
Adaptive Video Highlight Detection by Learning
from User History

Mrigank Rochan1, Mahesh Kumar Krishna Reddy1, Linwei Ye1, and Yang
Wang1,2

1 University of Manitoba, Winnipeg MB R3T 2N2, Canada
2 Huawei Technologies, Canada

{mrochan,kumarkm,yel3,ywang}@cs.umanitoba.ca

Abstract. Recently, there is an increasing interest in highlight detec-
tion research where the goal is to create a short duration video from a
longer video by extracting its interesting moments. However, most ex-
isting methods ignore the fact that the definition of video highlight is
highly subjective. Different users may have different preferences of high-
light for the same input video. In this paper, we propose a simple yet
effective framework that learns to adapt highlight detection to a user
by exploiting the user’s history in the form of highlights that the user
has previously created. Our framework consists of two sub-networks: a
fully temporal convolutional highlight detection network H that predicts
highlight for an input video and a history encoder network M for user
history. We introduce a newly designed temporal-adaptive instance nor-
malization (T-AIN) layer to H where the two sub-networks interact with
each other. T-AIN has affine parameters that are predicted from M based
on the user history and is responsible for the user-adaptive signal to H.
Extensive experiments on a large-scale dataset show that our framework
can make more accurate and user-specific highlight predictions.

Keywords: Video highlighight detection · User-adaptive learning

1 Introduction

There is a proliferation in the amount of video data captured and shared ev-
eryday. It has given rise to multifaceted challenges, including editing, indexing
and browsing of this massive amount of video data. This has drawn attention
of the research community to build automated video highlight detection tools.
The goal of highlight detection is to reduce an unedited video to its interesting
visual moments and events. A robust highlight detection solution can enhance
video browsing experience by providing quick video preview, facilitating video
sharing on social media and assisting video recommendation systems.

Even though we have made significant progress in highlight detection, the
existing methods are missing the ability to adapt its predictions to users. The
main thrust of research in highlight detection has been on building generic mod-
els. However, different users have different preferences in term of detected high-
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lights [25,34]. Generic highlight detection models ignore the fact that the defini-
tion of a video highlight is inherently subjective and depends on each individual
user’s preference. This can greatly limit the adoption of these models in real-
world applications. In Fig. 1, we illustrate the subjective nature of highlights.
The input video contains events such as cycling, cooking, and eating. A generic
highlight detection model mainly predicts the cycling event as the highlight. But
if we examine the user’s history (previously created highlights by the user), we
can infer that this user is interested in cooking scenes. Therefore, a highlight
detection model should predict the cooking event as the highlight instead. Moti-
vated by this observation, we propose an adaptive highlight detection model that
explicitly takes user’s history into consideration while generating highlights.

Adaptive
Highlight
Model

Generic
Highlight
Model

User's GIFs

Input video

Result from generic model Result from adaptive model

Fig. 1. The definition of highlight of a video is inherently subjective and depends on
each user’s preference. In contrast to a generic highlight detection model, an adaptive
highlight detection model (like ours) incorporates a user’s previously created highlights
(e.g., GIFs from multiple videos) when predicting highlights of an input video. This
allows the model to make more accurate and user-specific highlight predictions.

Although a user’s visual highlight history can provide a stronger and more
reliable cue of their interests than non-visual meta-data [25], there is very limited
research on adapting highlight detection using this visual information. To the
best of our knowledge, the recent work by Molino and Gygli [25] is the only prior
work on this topic. Their method considers a user’s previously created highlights
(available as GIFs1) from multiple videos when generating new highlights for
that user. They propose a ranking model that predicts a higher score for inter-
esting video segments as opposed to non-interesting ones while conditioning on
the user’s past highlights (i.e., user’s history). However, their method has some
limitations. Firstly, it operates at the segment level and samples a fixed number
of positive and negative segments from a video for learning. This means that the
method does not process an entire video which is essential to capture temporal
dependencies shown to be vital in many video understanding tasks [19,24,32,50].
Moreover, it is sensitive to the number of positive and negative samples used in
the learning. Secondly, it requires to precompute shot boundaries using a shot

1 GIF is an image format with multiple frames played in a loop without sound [11].
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detection algorithm [8] for sampling a set of positive/negative video segments.
This makes their pipeline computationally complex and expensive. Lastly, their
model directly combines user’s history features with the features of sampled
video segments to predict user-specific highlights. We demonstrate in our exper-
iments that this is not as effective as our proposed model.

In this paper, we introduce a novel user-adaptive highlight detection frame-
work that is simple and powerful. Given an input video for highlight detection
and the user’s history (highlight GIFs from multiple videos that the user has
previously created), our model seamlessly combines the user’s history informa-
tion with the input video to modulate the highlight detection so as to make
user-specific and more precise highlight prediction. Our framework consists of
two sub-networks: a fully temporal convolutional highlight detection network H
which produces the highlight for an input video, and a history encoder network
M that encodes the user’s history information. We propose temporal-adaptive
instance normalization (T-AIN), a conditional temporal instance normalization
layer for videos. We introduce T-AIN layers to H where the interaction between
the two sub-networks H and M takes place. T-AIN layers have affine transfor-
mation parameters that are predicted from M based on the user’s history. In
other words, M acts a guiding network to H. Through the adjustable affine pa-
rameters in T-AIN layers, H can adapt highlight predictions to different users
based on their preferences as expressed in their histories. Note that our method
does not require expensive shot detection. Moreover, it can utilize an entire video
for learning instead of a few sampled video segments.

To summarize, the main contributions of our paper are the following. (1)
We study user-adaptive highlight detection using user history in the form of
previously created highlights by the user. This problem has many commercial
applications, but is not well studied in the literature. (2) Different from rank-
ing models [11,25,45,46] commonly used in highlight detection, we are first to
employ a fully temporal convolutional model in highlight detection. Our model
does not require expensive shot detection algorithm and can process an entire
video at once. This makes our proposed model simpler operationally. (3) We
propose temporal-adaptive instance normalization layer (T-AIN) for videos. T-
AIN layers have adjustable affine parameters which allow the highlight detection
network to adapt to different users. (4) We experiment on a large-scale dataset
and demonstrate the effectiveness of our approach. (5) We further explore the
application of our model as a pre-trained model for video summarization, a task
closely related to highlight detection.

2 Related Work

Highlight detection aims to identify key events in a video that a user is likely to
find interesting. Towards this, we exploit the highlights that the user has created
in the past. In this section, we discuss the several lines of related work.

Our work is closely related to existing highlight detection methods where the
goal is to extract the interesting moments from a long duration video [25,39].
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Many prior methods [11,14,25,36,46,47] employ a ranking formulation. They
learn to score interesting segments of a video higher than non-interesting seg-
ments. Our work is particularly related to [11,25]. Gygli et al. [11] propose a
GIF creation technique using a highlight detection method. The limitation of
this method is that it is a generic highlight detector, whereas we propose a
model that is capable of making user-specific predictions. Molino and Gygli [25]
propose a model that takes a user’s history as an input to make personalized
predictions. Their method is a ranking model that operates on a few sampled
positive and negative segments of a video combined with the user’s highlight his-
tory to learn a personalized model. Different from them, our proposed highlight
detection model is convolutional in nature. It can accept an entire video (of any
length) and the user’s history of different sizes as an input to produce a person-
alized highlight. Unlike [25], we do not require shot detection as pre-processing.
Lastly, we develop a more effective way to leverage user history representation in
the network instead of directly concatenating with the input video features [25].

This paper has also connection with the research in video summarization.
Different from highlight detection, video summarization aims to generate a con-
cise overview of a video [25,39]. Early research [16,17,20,23,24,26,28,35,54,32,51]
on summarization mainly develop unsupervised methods. These methods design
hand-crafted heuristics to satisfy properties such as diversity and representa-
tiveness in the generated summary. Weakly supervised methods also exist that
exploit cues from web images or videos [4,16,17,31,35] and video category de-
tails [27,30] for summarization. Supervised methods [7,9,10,32,49,50,53] have
shown to achieve superior performance due to the fact that they learn directly
from annotated training data with human-generated summaries. However, these
methods do not consider each user’s preference. In theory, it is possible to make
user-adaptive predictions by performing user-specific training. But it is expensive
in practice as it would result in per-user model [25]. However, we learn a single
model that can be adapted to different users by incorporating their histories.
Moreover, we do not need to retrain the model for a new user. The adaption
to a new user only involves some simple feed-forward computation. Lastly, in
video summarization, there is some work that focus on personalization but they
either use meta-data [1,2,13,37] or consider user textual query [22,33,41,52] to
personalize video summary. Different from them, our method operates on visual
features from user video and user’s history to make user-specific prediction.

Finally, our approach is partly inspired by recent research in style trans-
fer in images using conditional normalization layers, e.g., adaptive instance
normalization [12] and conditional batch normalization [6]. Apart from style
transfer, both layers have been applied in many other computer vision prob-
lems [3,5,15,21,29,43]. These layers firstly normalize the activations to zero mean
and unit variance, then adjust the activations via affine transformation parame-
ters inferred from external data [29]. Since the layers are designed to uniformly
modulate the activations spatially, their applications are limited to images. In
contrast, in this paper, we propose a normalization layer that uniformly modu-
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lates the activations temporally, making it appropriate for video understanding
tasks.

3 Our Approach

Given a video v, we represent each frame in the video as a D-dimensional feature
vector. The video can be represented as a tensor of dimension 1× T ×D, where
T and D are the number of frames and dimension of frame feature vector of
each frame in the video, respectively. T varies for different videos. For an user
U , let H = {h1, ..., hn} denotes the user’s history which is a collection of visual
highlights that the user has created in the past.

Given v and H, our goal is to learn a mapping function G that predicts two
scores for each frame in v indicating it being non-highlight and highlight. Thus,
the final output S is of dimension 1× T × 2 for the input video v:

S = G(v,H) = G(v, {h1, ..., hn}). (1)

We refer to G as the adaptive highlight detector.

3.1 Background: Temporal Convolution Networks

In recent years, temporal convolution networks (e.g., FCSN [32]) have shown
to achieve impressive performance on video understanding tasks. These net-
works mainly perform 1D operations (e.g., 1D convolution, 1D pooling) over the
temporal dimension (e.g., over frames in a video). This is analogous to the 2D
operations (e.g., 2D convolution, 2D pooling) commonly used in CNN models for
image-related tasks. For example, the work in [32] uses temporal convolutional
networks for video summarization, where the task is formulated as predicting a
binary label for each frame in a video. Our proposed model is based on the tem-
poral convolution network proposed in [32]. But we extend the model to perform
user-specific video highlight detection.

3.2 Temporal-Adaptive Instance Normalization

Let oi indicate the activations of i-th layer in the temporal convolution neural
network (fT ) for the input video v. We use Ci and T i to denote the number of
channels and temporal length of activation in that layer, respectively. We define
the Temporal-Adaptive Instance Normalization (T-AIN), a conditional normal-
ization layer for videos. T-AIN is inspired by the basic principles of Instance
Normalization [40]. The activation is firstly normalized channel-wise along tem-
poral dimension (obtaining oinorm), followed by a uniform modulation with affine
transformation. Different from InstanceNorm [40], the affine parameters, scale
and bias, in T-AIN are not learnable but inferred using external data (i.e., a
user’s history (H) in our case) which is encoded to a vector m using another
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temporal convolution network (gT ). Thus, T-AIN is also conditional (on H) in
nature. The activation value from T-AIN at location c ∈ Ci and t ∈ T i is(

oic,t − E[oic]√
Var[oic] + ε

)
γic + δic, (2)

where oic,t, E[oic] and Var[oic] are the activation before normalization, expectation

and variance of the activation oi in channel c, respectively. T-AIN computes the
E[oic] and Var[oic] along temporal dimension independently for each channel and
every input sample (video) as:

E[oic] = µic =
1

T i
(∑

t

oic,t
)
, (3)

Var[oic] = E[(oic − E[oic])
2] =

1

T i

∑
t

(
oic,t − µic

)2
. (4)

In Eq. 2, γic and δic are the modulation parameters in the T-AIN layer. We
obtain γic and δic from the encoded vector m generated using the external data.
T-AIN firstly scales each value along the temporal length in channel c of tem-
porally normalized activations oinorm by γic and then shifts it by δic. Similar to
InstanceNorm, these statistics vary across channel Ci. We provide details on
how we compute these parameters when using user’s history H as an external
data in Sec. 3.3. In Fig. 2, we visualize the operations in a T-AIN layer.

External data (e.g.,
user's history, ( )
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Fig. 2. Overview of a temporal-adaptive instance normalization layer (T-AIN). For an
input video v, let oi be the activation map with channel dimension Ci and temporal
length T i in the i-th layer of a temporal convolutional network fT . Let gT be another
temporal convolutional network that encodes external data (e.g., user’s history H) into
a vector representation m of dimension 2Ci. T-AIN firstly temporally normalizes oi

in each channel to obtain oi
norm. It then uniformly scales and shifts oi

norm in channel
c (where c ∈ Ci) over time by γi

c and δic, respectively. The values of γi
c and δic are

obtained from m. As can be seen, the main characteristics of T-AIN include temporal
operation, no learnable parameters, and conditional on external data.

T-AIN is related to the conditional batch normalization (CBN) [6] and the
adaptive instance normalization (AIN) [12]. The main difference is that CBN
and AIN work spatially, so they are appropriate for image-related tasks like style
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transfer. In contrast, T-AIN is designed to operate along time, which makes it
suitable for video highlight detection and video understanding tasks in general.

3.3 Adaptive Highlight Detector

The adaptive highlight detector G consists of two sub-networks: a highlight de-
tection network H and a history encoder network M . H is responsible for scoring
each frame in an input video to indicate whether or not it should be included in
the highlight. The role of M is to firstly encode the user’s history information
and then guide H in a manner that the generated highlight is adapted to the
user’s history. Next, we discuss the sub-networks design and learning in detail.

Highlight Detection Network. The highlight detection network H is based
on FCSN [32]. It is an encoder-decoder style architecture which is fully convo-
lutional in nature. One advantage of this network is that it is not restricted to
fixed-length input videos. It can handle videos with arbitrary lengths. Another
advantage is that it is effective in capturing the long-term temporal dynamics
among the frames of a video beneficial for video understanding tasks such as
highlight detection.

H accepts a video v with feature representation of dimension 1 × T × D,
where T is number of frames in v and D is the dimension of each frame feature
vector. It produces an output of dimension 1 × T × 2 indicating non-highlight
and highlight scores for the T frames.

The encoder (Fv) of H has a stack of seven convolutional blocks. The first
five blocks (i.e., conv-blk1 to conv-blk5) consist of several temporal convolution
followed by a ReLU and a temporal max pooling operations. The last two blocks
(conv6 to conv7) have a temporal convolution, followed by a ReLU and a dropout
layer. The encoder Fv gives two outputs: a feature map from its last layer and a
skip connection from block conv-blk4.

The output of encoder Fv is fed to the decoder network (Dv). We introduce
T-AIN layers at sites where these two outputs enter Dv. We obtain a feature
map by applying a 1 × 1 convolution and a temporal fractionally-strided con-
volution operation (deconv1) to the output of first T-AIN, which is added with
the feature map from a 1× 1 convolution to the output of second T-AIN layer.
Finally, we apply another fractionally-strided temporal convolution (deconv2) to
obtain a final prediction of shape 1 × T × 2 denoting two scores (non-highlight
or highlight) for each frame in the video. Fig. 3 (top) visualizes the architecture
of H.

History Encoder Network. The history encoder network M is an integral
piece of our framework. It acts as a guiding network that guides the highlight
network H by adaptively computing the affine transformation parameters of its
T-AIN layers. Using these affine parameters, M modulates the activations in H
to produce adaptive highlight predictions.

The configuration of this network is same as the encoder Fv in H with few
changes towards the end. It performs an average temporal pooling to the output
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Fig. 3. Overview of our proposed model, Adaptive-H-FCSN. The model consists of two
sub-networks, a highlight detection network H and a history encoder network M . H
is an encoder-decoder architecture that takes a frame-level vector feature represen-
tation of a user input video with T frames. It then generates scores (highlight vs.
non-highlight) for each frame in the video while taking information from M . M takes
vector feature representation of each element (i.e., highlights the user has previously
created) in the user’s history as an input and encodes it to a vector zh. This vector zh
is then simply fed to a fully connected layer FC to produce the affine parameters γj
and δj in the j-th T-AIN layer of decoder Dv where j = 1, 2. This way the highlight
detection for the input video is adapted to the user.

of convolution blocks, which is combined with a skip connection from the input
that is then fed to a fully-connected layer. The skip connection involves an
average pooling and a fully-connected operation to match dimensions.

The network accepts user’s history collectionH of shape 1×n×D as an input,
where n is the number of elements/highlights in the user’s history and D is the
dimension of the vector representation of each element. In our implementation,
we obtain a D-dimensional vector from a highlight using C3D [38]. Note that
n varies for different users. After the combining stage, the network generates a
latent code zh which is a fixed-length user-specific vector.

Next, we forward zh to a fully connected layer (FC) to decode the latent
code zh into a set of vectors (γj , δj) where j = 1, 2. The parameters γj and δj
denote the scaling and bias parameters of j-th T-AIN layer in the decoder Dv

of H, respectively. These affine parameters are uniformly applied at every tem-
poral location in the feature map. This allows to incorporate the user’s history
information in H and adjust it in a way that the predicted highlight is adapted
to the user’s history. This way we obtain a user-specific highlight prediction for
the input user video. Fig. 3 (bottom) presents the architecture of M .

With Fv, Dv and M , we can rewrite Eq. 1 as:

S = Dv(Fv(v),M({h1, ..., hn})). (5)

By applying this design, we learn a generic video representation using Fv and
extract a user-specific latent representation with M . Finally, by injecting user-
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specific latent information to Dv through T-AIN layers, we allow the model to
adapt the highlight detection to the user’s history.

Note that we use temporal convolutions over the highlights in the user history.
In addition, we also investigate a non-local model [42,48] with self-attention in-
stead of temporal convolutions for M . Here, the output of self-attention is firstly
average pooled to produce a single vector and then fed to a fully-connected
layer. We find that the non-local model performs slightly inferior to the tempo-
ral convolutions model. This is probably because the highlights in the history are
ordered based on their time of creation in the dataset, so the temporal convolu-
tions allow the history encoder M to capture some implicit temporal correlations
among them.

3.4 Learning and Optimization

We train our adaptive highlight detector G using a cross-entropy loss. For an
input video v with T frames and corresponding binary indicator ground truth
label vector (indicating whether a frame is non-highlight or highlight), we define
a highlight detection loss Lhighlight as:

Lhighlight = − 1

T

T∑
t=1

log

(
exp(λt,lc)∑2
c=1 exp(λt,c)

)
, (6)

where λt,c is the predicted score of t-th frame to be the c-th class (non-highlight
or highlight) and λt,lc is the score predicted for the ground truth class.

The goal of our learning is to find optimal parameters Θ∗
Fv

, Θ∗
Dv

and Θ∗
M in

the encoder Fv, decoder Dv of the highlight detection network H, and the history
encoder network M , respectively. The learning objective can be expressed as:

Θ∗
Fv
, Θ∗

Dv
, Θ∗

M = arg min
ΘFv ,ΘDv ,ΘM

Lhighlight(Fv, Dv,M). (7)

For brevity, we use Adaptive-H-FCSN to denote our adaptive highlight de-
tection model learned using Eq. 7.

4 Experiments

4.1 Dataset

We conduct experiments on the largest publicly available highlight detection
dataset, PHD-GIFs [25]. It is also the only large-scale dataset that has user his-
tory information for highlight detection. The released dataset consists of 119, 938
videos, 13, 822 users and 222, 015 annotations. The dataset has 11, 972 users in
training, 1, 000 users in validation, and 850 users in testing. There is no overlap
among users in these three subsets.

Apart from being large-scale, this dataset is also interesting because it con-
tains user-specific highlight examples indicating what exactly a user is interested
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in when creating highlights. The ground truth segment-level annotation comes
from GIFs that a user creates (by extracting key moments) from YouTube videos.
In this dataset, a user has GIFs from multiple videos where the last video of the
user is considered for highlight prediction and the remaining ones are treated as
examples in the user’s history.

The dataset only provides YouTube video ID for the videos and not the orig-
inal videos. So we need to download the original videos from YouTube to carry
out the experiments. We were able to download 104, 828 videos and miss the re-
maining videos of the dataset since they are no longer available on YouTube. In
the end, we are able to successfully process 7, 036 users for training, 782 users for
validation and 727 users for testing. Note that code of previous methods on this
dataset are not available (except pre-trained Video2GIF [11]), so we implement
several strong baselines (see Sec. 4.3) in the paper.

4.2 Setup and Implementation Details

Evaluation metrics: We use the mean Average Precision (mAP) as our eval-
uation metric. It measures the mean of the average precision of highlight de-
tection calculated for every video in the testing dataset. Different from object
detection where all the detections are accumulated from images to compute the
average precision, highlight detection treats videos separately because it is not
necessary a highlighted moment in a particular video is more interesting than
non-highlighted moments in a different video [36]. This metric is commonly used
to measure the quality of predictions in highlight detection [11,25,36,45].
Feature representation: Following prior work [25], we extract C3D [38] (conv5)
layer features and use it as feature representation in the model for the input
videos and user’s history. For an input video, we extract C3D-features at frame-
level. For a highlight video in the user’s history, we prepare a single vector
representation by averaging its frame-level C3D features.
Training details: We train our models from scratch. All the models are trained
with a constant learning rate of 0.0001. We use Adam [18] optimization algorithm
for training the models. Note that we apply this training strategy in all our
experiments including the other analysis (Sec. 4.5).

Since the dataset has users that create multiple GIFs for a video, we follow
[25] to prepare a single ground truth for the video by taking their union.
Testing details: Given a new test user video and the user’s history, we use our
trained model to predict highlight score for each frame which is then sent to the
evaluation metrics to measure the quality of predicted highlight. We follow the
evaluation protocol of previous work [11,25] for fair comparison. Note that our
model can handle variable length input videos and variable number of history
elements. We consider full user’s history while predicting highlights.

4.3 Baselines

We compare the proposed Adaptive-H-FCSN with the following strong baselines:
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FCSN [32]: This network is the state of the art in video summarization
which we adapt as our highlight detection network. FCSN has no instance nor-
malization layers. We train and evaluate FCSN on the PHD-GIFs dataset.

Video2GIF [11]: This baseline is a state-of-the-art highlight detection model.
We evaluate the publicly available pre-trained model.

FCSN-aggregate: In this baseline, we train FCSN [32] by directly combin-
ing the user history with the input video. More specifically, we firstly obtain a
vector representation for the user history by averaging the features of elements in
the history. Next, we add this aggregated history with the feature representation
of each frame in the input video.

H-FCSN: This baseline is a variant of highlight detection network H we
presented in Sec. 3.3, where we replace the T-AIN layers in the decoder of H
with the unconditional temporal instance normalization layers. We do not have
the history encoder network M . This results in Adaptive-H-FCSN transformed
to a generic highlight detection model with no adaptation to users.

H-FCSN-aggregate: Similar to FCSN-aggregate, we directly combine the
user’s history features with an input video features and learn H-FCSN. Different
from H-FCSN, this is not a generic highlight detection model but a user-adaptive
highlight detection model as we allow the model to leverage the user’s history
information in the training and inference.

4.4 Results and Comparison

In Table 1, we provide the experiment results (in terms of mAP %) of our final
model Adaptive-H-FCSN along with the baselines and other alternative methods.

Table 1. Performance (mAP%) comparison between Adaptive-H-FCSN and other ap-
proaches. We compare with both non-adaptive and adaptive highlight detection meth-
ods. Our method Adaptive-H-FCSN outperforms the other alternative methods. We also
compare with Adaptive-H-FCSN-attn that uses self-attention in the history encoder
(see Sec. 3.3). Note that all the listed methods use C3D feature representation

Method mAP (%) User-adaptive

Random 12.27 7

FCSN [32] 15.22 7

Video2GIF [11] 14.75 7

H-FCSN 15.04 7

FCSN-aggregate 15.62 3

H-FCSN-aggregate 15.73 3

Adaptive-H-FCSN-attn 16.37 3

Adaptive-H-FCSN 16.73 3

Adaptive-H-FCSN outperforms all the baselines. Results show that directly
combining (i.e., FCSN-aggregate and H-FCSN-aggregate) history information
with input video only slightly improves the highlight detection results in com-
parison to FCSN and H-FCSN that do not leverage users history information.
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However, we notice a significant performance gain for Adaptive-H-FCSN model.
This result validates that directly combining user history information with the
input video is a sub-optimal solution for user-adaptive highlight detection. Ad-
ditionally, this result reveals that proposed T-AIN layer plays a critical role in
producing more accurate and user-specific highlight detection. It is also note-
worthy that we obtain a lower performance (nearly 1%) for Video2GIF [11] than
reported in PHD-GIFs [25] which implies that our test set is more challenging.

Fig. 4 shows some qualitative examples for the generic baseline model (H-
FCSN) and our proposed adaptive highlight detection model (Adaptive-H-FCSN).
We can see that our model successfully captures the information in user’s history
and produces highlights that are adapted to the user’s preference.
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Fig. 4. Qualitative examples for different methods. We show examples of the generic
highlight detection model (H-FCSN) and our user-adaptive model (Adaptive-H-FCSN)
on four videos. For each video, we show the user’s history (multiple GIFs) and few
sampled frames from the highlight predictions of the two models. Based on the user’s
history, we find that in (a) the user has interest in animals; (b) the user is interested in
faces that dominate a scene; (c) the user is inclined to highlight goal scoring scenes; and
(d) the user focuses on cooking. These visualizations indicate that adaptation to the
user’s interest is important for a meaningful and accurate highlights. Compared with
H-FCSN, the prediction of Adaptive-H-FCSN is more consistent with the user history.

4.5 Analysis

Effect of affine parameters. We analyze the importance of affine parameters
γic and δic (Eq. 2) for adaptive highlight detection. In Table 2, we report the high-
light detection performance for different possible choices of these parameters. We
find that when these parameters are adaptively computed (γic=γ

h
c , δic=δ

h
c ) from

another network capturing the user history information (i.e., Adaptive-H-FCSN)
significantly boosts the highlight detection performance as opposed to cases when
it is directly learned (γic=γ

∗
c , δic=δ

∗
c ) and set to a fixed value (γic=1, δic=0) in

the main highlight detection network. Thus, the proposed T-AIN layer is key to
obtain user-adaptive highlights.
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Table 2. Impact of affine parameters on highlight detection. Here we show the perfor-
mance (mAP%) for different choices of affine parameters γi

c and δic in Eq. 2

Method γi
c=1, δic=0 γi

c=γ
∗
c , δic=δ

∗
c γ

i
c=γ

h
c , δic=δ

h
c

H-FCSN 14.64 15.04 -
H-FCSN-aggregate 14.87 15.73 -
Adaptive-H-FCSN - - 16.73

Effect of user’s history size. We perform additional study to analyze how
sensitive our model is to the length of a user’s history (i.e., numbers of highlights
previously created). We restrict the number of history elements for users in the
training. That is, we consider only h highlight videos from the user’s history in
training. During testing, we consider the user’s full history.

Table 3 shows the results of various methods as a function of number of ele-
ments (h = 0, 1, 5, n) in user’s history. We observe that Adaptive-H-FCSN out-
performs generic highlight model (H-FCSN) even when there is a single highlight
in the user’s history. We notice the performance of Adaptive-H-FCSN gradually
improves when we increase the number of history elements, whereas H-FCSN-
aggregate doesn’t show similar performance trend. It achieves the best results
when we utilize a user’s full history (i.e., h=n).

Table 3. Impact of an user’s history size (i.e., number of history elements/highlights)
on different methods. Here we vary the history size h as 0 (no history), 1, 5, and n (full
history). The performance of our model improves with the increase in history size

History size (H) h = 0 h = 1 h = 5 h = n

H-FCSN 15.04 - - -
H-FCSN-aggregate - 15.62 15.04 15.73
Adaptive-H-FCSN - 15.57 15.69 16.73

4.6 Application to Video Summarization

Video summarization is closely related to highlight detection. Highlight detec-
tion aims at extracting interesting moments and events of a video, while video
summarization aims to generate a concise synopsis of a video. Popular datasets
in summarization are very small [31], making learning and optimization chal-
lenging. We argue that pretraining using a large-scale video data from a related
task, such as PHD-GIFs [25] in highlight detection, could tremendously help
video summarization models. In video summarization, this idea remains unex-
plored. In order to validate our notion and compare with recent state-of-the-art
in [44], we select the SumMe dataset [9] which has only 25 videos.

We evaluate our trained H-FCSN (i.e., the generic highlight detection model
we proposed in Sec. 4.3) directly on SumMe. In Table 4, we compare the perfor-
mance of our H-FCSN (trained on the PHD-GIFs [25] dataset) on SumMe with
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state-of-the-art supervised video summarization methods. Following prior work
[44], we randomly select 20% of data in SumMe for testing. We repeat this exper-
iment five times (as in [44]) and report the average performance. Surprisingly,
even though we do not train on SumMe, our model achieves state-of-the-art
summarization performance, outperforming contemporary supervised models.
Therefore, we believe that the future research in video summarization should
consider pretraining their model on a large-scale video data from a related task
such as highlight detection. We envision that this way we can simultaneously
make progress in both highlight detection and video summarization.

Table 4. Performance comparison in term of F-score (%) on SumMe. Note that unlike
other methods, we do not train on SumMe rather directly test our trained (using
PHD-GIFs) model for summarization. Results of other methods are taken from [44]

Method F-score (%)

Interesting [9] 39.4
Submodularity [10] 39.7

DPP-LSTM [50] 38.6
GANsup [24] 41.7

DR-DSNsup [54] 42.1
S2N [44] 43.3

Ours (H-FCSN) 44.4

5 Conclusion

We have proposed a simple yet novel framework Adaptive-H-FCSN for adaptive
highlight detection using the user history which has received less attention in
the literature. Different from commonly applied ranking model, we introduced a
convolutional model for highlight detection that is computationally efficient as
it can process an entire video of any length at once and also does not require
expensive shot detection computation. We proposed temporal-adaptive normal-
ization (T-AIN) that has affine parameters which is adaptively computed using
the user history information. The proposed T-AIN leads to high-performing and
user-specific highlight detection. Our empirical results on a large-scale dataset in-
dicate that the proposed framework outperforms alternative approaches. Lastly,
we further demonstrate an application of our learned model in video summa-
rization where the learning is currently limited to small datasets.
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