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Mauricio Villegas†

∗Computer Vision Center, Universitat Autònoma de Barcelona, Spain
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Abstract. Although current image generation methods have reached
impressive quality levels, they are still unable to produce plausible yet
diverse images of handwritten words. On the contrary, when writing by
hand, a great variability is observed across different writers, and even
when analyzing words scribbled by the same individual, involuntary vari-
ations are conspicuous. In this work, we take a step closer to producing
realistic and varied artificially rendered handwriting. We propose a novel
method that is able to produce credible handwritten word images by con-
ditioning the generative process with both calligraphic style features and
textual content. Our generator is guided by three complementary learn-
ing objectives: to produce realistic images, to imitate a certain hand-
writing style and to convey a specific textual content. Our model is un-
constrained to any predefined vocabulary, being able to render whatever
input word. Given a sample writer, it is also able to mimic its calligraphic
features in a few-shot setup. We significantly advance over prior art and
demonstrate with qualitative, quantitative and human-based evaluations
the realistic aspect of our synthetically produced images.

Keywords: Generative adversarial networks, style and content condi-
tioning, handwritten word images.

1 Introduction

Few years after the conception of Generative Adversarial Networks (GANs) [12],
we have witnessed an impressive progress on generating illusory plausible images.
From the early low-resolution and hazy results, the quality of the artificially
generated images has been notably enhanced. We are now able to synthetically
produce high-resolution [5] artificial images that are indiscernible from real ones
to the human observer [24]. In the original GAN architecture, inputs were ran-
domly sampled from a latent space, so that it was hard to control which kind of
images were being generated. The conception of conditional Generative Adver-
sarial Networks (cGANs) [35] led to an important improvement. By allowing to
condition the generative process on an input class label, the networks were then
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Fig. 1. Turing’s test. Just five of the above words are real. Try to distinguish them
from the artificially generated samples1.

able to produce images from different given types [7]. However, such classes had
to be predefined beforehand during the training stage and thus, it was impossible
to produce images from other unseen classes during inference.

But generative networks have not exclusively been used to produce synthetic
images. The generation of data that is sequential in nature has also been largely
explored in the literature. Generative methods have been proposed to produce
audio signals [9], natural language excerpts [45], video streams [42] or stroke
sequences [13,15,11,48] able to trace sketches, drawings or handwritten text. In
all of those approaches, in order to generate sequential data, the use of Recurrent
Neural Networks (RNNs) has been adopted.

Yet, for the specific case of generating handwritten text, one could also en-
visage the option of directly producing the final images instead of generating
the stroke sequences needed to pencil a particular word. Such non-recurrent ap-
proach presents several benefits. First, the training procedure is more efficient
since recurrencies are avoided and the inherent parallelism nature of convolu-
tional networks is leveraged. Second, since the output is generated all at once,
we avoid the difficulties of learning long-range dependencies as well as vanish-
ing gradient problems. Finally, online training data (pen-tip location sequences),
which is hard to obtain, is no longer needed.

Nevertheless, the different attempts to directly generate raw word images
present an important drawback. Similarly to the case with cGANs, most of the
proposed approaches are just able to condition the word image generation to a
predefined set of words, limiting its practical use. For example [14] is specifi-
cally designed to generate isolated digits, while [6] is restricted to a handful of
Chinese characters. To our best knowledge, the only exception to that is the
approach by Alonso et al. [1]. In their work they propose a non-recurrent gener-
ative architecture conditioned to input content strings. By having such design,
the generative process is not restricted to a particular predefined vocabulary,
and could potentially generate any word. However, the produced results are not
realistic, still exhibiting a poor quality, sometimes producing barely legible word
images. Their proposed approach also suffers from the mode collapse problem,
tending to produce images with a unique writing style. In this paper we present a
non-recurrent generative architecture conditioned to textual content sequences,

1 Therealwordsare:"that","vision","asked","hits"and"writer".



GANwriting: Content-Conditioned Generation of Styled Handwriting 3

that is specially tailored to produce realistic handwritten word images, indis-
tinguishable to humans. Real and generated images are actually difficult to tell
apart, as shown in Fig. 1. In order to produce diverse styled word images, we
propose to condition the generative process not only with textual content, but
also with a specific writing style, defined by a latent set of calligraphic attributes.

Therefore, our approach1 is able to artificially render realistic handwritten
word images that match a certain textual content and that mimic some style
features (text skew, slant, roundness, stroke width, ligatures, etc.) from an exem-
plar writer. To this end, we guide the learning process by three different learning
objectives [36]. First, an adversarial discriminator ensures that the images are re-
alistic and that its visual appearance is as closest as possible to real handwritten
word images. Second, a style classifier guarantees that the provided calligraphic
attributes, characterizing a particular handwriting style, are properly transferred
to the generated word instances. Finally, a state-of-the-art sequence-to-sequence
handwritten word recognizer [34] controls that the textual contents have been
properly conveyed during the image generation. To summarize, the main contri-
butions of the paper are the following:

– Our model conditions the handwritten word generative process both with
calligraphic style features and textual content, producing varied samples
indistinguishable by humans, surpassing the quality of the current state-of-
the-art approaches.

– We introduce the use of three complementary learning objectives to guide
different aspects of the generative process.

– We propose a character-based content conditioning that allows to generate
any word, without being restricted to a specific vocabulary.

– We put forward a few-shot calligraphic style conditioning to avoid the mode
collapse problem.

2 Related Work

The generation of realistic synthetic handwritten word images is a challenging
task. To this day, the most convincing approaches involved an expensive manual
intervention aimed at clipping individual characters or glyphs [43,26,28,40,16].
When such approaches were combined with appropriate rendering techniques
including ligatures among strokes, textures and background blending, the ob-
tained results were indeed impressive. Haines et al. [16] illustrated how such
approaches could artificially generate indistinguishable manuscript excerpts as
if they were written by Sir Arthur Conan Doyle, Abraham Lincoln or Frida
Kahlo. Of course such manual intervention is extremely expensive, and in order
to produce large volumes of manufactured images the use of truetype electronic
fonts has also been explored [27,23]. Although such approaches benefit from a
greater scalability, the realism of the generated images clearly deteriorates.

1 Our code is available at https://github.com/omni-us/research-GANwriting
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With the advent of deep learning, the generation of handwritten text was
approached differently. As shown in the seminal work by Alex Graves [13], given
a reasonable amount of training data, an RNN could learn meaningful latent
spaces that encode realistic writing styles and their variations, and then gener-
ate stroke sequences that trace a certain text string. However, such sequential
approaches [13,15,11,48] need temporal data, obtained by recording with a dig-
ital stylus pen real handwritten samples, stroke-by-stroke, in vector form.

Contrary to sequential approaches, non-recurrent generative methods have
been proposed to directly produce images. Both variational auto-encoders [25]
and GANs [12] were able to learn the MNIST manifold and generate artificial
handwritten digit images in the original publications. With the emergence of
cGANs [35], able to condition the generative process on an input image rather
than a random noise vector, the adversarial-guided image-to-image translation
problem started to rise. Image-to-image translation has since been applied to
many different style transfer applications, as demonstrated in [21] with the
pix2pix network. Since then, image translation approaches have been acquir-
ing the ability to disentangle style attributes from the contents of the input
images, producing better style transfer results [39,37]. Geometry-aware synthe-
sizing methods [47,46] have been successfully applied on scene text images, but
cursive words are not considered.

Concerning the generation of handwritten text, such approaches have been
mainly used for synthesising Chinese ideograms [30,41,6,22,44] and glyphs [2].
However, they are restricted to a predefined set of content classes. The incapa-
bility to generate out of vocabulary (OOV) text limits its practical application.
Few works can actually deal with OOV words. First, in the work by Alonso et
al. [1], the generation of handwritten word samples is conditioned by character
sequences, but it suffers from the mode collapse problem, hindering the diversity
of the generated images. Second, Fogel et al. [10] generate handwritten word by
assembling the images generated by its characters, but the generated charac-
ters have the same receptive field width, which can make the generated words
look unrealistic. Third, Mayr et al. [33] propose a conversion model to approxi-
mate online handwriting from offline data and then apply style transfer method
to online data, so that offline handwritten text images could be generated by
leveraging online handwriting synthesizer. However, this method highly depends
on the performance of the conversion model and needs online data to train.
Techniques like FUNIT [29], able to transfer unseen target styles to the content
generated images could be beneficial for this limitation. In particular, the use of
Adaptive Instance Normalization (AdaIN) layers, proposed in [18], shall allow
to align both textual content and style attributes within the generative process.

Summarizing, state-of-the-art generative methods are still unable to produce
plausible yet diverse images of whatever handwritten word automatically. In this
paper we propose to condition a generative model for handwritten words with
unconstrained text sequences and stylistic typographic attributes, so that we are
able to generate any word with a great diversity over the produced results.
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Fig. 2. Architecture of the proposed handwriting generation model.

3 Conditioned Handwritten Generation

3.1 Problem Formulation

Let {X ,Y,W} be a multi-writer handwritten word dataset, containing grayscale
word images X , their corresponding transcription strings Y and their writer
identifiers W = {wi}Ni=1. Let Xi = {xwi,j}Kj=1 ⊂ X be a subset of K randomly
sampled handwritten word images from the same given writer wi ∈ W. Let A
be the alphabet containing the allowed characters (letters, digits, punctuation
signs, etc.), Al being all the possible text strings with length l. Given a set of
images Xi as a few-shot example of the calligraphic style attributes for writer wi

on the one hand, and given a textual content provided by any text string t ∈ Al

on the other hand; the proposed generative model has the ability to combine
both sources of information. It has the objective to yield a handwritten word
image having textual content equal to t and sharing calligraphic style attributes
with writer wi. Following this formulation, the generative model H is defined as

x̄ = H (t,Xi) = H (t, {x1, . . . , xK}) , (1)

where x̄ is the artificially generated handwritten word image with the desired
properties. Moreover, we denote X̄ as the output distribution of the generative
network H.

The proposed architecture is divided in two main components. The generative
network produces human-readable images conditioned to the combination of
calligraphic style and textual content information. The second component are
the learning objectives which guide the generative process towards producing
images that look realistic; exhibiting a particular calligraphic style attributes;
and having a specific textual content. Fig. 2 gives an overview of our model.

3.2 Generative Network

The proposed generative architecture H consists of a calligraphic style encoder
S, a textual content encoder C and a conditioned image generator G. The overall
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calligraphic style of input images Xi is disentangled from their individual textual
contents, whereas the string t provides the desired content.

Calligraphic style encoding. Given the set Xi ⊂ X of K = 15 word images
from the same writer wi, the style encoder aims at extracting the calligraphic
style attributes, i.e. slant, glyph shapes, stroke width, character roundness, liga-
tures etc. from the provided input samples. Specifically, our proposed network S
learns a style latent space mapping, in which the obtained style representations
Fs = S(Xi) are disentangled from the actual textual contents of the images
Xi. The VGG-19-BN [38] architecture is used as the backbone of S. In order
to process the input image set Xi, all the images are resized to have the same
height h, padded to meet a maximum width w and concatenated channel-wise
to end up with a single tensor h × w × K. If we ask a human to write the
same word several times, slight involuntary variations appear. In order to im-
itate this phenomenon, randomly choosing permutations of the subset Xi will
already produce such characteristic fluctuations. In addition, an additive noise
Z ∼ N (0, 1) is applied to the output latent space to obtain a subtly distorted
feature representation F̂s = Fs + Z.

Textual content encoding. The textual content network C is devoted to pro-
duce an encoding of the given text string t that we want to artificially write. The
proposed architecture outputs content features at two different levels. Low-level
features encode the different characters that form a word and their spatial posi-
tion within the string. A subsequent broader representation aims at guiding the
whole word consistency. Formally, let t ∈ Al be the input text string, character
sequences shorter than l are padded with the empty symbol ε. Let us define
a character-wise embedding function e : A → Rn. The first step of the content
encoding stage embeds with a linear layer each character c ∈ t, represented by
a one-hot vector, into a character-wise latent space. Then, the architecture is
divided into two branches.

Character-wise encoding: Let g1 : Rn → Rm be a Multi-Layer Perceptron
(MLP). Each embedded character e(c) is processed individually by g1 and their
results are later stacked together. In order to combine such representation with
style features, we have to ensure that the content feature map meets the shape of
F̂s. Each character embedding is repeated multiple times horizontally to coarsely
align the content features with the visual ones extracted from the style network,
and the tensor is finally vertically expanded. The two feature representations are
concatenated to be fed to the generator F = [F̂s ‖ Fc]. Such a character-wise
encoding enables the network to produce OOV words, i.e. words that have never
been seen during training.

Global string encoding: Let g2 : Rl·n → R2p·q be another MLP aimed at ob-
taining a much broader and global string representation. The character embed-
dings e(c) are concatenated into a large one-dimensional vector of size l ·n that is
then processed by g2. Such global representation vector fc will be then injected
into the generator splitted into p pairs of parameters.

Both functions g1(·) and g2(·) make use of three fully-connected layers with
ReLU activation functions and batch normalization [20].
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Generator. Let F be the combination of the calligraphic style attributes and the
textual content information character-wise; and fc the global textual encoding.
The generator G is composed of two residual blocks [19] using the AdaIN as the
normalization layer. Then, four convolutional modules with nearest neighbor up-
sampling and a final tanh activation layer generates the output image x̄. AdaIN
is formally defined as

AdaIN (z, α, β) = α

(
z − µ (z)

σ (z)

)
+ β, (2)

where z ∈ F , µ and σ are the channel-wise mean and standard deviations. The
global content information is injected four times (p = 4) during the generative
process by the AdaIN layers. Their parameters α and β are obtained by splitting
fc in four pairs. Hence, the generative network is defined as

x̄ = H (t,Xi) = G (C (t) , S (Xi)) = G
(
g1

(
t̂
)
, g2

(
t̂
)
, S (Xi)

)
, (3)

where t̂ = [e(c); ∀c ∈ t] is the encoding of the string t character by character.

3.3 Learning Objectives

We propose to combine three complementary learning objectives: a discrimina-
tive loss, a style classification loss and a textual content loss. Each one of these
losses aim at enforcing different properties of the desired generated image x̄.
Discriminative Loss. Following the paradigm of GANs [12], we make use of
a discriminative model D to estimate the probability that samples come from
a real source, i.e. training data X , or belong to the artificially generated dis-
tribution X̄ . Taking the generative network H and the discriminator D, this
setting corresponds to a min max optimization problem. The proposed discrim-
inator D starts with a convolutional layer, followed by six residual blocks with
LeakyReLU activations and average poolings. A final binary classification layer
is used to discern between fake and real images. Thus, the discriminative loss
only controls that the general visual appearance of the generated image looks
realistic. However, it does not take into consideration neither the calligraphic
styles nor the textual contents. This loss is formally defined as

Ld (H,D) = Ex∼X [log (D (x))] + Ex̄∼X̄ [log (1−D (x̄))] . (4)

Style Loss. When generating realistic handwritten word images, encoding infor-
mation related to calligraphic styles not only provides diversity on the generated
samples, but also prevents the mode collapse problem. Calligraphy is a strong
identifier of different writers. In that sense, the proposed style loss guides the
generative network H to generate samples conditioned to a particular writing
style by means of a writer classifier W . Given a handwritten word image, W
tries to identify the writer wi ∈ W who produced it. The writer classifier W
follows the same architecture of the discriminator D with a final classification
MLP with the amount of writers in our training dataset. The classifier W is only
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<end>

...

...
<go>

. . .

. . .

. . .

. . .

...

Fig. 3. Architecture of the attention-based sequence-to-sequence handwritten word
recognizer R.

optimized with real samples drawn from X , but it is used to guide the generation
of the synthetic ones. We use the cross entropy loss, formally defined as

Lw (H,W ) = −Ex∼{X ,X̄}



|W|∑

i=1

wi log (ŵi)


 , (5)

where ŵ = W (x) is the predicted probability distribution over writers in W and
wi the real writer distribution. Generated samples should be classified as the
writer wi used to construct the input style conditioning image set Xi.
Content Loss. A final handwritten word recognizer network R is used to guide
our generator towards producing synthetic word images with a specific textual
content. We implemented a state-of-the-art sequence-to-sequence model [34] for
handwritten word recognition to examine whether the produced images x̄ are
actually decoded as the string t. The recognizer, depicted in Fig. 3, consists of
an encoder and a decoder coupled with an attention mechanism. Handwritten
word images are processed by the encoder and high-level feature representa-
tions are obtained. A VGG-19-BN [38] architecture followed by a two-layered
Bi-directional Gated Recurrent Unit (B-GRU) [8] is used as the encoder net-
work. The decoder is a one-directional RNN that outputs character by character
predictions at each time step. The attention mechanism dynamically aligns con-
text features from each time step of the decoder with high-level features from the
encoder, hopefully corresponding to the next character to decode. The Kullback-
Leibler divergence loss is used as the recognition loss at each time step. This is
formally defined as

Lr (H,R) = −Ex∼{X ,X̄}




l∑

i=0

|A|∑

j=0

ti,j log

(
ti,j

t̂i,j

)
 , (6)

where t̂ = R(x); t̂i being the i-th decoded character probability distribution by
the word recognizer, t̂i,jbeing the probability of j-th symbol in A for t̂i, and ti,j
being the real probability corresponding to t̂i,j . The empty symbol ε is ignored
in the loss computation; ti denotes the i-th character on the input text t.
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Algorithm 1 Training algorithm for the proposed model.

Input: Input data {X ,Y,W}; alphabet A; max training iterations T
Output: Networks parameters {ΘH , ΘD, ΘW , ΘR}.

1: repeat
2: Get style and content mini-batches {Xi, wi}NB

i=1 and {ti}NB
i=1

3: Ld ← Eq. 4 . Real and generated samples x ∼ {X , X̄ }
4: Lw,r ← Eq. 5 + Eq. 6 . Real samples x ∼ X
5: ΘD ← ΘD + Γ (∇ΘDLd)
6: ΘW,R ← ΘW,R − Γ (∇ΘW,RLw,d)
7: L ← Eq. 7 . Generated samples x ∼ X̄
8: ΘH ← ΘH − Γ (∇ΘHL)
9: until Max training iterations T

3.4 End-to-end Training

Overall, the whole architecture is trained end to end with the combination of
the three proposed loss functions

L(H,D,W,R) = Ld(H,D) + Lw(H,W ) + Lr(H,R), (7)

min
H,W,R

max
D
L(H,D,W,R). (8)

Algorithm 1 presents the training strategy that has been followed in this work.
Γ (·) denotes the optimizer function. Note that the parameter optimization is
performed in two steps. First, the discriminative loss is computed using both
real and generated samples (line 3). The style and content losses are computed
by just providing real data (line 4). Even though W and D are optimized using
only real data and, therefore, they could be pre-trained independently from the
generative network H, we obtained better results by initializing all the networks
from scratch and jointly training them altogether. The network parameters ΘD

are optimized by gradient ascent following the GAN paradigm whereas the pa-
rameters ΘW and ΘR are optimized by gradient descent. Finally, the overall
generator loss is computed following Equation 7 where only the generator pa-
rameters ΘH are optimized (line 8).

4 Experiments

To carry out the different experiments, we have used a subset of the IAM cor-
pus [32] as our multi-writer handwritten dataset {X ,Y,W}. It consists of 62, 857
handwritten word snippets, written by 500 different individuals. Each word im-
age has its associated writer and transcription metadata. A test subset of 160
writers has been kept apart during training to check whether the generative
model is able to cope with unseen calligraphic styles. We have also used a sub-
set of 22, 500 unique English words from the Brown [3] corpus as the source of
strings for the content input. A test set of 400 unique words, disjoint from the
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a) IV-S

b) IV-U

c) OOV-S

d) OOV-U

Fig. 4. Word image generation. a) In-Vocabulary (IV) words and seen (S) styles; b)
In-Vocabulary (IV) words and unseen (U) styles; c) Out-of-Vocabulary (OOV) words
and seen (S) styles and d) Out-of-Vocabulary (OOV) words and unseen (U) styles.

Table 1. FID between generated images and real images of corresponding set.

Real images IV-S IV-U OOV-S OOV-U

FID 90.43 120.07 124.30 125.87 130.68

IAM transcriptions has been used to test the performance when producing OOV
words. To quantitatively measure the image quality, diversity and the ability to
transfer style attributes of the proposed approach we will use the Fréchet In-
ception Distance (FID) [17,4], measuring the distance between the Inception-v3
activation distributions for generated X̄ and real samples X for each writer wi

separately, and finally averaging them. Inception features, trained over ImageNet
data, have not been designed to discern between different handwriting images.
Although this measure might not be ideal to evaluate our specific case, it will
still serve as an indication of the similarity between generated and real images.

4.1 Generating Handwritten Word Images

We present in Fig. 4 an illustrative selection of generated handwritten words. We
appreciate the realistic and diverse aspect of the produced images. Qualitatively,
we observe that the proposed approach is able to yield satisfactory results even
when dealing with both words and calligraphic styles never seen during training.
But, when analyzing the different experimental settings in Table 1, we appreciate
that the FID measure slightly degrades when either we input an OOV word or a
style never seen during training. Nevertheless, the reached FID measures in all
four settings satisfactorily compare with the baseline achieved by real data.

In order to show the ability of the proposed method to produce a diverse set
of generated images, we present in Fig. 5 a t-SNE [31] visualization of different
instances produced with a fixed textual content while varying the calligraphic
style inputs. Different clusters corresponding to particular slants, stroke widths,
character roundnesses, ligatures and cursive writings are observed.

To further demonstrate the ability of the proposed approach to coalesce con-
tent and style information into the generated handwritten word images, we com-
pare in Fig. 6 our produced results with the outcomes of the state-of-the-art ap-
proach FUNIT [29]. Being an image-to-image translation method, FUNIT starts
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Fig. 5. t-SNE embedding visualization of 2.500 generated instances of the word "deep".
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ours
"which"

FUNIT

ours
"Thank"

FUNIT

ours
"inside"

Fig. 6. Comparison of handwritten word generation with FUNIT [29].

with a content image and then injects the style attributes derived from a sec-
ond sample image. Although FUNIT performs well for natural scene images, it
is clear that such kind of approaches do not apply well for the specific case of
handwritten words. Starting with a content image instead of a text string con-
fines the generative process to the shapes of the initial drawing. When infusing
the style features, the FUNIT method is only able to deform the stroke textures,
often resulting in extremely distorted words. Conversely, our proposed genera-
tive process is able to produce realistic and diverse word samples given a content
text string and a calligraphic style example. We observe how for the different
produced versions of the same word, the proposed approach is able to change
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wA wB

Real

Generated

Real

Generated

Real

Generated

Real

Generated

Real

Generated

Real

Generated

Fig. 7. Latent space interpolation between two calligraphic styles for different words
while keeping contents fixed.

style attributes as stroke width or slant, to produce both cursive words, where
all characters are connected through ligatures as well as disconnected writings,
and even render the same characters differently, e.g. note the characters n or s

in "Thank" or "inside" respectively.

4.2 Latent Space Interpolations

The generator network G learns to map feature points F in the latent space to
synthetic handwritten word images. Such latent space presents a structure worth
exploring. We first interpolate in Fig. 7 between two different points FA

s and FB
s

corresponding to two different calligraphic styles wA and wB while keeping the
textual contents t fixed. We observe how the generated images smoothly adjust
from one style to another. Again note how individual characters evolve from one
typography to another, e.g. the l from "also", or the f from "final".

Contrary to the continuous nature of the style latent space, the original con-
tent space is discrete in nature. Instead of computing point-wise interpolations,
we present in Fig. 8 the obtained word images for different styles when following
a “word ladder” puzzle game, i.e. going from one word to another, one character
difference at a time. Here we observe how different contents influence stylistic
aspects. Usually s and i are disconnected when rendering the word "sired" but
often appear with a ligature when jumping to the word "fired".

4.3 Impact of the Learning Objectives

Along this paper, we have proposed to guide the generation process by three
complementary goals. The discriminator loss Ld controlling the genuine appear-
ance of the generated images x̄. The writer classification loss Lw forcing x̄ to



GANwriting: Content-Conditioned Generation of Styled Handwriting 13

"three" "threw" "shrew" "shred" "sired" "fired" "fined" "firer" "fiver" "fever" "sever" "seven"

Fig. 8. Word ladder. From "three" to "seven" changing one character at a time,
generated for five different calligraphic styles.

Table 2. Effect of each different learning objectives when generating the content t =
"vision" for different styles.

Ld Lw Lr FID
Style Images

X - - 364.10

X X - 207.47

X - X 138.80

X X X 130.68

mimic the calligraphic style of input images Xi. The recognition loss Lr guaran-
teeing that x̄ is readable and conveys the exact text information t. We analyze
in Table 2 the effect of each learning objective.

The sole use of the Ld leads to constantly generating an image that is able
to fool the discriminator. Although the generated image looks like handwritten
strokes, the content and style inputs are ignored. When combining the discrim-
inator with the auxiliary task of writer classification Lw, the produced results
are more encouraging, but the input text is still ignored, always tending to gen-
erate the word "the", since it is the most common word seen during training.
When combining the discriminator with the word recognizer loss Lr, the desired
word is rendered. However, as in [1], we suffer from the mode collapse problem,
always producing unvarying word instances. When combining the three learning
objectives we appreciate that we are able to correctly render the appropriate
textual content while mimicking the input styles, producing diverse results. We
appreciate that the FID measure also decreases for each successive combination.

4.4 Human Evaluation

Finally, we also tested whether the generated images were actually indistinguish-
able from real ones by human judgments. We have conducted a human evaluation
study as follows: we have asked 200 human examiners to assess whether a set
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Table 3. Human evaluation plausibility experiment.

Actual
Predicted

Real Fake

Genuine 27.01 22.99 R: 54.1
Generated 27.69 22.31 FPR: 55.4

P: 49.4 FOR: 50.8 ACC: 49.3 0 25 50 75 100

Accuracy (%)
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a) Confusion matrix (%) b) Accuracy distribution

of images were written by a human or artificially generated. Appraisers were
presented a total of sixty images, one at a time, and they had to choose if each
of them was real of fake. We chose thirty real words from the IAM test parti-
tion from ten different writers. We then generated thirty artificial samples by
using OOV textual contents and by randomly taking the previous writers as the
sources for the calligraphic styles. Such sets were not curated, so the only filter
was that the generated samples had to be correctly transcribed by the word rec-
ognizer network R. In total we collected 12, 000 responses. In Table 3 we present
the confusion matrix of the human assessments, with Accuracy (ACC), Preci-
sion (P), Recall (R), False Positive Rate (FPR) and False Omission Rate (FOR)
values. The study revealed that our generative model was clearly perceived as
plausible, since a great portion of the generated samples were deemed genuine.
Only a 49.3% of the images were properly identified, which shows a similar
performance than a random binary classifier. Accuracies over different examin-
ers were normally distributed. We also observe that the synthetically generated
word images were judged more often as being real than correctly identified as
fraudulent, with a final FPR of 55.4%.

5 Conclusion

We have presented a novel image generation architecture that produces realistic
and varied artificially rendered samples of handwritten words. Our pipeline can
yield credible word images by conditioning the generative process with both
calligraphic style features and textual content. Furthermore, by jointly guiding
our generator with three different cues: a discriminator, a style classifier and a
content recognizer, our model is able to render any input word, not depending
on any predefined vocabulary, while incorporating calligraphic styles in a few-
shot setup. Experimental results demonstrate that the proposed method yields
images with such a great realistic quality that are indistinguishable by humans.

Acknowledgements

This work was supported by EU H2020 SME Instrument project 849628, the
Spanish projects TIN2017-89779-P and RTI2018-095645-B-C21, and grants 2016-
DI-087, FPU15/06264 and RYC-2014-16831. Titan GPU was donated by NVIDIA.



GANwriting: Content-Conditioned Generation of Styled Handwriting 15

References

1. Alonso, E., Moysset, B., Messina, R.: Adversarial generation of handwritten text
images conditioned on sequences. In: Proceedings of the International Conference
on Document Analysis and Recognition (2019)

2. Azadi, S., Fisher, M., Kim, V.G., Wang, Z., Shechtman, E., Darrell, T.: Multi-
content gan for few-shot font style transfer. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 7564–7573 (2018)

3. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing
text with the natural language toolkit. O’Reilly Media, Inc. (2009)

4. Borji, A.: Pros and cons of GAN evaluation measures. Computer Vision and Image
Understanding 179, 41–65 (2019)

5. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity
natural image synthesis. In: Proceedings of the International Conference on Learn-
ing Representations (2019)

6. Chang, B., Zhang, Q., Pan, S., Meng, L.: Generating handwritten Chinese charac-
ters using CycleGAN. In: Proceedings of the IEEE Winter Conference on Appli-
cations of Computer Vision (2018)

7. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: Unified
generative adversarial networks for multi-domain image-to-image translation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2018)

8. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated re-
current neural networks on sequence modeling. In: Proceedings of the NeurIPS
Workshop on Deep Learning (2014)

9. Dong, H.W., Hsiao, W.Y., Yang, L.C., Yang, Y.H.: MuseGAN: Multi-track sequen-
tial generative adversarial networks for symbolic music generation and accompa-
niment. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018)

10. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S., Litman, R.: Scrabblegan: Semi-
supervised varying length handwritten text generation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 4324–4333 (2020)

11. Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S., Vinyals, O.: Synthesizing pro-
grams for images using reinforced adversarial learning. In: Proceedings of the In-
ternational Conference on Machine Learning (2018)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of the
Neural Information Processing Systems Conference (2014)

13. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

14. Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: DRAW: A
recurrent neural network for image generation. In: Proceedings of the International
Conference on Machine Learning (2015)

15. Ha, D., Eck, D.: A neural representation of sketch drawings. In: Proceedings of the
International Conference on Learning Representations (2018)

16. Haines, T.S., Mac Aodha, O., Brostow, G.J.: My text in your handwriting. ACM
Transactions on Graphics 35(3), 1–18 (2016)

17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium.
In: Proceedings of the Neural Information Processing Systems Conference (2017)



16 L. Kang et al.

18. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: Proceedings of the IEEE International Conference on Computer
Vision (2017)

19. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-
to-image translation. In: Proceedings of the European Conference on Computer
Vision (2018)

20. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the International Conference
on Machine Learning (2015)

21. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2017)

22. Jiang, H., Yang, G., Huang, K., Zhang, R.: W-net: one-shot arbitrary-style Chinese
character generation with deep neural networks. In: Proceedings of the Interna-
tional Conference on Neural Information Processing (2018)
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34. Michael, J., Labahn, R., Grüning, T., Zöllner, J.: Evaluating sequence-to-sequence
models for handwritten text recognition. arXiv preprint arXiv:1903.07377 (2019)

35. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

36. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier
GANs. In: Proceedings of the International Conference on Machine Learning (2017)



GANwriting: Content-Conditioned Generation of Styled Handwriting 17

37. Pondenkandath, V., Alberti, M., Diatta, M., Ingold, R., Liwicki, M.: Historical
document synthesis with generative adversarial networks. In: Proceedings of the
International Conference on Document Analysis and Recognition (2019)

38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proceedings of the International Conference on Learning
Representations (2015)

39. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image genera-
tion. In: Proceedings of the International Conference on Learning Representations
(2017)

40. Thomas, A.O., Rusu, A., Govindaraju, V.: Synthetic handwritten CAPTCHAs.
Pattern Recognition 42(12), 3365–3373 (2009)

41. Tian, Y.: zi2zi: Master chinese calligraphy with conditional adversarial networks
(2017), https://github.com/kaonashi-tyc/zi2zi

42. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: Decomposing motion and
content for video generation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2018)

43. Wang, J., Wu, C., Xu, Y.Q., Shum, H.Y.: Combining shape and physical models for
online cursive handwriting synthesis. International Journal of Document Analysis
and Recognition 7(4), 219–227 (2005)

44. Wu, S.J., Yang, C.Y., Hsu, J.Y.j.: Calligan: Style and structure-aware chinese cal-
ligraphy character generator. arXiv preprint arXiv:2005.12500 (2020)

45. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: Sequence generative adversarial
nets with policy gradient. In: Proceedings of the AAAI Conference on Artificial
Intelligence (2017)

46. Zhan, F., Xue, C., Lu, S.: Ga-dan: Geometry-aware domain adaptation network
for scene text detection and recognition. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 9105–9115 (2019)

47. Zhan, F., Zhu, H., Lu, S.: Spatial fusion gan for image synthesis. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3653–3662
(2019)

48. Zheng, N., Jiang, Y., Huang, D.: Strokenet: A neural painting environment. In:
Proceedings of the International Conference on Learning Representations (2019)



GANwriting: Content-Conditioned Generation
of Styled Handwritten Word Images

—
Supplementary Material

Lei Kang∗†, Pau Riba∗, Yaxing Wang∗, Marçal Rusiñol∗, Alicia Fornés∗,
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1 Video Interpolation

To better showcase the meaningfulness of the learned stylistic embedding space,
find attached a video where we animate a much finer interpolation than the
one pictured in the paper, between different calligraphic styles of several words,
composing the first sentence of Ernest Hemingway’s “The Old Man and The
Sea”. We appreciate how the generator is able to provide a smooth transition
between different writing styles for a given static content. We provide some
screenshots of such video in Figure 1.

Fig. 1. Sample frames of the interpolation video.
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2 Limitation of the proposed method when dealing with
calligraphic styles

We evidence in Figure 2 the limitations of the proposed approach on imitating
calligraphic styles. Unlike in [2], where characteristic glyphs from a given writer
were manually cropped to perfectly compose a fraudulent text excerpt as if it
was written by a certain person, our approach is not able to produce such levels
of mimicking. When the model, trained with the IAM dataset, is fed with an
unconventional calligraphic style, the proposed approach is not able to convey
such stylistic aspects to the generated word samples. In Figure 2, we injected
word samples written by Mary Shelley, and, the reader will appreciate how the
rendered results are not able to imitate the visual aspect of such handwriting.
However, the proposed generative method is still able to correctly render the
textual contents, regardless of the provided calligraphic style.

Original manuscript Generated samples

Fig. 2. Limitations of the proposed approach when mimicking Mary Shelley’s hand-
writing style.

3 Qualitative comparison with Alonso et al. [1]

We present in Table 1, a qualitative comparison with the work of Alonso et
al. [1]. We can appreciate how our proposed method clearly produces much
credible generated images while being able to render the same content word with
different calligraphic styles. Whereas [1] suffers from the mode collapse problem,
always tending towards producing similar glyphs, our proposed method is able
to yield different stylistic instances of the same textual content.

4 t-SNE Embedding visualizations

Due to space constrains, we are aware that the t-SNE plot presented in the
paper in Figure 5 is shown at a quite small scale. This difficult its inspection.
We provide here in Figures 3, 4, 5 and 6, four different t-SNE plots for images
generated with the same textual content and for various calligraphic styles.
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Table 1. Qualitative comparison with Alonso et al.. Images reprinted from [1].

Content Alonso et al. [1]
Ours

Style A Style B Style C

"olibus"

"reparer"

"bonjour"

"famille"

"gorille"

"malade"

"certes"

"golf"

"des"

"ski"

"le"
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Fig. 3. t-SNE embedding visualization of 2.500 generated instances of the word "deep".
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Fig. 4. t-SNE embedding visualization of 2.500 generated instances of the word
"vision".
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Fig. 5. t-SNE embedding visualization of 2.500 generated instances of the word
"hello".
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Fig. 6. t-SNE embedding visualization of 2.500 generated instances of the word
"world".


