L.S., Pfister, T.: Consistency-based semi-supervised active learning: towards minimizing labeling cost. arXiv preprint arXiv:1910.07153 (2019)

  11. Gissin, D., Shalev-Shwartz, S.: Discriminative active learning. arXiv preprint arXiv:1907.06347 (2019)

  12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 2672–2680 (2014)

    Google Scholar 

  14. Gorriz, M., Carlier, A., Faure, E., Giro-i Nieto, X.: Cost-effective active learning for melanoma segmentation. arXiv preprint arXiv:1711.09168 (2017)

  15. He, X., et al.: Unsupervised video summarization with attentive conditional generative adversarial networks. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2296–2304 (2019)

    Google Scholar 

  16. Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning. arXiv preprint arXiv:1112.5745 (2011)

  17. Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2372–2379. IEEE (2009)

    Google Scholar 

  18. Joulin, A., van der Maaten, L., Jabri, A., Vasilache, N.: Learning visual features from large weakly supervised data. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 67–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_5

    Chapter  Google Scholar 

  19. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Active learning with gaussian processes for object categorization. In: 2007 IEEE 11th International Conference on Computer Vision (ICCV), pp. 1–8. IEEE (2007)

    Google Scholar 

  20. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Tech report (2009)

    Google Scholar 

  22. Kulesza, A., Taskar, B., et al.: Determinantal point processes for machine learning. Found. Trends® Mach. Learn. 5(2–3), 123–286 (2012)

    Google Scholar 

  23. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300 (2015)

  24. Mackowiak, R., Lenz, P., Ghori, O., Diego, F., Lange, O., Rother, C.: Cereals-cost-effective region-based active learning for semantic segmentation. arXiv preprint arXiv:1810.09726 (2018)

  25. Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 181–196 (2018)

    Google Scholar 

  26. Mahasseni, B., Lam, M., Todorovic, S.: Unsupervised video summarization with adversarial LSTM networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 202–211 (2017)

    Google Scholar 

  27. Mittal, S., Tatarchenko, M., Çiçek, Ö., Brox, T.: Parting with illusions about deep active learning. arXiv preprint arXiv:1912.05361 (2019)

  28. Noroozi, M., Pirsiavash, H., Favaro, P.: Representation learning by learning to count. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5898–5906 (2017)

    Google Scholar 

  29. Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (CVPR), pp. 1742–1750 (2015)

    Google Scholar 

  30. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised learning with ladder networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 3546–3554 (2015)

    Google Scholar 

  31. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. arXiv preprint arXiv:1708.00489 (2017)

  32. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018)

    Google Scholar 

  33. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  34. Siddiqui, Y., Valentin, J., Nießner, M.: Viewal: active learning with viewpoint entropy for semantic segmentation. arXiv preprint arXiv:1911.11789 (2019)

  35. Singh, A., Virmani, L., Subramanyam, A.: Image corpus representative summarization. In: 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), pp. 21–29. IEEE (2019)

    Google Scholar 

  36. Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5972–5981 (2019)

    Google Scholar 

  37. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2001)

    MATH  Google Scholar 

  39. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

  40. Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.G.: Multi-class active learning by uncertainty sampling with diversity maximization. Int. J. Comput. Vision 113(2), 113–127 (2015)

    Article  MathSciNet  Google Scholar 

  41. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 93–102 (2019)

    Google Scholar 

  42. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 472–480 (2017)

    Google Scholar 

  43. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  44. Zhang, R., Isola, P., Efros, A.A.: Split-brain autoencoders: unsupervised learning by cross-channel prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1058–1067 (2017)

    Google Scholar 

  45. Zheng, H., et al.: Biomedical image segmentation via representative annotation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5901–5908 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuexiang Li or Ruhui Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Li, Y., Ma, K., Ma, R., Guan, H., Zheng, Y. (2020). Dual Adversarial Network for Deep Active Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12369. Springer, Cham. https://doi.org/10.1007/978-3-030-58586-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58586-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58585-3

  • Online ISBN: 978-3-030-58586-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics