Skip to main content

VarSR: Variational Super-Resolution Network for Very Low Resolution Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12368))

Included in the following conference series:

Abstract

As is well known, single image super-resolution (SR) is an ill-posed problem where multiple high resolution (HR) images can be matched to one low resolution (LR) image due to the difference in their representation capabilities. Such many-to-one nature is particularly magnified when super-resolving with large upscaling factors from very low dimensional domains such as 8 \(\times \) 8 resolution where detailed information of HR is hardly discovered. Most existing methods are optimized for deterministic generation of SR images under pre-defined objectives such as pixel-level reconstruction and thus limited to the one-to-one correspondence between LR and SR images against the nature. In this paper, we propose VarSR, Variational Super Resolution Network, that matches latent distributions of LR and HR images to recover the missing details. Specifically, we draw samples from the learned common latent distribution of LR and HR to generate diverse SR images as the many-to-one relationship. Experimental results validate that our method can produce more accurate and perceptually plausible SR images from very low resolutions compared to the deterministic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  2. Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. arXiv preprint arXiv:1710.11252 (2017)

  3. Bulat, A., Tzimiropoulos, G.: Super-FAN: integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 109–117 (2018)

    Google Scholar 

  4. Chen, Y., Tai, Y., Liu, X., Shen, C., Yang, J.: FSRNet: end-to-end learning face super-resolution with facial priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2492–2501 (2018)

    Google Scholar 

  5. Dahl, R., Norouzi, M., Shlens, J.: Pixel recursive super resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5439–5448 (2017)

    Google Scholar 

  6. Denton, E., Fergus, R.: Stochastic video generation with a learned prior. arXiv preprint arXiv:1802.07687 (2018)

  7. Dogan, B., Gu, S., Timofte, R.: Exemplar guided face image super-resolution without facial landmarks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  8. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  10. Grm, K., Scheirer, W.J., Štruc, V.: Face hallucination using cascaded super-resolution and identity priors. IEEE Trans. Image Process. 29(1), 2150–2165 (2019)

    Google Scholar 

  11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  12. Huang, H., He, R., Sun, Z., Tan, T.: Wavelet-SRNet: a wavelet-based CNN for multi-scale face super resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1689–1697 (2017)

    Google Scholar 

  13. Vogel, J., Auinger, A., Riedl, R.: Cardiovascular, neurophysiological, and biochemical stress indicators: a short review for information systems researchers. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 29, pp. 259–273. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01087-4_31

    Chapter  Google Scholar 

  14. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)

    Google Scholar 

  17. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/

  18. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  19. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 35–51 (2018)

    Google Scholar 

  20. Lee, S., Ha, J., Kim, G.: Harmonizing maximum likelihood with GANs for multimodal conditional generation. arXiv preprint arXiv:1902.09225 (2019)

  21. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  22. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  23. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders. In: Advances in Neural Information Processing Systems, pp. 4790–4798 (2016)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4491–4500 (2017)

    Google Scholar 

  26. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  27. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing Systems, pp. 3483–3491 (2015)

    Google Scholar 

  28. Špaňhel, J., Sochor, J., Juránek, R., Herout, A., Maršík, L., Zemčík, P.: Holistic recognition of low quality license plates by CNN using track annotated data. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017). https://doi.org/10.1109/AVSS.2017.8078501

  29. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3147–3155 (2017)

    Google Scholar 

  30. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  31. Wang, X., Yu, K., Dong, C., Change Loy, C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 606–615 (2018)

    Google Scholar 

  32. Yu, X., Fernando, B., Ghanem, B., Porikli, F., Hartley, R.: Face super-resolution guided by facial component heatmaps. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 217–233 (2018)

    Google Scholar 

  33. Yu, X., Fernando, B., Hartley, R., Porikli, F.: Super-resolving very low-resolution face images with supplementary attributes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 908–917 (2018)

    Google Scholar 

  34. Yu, X., Porikli, F.: Ultra-resolving face images by discriminative generative networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 318–333. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_20

    Chapter  Google Scholar 

  35. Yu, X., Porikli, F.: Hallucinating very low-resolution unaligned and noisy face images by transformative discriminative autoencoders. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3760–3768 (2017)

    Google Scholar 

  36. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  37. Zhang, W., Liu, Y., Dong, C., Qiao, Y.: RankSRGAN: generative adversarial networks with ranker for image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3096–3105 (2019)

    Google Scholar 

  38. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  39. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in Neural Information Processing Systems, pp. 465–476 (2017)

    Google Scholar 

  40. Zhu, S., Liu, S., Loy, C.C., Tang, X.: Deep cascaded bi-network for face hallucination. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 614–630. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_37

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Samsung Research Funding & Incubation Center for Future Technology (SRFC-IT1901-01), Police Lab (NRF-2018M3E2A1081572), and AI Graduate School Support Program (MSIT/IITP 2019-0-00421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Pil Heo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 29251 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hyun, S., Heo, JP. (2020). VarSR: Variational Super-Resolution Network for Very Low Resolution Images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58592-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58591-4

  • Online ISBN: 978-3-030-58592-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics