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Abstract. Distributional uncertainty exists broadly in many real-world
applications, one of which in the form of domain discrepancy. Yet in the
existing literature, the mathematical definition of it is missing. In this
paper, we propose to formulate the distributional uncertainty both be-
tween the source(s) and target domain(s) and within each domain using
mutual information. Further, to reduce distributional uncertainty (e.g.
domain discrepancy), we (1) maximise the mutual information between
source and target domains and (2) propose a transferable feature learning
scheme, balancing two complementary and discriminative feature learn-
ing processes (general texture learning and self-supervised transferable
shape learning) according to the uncertainty. We conduct extensive ex-
periments on both domain adaption and domain generalisation using
challenging common benchmarks: Office-Home and DomainNet. Results
show the great effectiveness of the proposed method and its superiority
over the state-of-the-art methods.

Keywords: Distributional uncertainty, domain discrepancy, mutual in-
formation, object shape, self-supervised learning

1 Introduction

A fundamental assumption in machine learning is the similarity of training and
test distribution. Various algorithms have been proposed based on this assump-
tion, Convolutional Neural Networks (CNNs) among which achieved huge success
together with large scale training data. However, opposed to this ideal setting,
distributional uncertainty exists broadly in almost every real-world problem.

Domain discrepancy is a type of distributional uncertainty in which the dis-
similarity of two domains (distributions) is considered. Unsupervised Domain
Adaptation (UDA) aims at resolving the domain discrepancy problem and en-
hancing model transferability, while not requiring any labels for target domain.
Different approaches have been proposed to tackle it, such as direct minimisa-
tion of domain discrepancy [32] and domain adversarial learning [15]. Though
promising progress has been made, some critical issues still remain.
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Fig. 1. Examples of the Effiel Tower presented in different styles from the six domains
in DomainNet dataset [38]. Left to right: quickdraw, sketch, clipart, infograph, painting
and real. Best viewed in colour.

First of all, there lacks a unified and quantified explanation for the concept
of domain discrepancy. Existing methods either minimise the distributional dif-
ference between classifier outputs [44], or try to align intermediate features [49]
from different distributions. Yet a rigorous definition of domain discrepancy and
a precise measurement of it are missing.

Secondly, most methods are restricted to aligning a single source and a single
target domain at a time, as they assume that training and test data each follows
a single distribution. However, this is often not true in practice. In some tasks,
the presence of multiple distinct distributions in training is almost unavoidable,
for example, different camera-angle sub-domains in person re-identification tasks
[40]. Directly applying a single source to single target adaptation method to such
tasks is problematic. Since the adaptation performance across multiple domains
is bounded by the worst model obtained from a source domain that is least
similar to the target [56].

Further, contemporary methods try to align the output distributions by one
or more classifiers [35], while leaving the feature learning entirely handled by
CNNs. However one main drawback of CNNs is its lack of regularisation in
learning generalised and transferable features [39]. For example, CNNs are heav-
ily biased towards learning textures which may change dramatically across do-
mains, while neglecting object structural features such as shape that is often
more consistent [17]. For example in Figure 1, the Effiel Tower appears in vi-
sually diametrically different image styles but its shape remains consistent. The
situation becomes even worse when a distributional dissimilarity lies between
the training and the test data [38].

From our observations, the above issues are inherently caused by the same
fact which is the distributional uncertainty. The domain discrepancy in UDA
describes the distributional uncertainty between source and target. Single source
adaptation methods fail to consider the distributional uncertainty within the
source samples. The lack of regularisation in CNNs can be compensated by a
reduction in the distributional uncertainty of training data, such as providing
certain prior knowledge about the distribution.

In this paper, we propose to resolve the above issues by reducing distri-
butional uncertainty, combing Mutual Information Maximisation and Transfer-
able Feature Learning (abbreviated as MIMTFL). We formulate the estimation
of distributional uncertainty using Mutual Information (MI). During training,
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we calculate MI over each batch of samples to exam its uncertainty. We learn
to reduce the uncertainty by maximising MI between source and target, while
considering uncertainty within the source samples. We further leverage a self-
supervised transferable feature learning scheme by enforcing a balance between
texture and object shape features. According to the estimated uncertainty level,
the network learns to automatically balance texture and shape features for better
transferability.

In summary, we propose the following contributions:

– A formulation to measure distributional uncertainty as a unified definition of
domain discrepancy. The proposed distributional uncertainty measurement
using mutual information is mathematically grounded, and generalise to not
only discrepancy between different domains, but also disagreement within
source.

– A self-supervised transferable feature learning strategy that utilises MI to
automatically balance the learning of texture and shape features for better
generalisation.

– Extensive results under various settings on two large-scale multi-domain
adaptation benchmarks with state-of-the-art performance to prove the ef-
fectiveness of the proposed method.

2 Related Work

2.1 Unsupervised Domain Adaptation

The main challenges in UDA come from two aspects. First, how to make the
source model transferable to the target in view of the distributional gap be-
tween the two. Secondly, how to make use of the unlabelled target samples. For
the first, learning a transferable representation for both the source and target
has attracted much attention. Methods including DDC [50], DAN [30] and JAN
[33] align the domains by minimising a domain discrepancy measurement be-
tween them. Domain adversarial learning [15,49] seems to be effective where the
gradients from a domain discriminator network trying to distinguish source and
target samples are reversed. It is also found that aligning the first, second and
even higher order moments of source and target distributions is helpful [47,43].

To use the unlabelled target samples, many semi-supervised learning tech-
niques are introduced into UDA algorithms. Pseudo-Labelling [28] and Label-
Propagation [58] are found to be useful to estimate the true labels of target
samples [5]. Another effective solution is the Mean-Teacher [48] model in which
an unsupervised consistency loss is enforced between a student model prediction
and a teacher model prediction [14].

2.2 Distributional Uncertainty

The study of distributional uncertainty spreads through various fields of science
and engineering. In control theory, researchers apply distributional uncertainty
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analysis to enhance robustness of controllers [34]. Evidence imprecision and un-
certainty modelling using fuzzy sets is shown critical in medical diagnosis [46].
Probabilistic machine learning values the representation and manipulation of
uncertainty in both data distributions and models, as it plays a central role in
scientific data analysis [18].

The connection between distributional uncertainty estimation and general-
isation has recently been uplifted significantly too. In modern deep learning,
explicit modelling of distributional uncertainty within the Bayesian framework
makes the network more robust to noisy data as well as achieving better general-
isation results on difficult computer vision tasks, such as semantic segmentation
and depth regression [24]. Kendall et al. [25] found that using uncertainty weight-
ing in multi-task learning allows effective simultaneous learning of various tasks,
which even outperforms individually learned models for each task. Uncertainty-
based reliability analysis in 3D vehicle detection from point cloud data brings
steady improvement in the model’s performance in adverse environment, such
as heavy occlusions, which is of great importance to promoting safe autonomous
driving [13]. Examples of benefits in generalisation can be found throughout a
variety of vision applications including optical flow estimation [22], people track-
ing in traffic scenes [2], so on and so forth.

2.3 Self-Supervised Visual Feature Learning

As a promising solution towards eliminating the need of costly human anno-
tations, self-supervised learning methods learn visual features from unlabelled
images on auxiliary tasks. The supervision signals for the auxiliary tasks are
usually automatically obtained without requiring any human labelling effort.
In other words, it absorbs advantages from supervised learning methods with
accurate labels, while saving the tedious labour for labelling.

So far, outstanding progress has been made in a wide range of vision tasks
with self-supervised visual feature learning. Zhang et al. [55] found learning to
colourise of de-coloured images eminently improve generalisation in the down-
stream recognition task. With an image inpainting auxiliary task, the network
captures not just appearance but also the semantics of visual structures [37].
Another popular method to learn structural features in an image is extracting
patches from it, and learning to predict their relative spatial locations, so-called
solving a jigsaw puzzle. The learned visual representation is seen to perform
incredibly well in object detection tasks [10], as well as effectively increasing
generalisation in standard Domain Generalisation tasks [4].

3 Methodology

We hereby introduce the details of MIMTFL, as illustrated in Figure 2. We first
elucidate the measurement of distributional uncertainty formulation using MI in
§3.1. Then move on to the MI-guided self-supervised learning of transferable
features including our proposed shape learning method, detailed in §3.2.
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Fig. 2. System pipeline: A reference shape is obtained for all the samples using an edge
detector in advance. During training, both the source and the target sample batch are
fed to the backbone feature extractor CNN. A shape loss is calculated via comparing
the generated shape by the shape learner and reference shape for each sample. The
CNN extracted features are also fed into a mutual information measurement module,
to estimate both inter-domain and intra-domain distributional uncertainty for source
and target domain. The estimated uncertainty is then used to automatically weight
the shape loss. The overall objective consists of the classifier task loss on the labelled
source samples, and the weighted shape loss on all the samples. Best viewed in colour.

3.1 Distributional Uncertainty Measurement using MI

Preliminaries. For distributional uncertainty estimation, we are interested in
the problem: given two batches of samples, how can we know whether they follow
the same distribution? Specifically, how can we measure the similarity between
them? In information theory, the measure of uncertainty on a distribution p(X)
is the entropy H of X [45] on the sample space X , given as:

H(X) = −
∑
x∈X

p(x) log p(x) = −E[log p(X)]. (1)

Uncertainty Measurement. Mutual Information measures the reduction in
uncertainty for one variable X given a known value of another variable Y , which
is defined by:

I(X;Y ) = H(X)−H(X|Y ). (2)

MI between X and Y can be calculated using the Kullback-Leibler(KL) diver-
gence [26] between the joint entropy H(X,Y ) and product of the two individual
entropy H(X)H(Y ).

I(X;Y ) = DKL(H(X,Y )||H(X)H(Y )). (3)

We calculate I(X;Y ) between two batches of samples X and Y as the confidence
of them belonging to the same distribution using Eq. (3). Note that for a single
distribution p(X), ideally, the MI within its observations is the entropy itself:
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I(X;X) = H(X). However, we need to re-evaluate the value to detect noise in
the samples, which indeed often exist in real-world. Therefore, to measure the
uncertainty within a distribution, we use the below formula:

I(X;X) = DKL(H(X,X)||H(X)H(X)). (4)

In practice, the higher the measured MI, the lower the distributional uncer-
tainty. During learning, we maximise the MI between source and target to reduce
the uncertainty and learn a more generalised model. Note that although there
is also possibility that the MI between distributions [1] can be learnt instead
of calculated, it cannot be directly applied here. Since this would require the
distributions to be known, while we have one of the distributions (the target)
unknown.

3.2 Transferable Feature Learning

MI-Guided Transferable Feature Learning. Geirhos et al. [17] found that
CNNs recognise objects mainly according to their texture, while overlooking
other structural features such as shape and edges. This texture bias is observed
repeatedly with different network architectures across different tasks [53,41]. To
increase model transferability, we need to reduce such bias by introducing ap-
propriately balanced learning of texture and other non-texture features. In tasks
where texture varies drastically across observations, learning of other transfer-
able features should be attenuated. Whilst if texture may serve as a generic
feature across different distributions, the learning of texture should not be di-
minished.

We propose to further utilise the distributional uncertainty measured by mu-
tual information in §3.1 as the controlling factor for transferable feature learning.
To be specific, we adopt the below learning object:

Ltotal = Lcls(X) + λX · Ltrans(X) + λY · Ltrans(Y ), (5)

λX =
I(X;X)

I(X;Y )
, λY =

I(Y ;Y )

I(Y ;X)
, (6)

where Lcls is the supervised classification loss on the labelled source samples
X and Ltrans the auxiliary loss for explicit learning of non-texture transferable
features on both X and unlabelled target samples Y .

The weighting term λX and λY , decided by MI, dedicates to balance between
texture and non-texture feature learning. The intuition is that, when MI is small
which indicates high distributional uncertainty, learning of more transferable
features can be beneficial. Whilst larger MI manifests a successful transfer within
the network and thus alleviating the need for complementary features other than
texture.

The selection of a proper Ltrans can be exhaustive. One option is increasing
the texture diversity in the training data. For example, some involve comprehen-
sive pre-defined image augmentations [54,9,7], some apply learned style transfer
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[17,29]. However, the improvement in their generalisation comes at the cost of
huge computations in retrieving the enormous potential sample space. Not to
mention that, diverse training samples are often required in the first place to
learn appropriate augmentation/transformation methods.

Self-Supervised Visual Feature Learning. Since the requirement for exhaus-
tive annotations has been identified as a major bottleneck for deep learning, the
concept of self-supervised learning is proposed as a promising solution [10]. In
self-supervised learning, rich information in the input that may be ignored by
the designated task learner is further mined by an auxiliary task. And the auxil-
iary task can be trained without requiring any human labelling effort. Examples
of such tasks are colourisation of de-coloured images [55,27], jigsaw puzzle [10,4]
and inpainting [37]. Empirical results using these auxiliary tasks are found help-
ful in regularising the learning procedure and notably improving generalisation
[20]. Hence, we propose to employ self-supervised learning methods to explicitly
enforce non-texture feature learning.

One thing to note for our selection of the auxiliary loss Ltrans is that, no labels
should be required for the unlabelled target samples Y . And this fits seamlessly
into the setting of self-supervised learning. In theory, the aforementioned tasks
should be compatible within our framework, where their corresponding learning
objectives can be the choice of Ltrans in our MI-guided transferable feature
learning.

While most of these methods are proven effective to regularise the network
learning to be less biased towards easy-to-fit texture, none of them exploits
object shape explicitly. This is, however, contradictory to the way by which
human recognise visual objects. Neuroscience study [19] found that, training
human participants on recognising objects composed of certain object shapes
significantly improves their performance in recognising other different objects
containing the same shapes. Motivated by the fact that shape plays a vital role
in human’s visual perception and recognition paradigm, we propose a new self-
supervised shape learning task to better mimic human vision using CNNs. Note
that our new shape learning method serves as one new potential candidate for
the choice of Ltrans, and is in parallel with the aforementioned ones.

Self-Supervised Object Shape Learning. The target of object shape learn-
ing is to embed object structural information into the un-constrained features
that the network learns. Learning object shape as a complementary feature is
advantageous not only because it is more interpretable. In the existence of sharp
change in texture and colour, recognition using object shape is more reliable as it
is often more consistent and independent of the frequent appearance variations.

Based on the principle that we would like to avoid requiring any extra la-
belling effort in creating a reference shape for each training sample, we design
a self-supervised shape learning scheme by creating reference shapes using edge
detectors. Edge detection as a traditional low-level vision task has been studied
thoroughly with mature tools formulated. The overall object shape can be ob-
tained by running an edge detector on an image. Here, the target of our learning
is a set of shape-embedded generic features that can contribute to the visual
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 3. Examples in Office-Home (a-d) and DomainNet dataset (e-h): 1st row - original,
2nd row - reference shape and 3rd row - generated shape image trio.

recognition end. Motivated by the Perceptual Loss [23], we define a feature de-
scriptor f that captures the low-level feature of an image. A shape learner learns
to generate a shape image given an input object image. Examples of shapes ex-
tracted by traditional edge detector and generated shape by our framework are
illustrated in Figure 3. Then we measure the perceptual difference between low-
level features of the generated shape fgen and the reference shape fref as:

Lshape = D(fgen, fref ), (7)

where D is a deviation measure for the low-level features.
Compared to pixel-level loss, our shape loss gives more freedom to the shape

learner to keep certain degrees of texture-related details that can benefit the
recognition process in some cases (such as the shade in Figure 3 (b)). On the
contrary, strictly constraining the shape learner to reference shape at the pixel-
level obviously would lose this discriminative information.

4 Experiments

In this section, we provide a detailed empirical analysis of MIMTFL. We conduct
extensive experiments on two large scale datasets with varying distributional
uncertainties. To analyse the effectiveness of MIMTFL, we consider these three
aspects: i) the level of distributional uncertainty exists in these existing evalua-
tion benchmarks; ii) the benefit of uncertainty reduction and iii) the benefit of
explicit shape learning.

4.1 Settings

Unsupervised Domain Adaptation (UDA). In UDA experiments, the train-
ing set consists of two types of data: labelled samples from one or more distri-
butions (source), and unlabelled samples from one or more distributions (tar-
get). We further divide these tasks into three groups, which correspond to most
common real-world scenarios, with the difficulty level in each group magnified
compared to the previous: i) Single-to-single adaptation in which we train
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(a) (b) (c)
Task

inter-domain
intra-domain

Fig. 4. Measured MI during training in Office-Home experiments, the higher the MI,
the lower the distributional uncertainty. (a) Initial MI both intra and inter-domain
in Office-Home Dataset, (b) the change of MI during training in R→P experiment,
(c) visualised features without (1st row) and with (2nd row) shape learning, and the
difference between them (3rd row). Best viewed in colour.

using a single labelled source distribution and a single unlabelled target distri-
bution. We evaluate the effect of our self-supervised shape feature learning on
model transferability with limited samples, and the generalisation capacity of
our model across these different tasks. ii) Multi-to-single adaptation where
the labelled source samples come from multiple distributions, whilst the unla-
belled target samples follow a single distribution. We validate the benefits of
our framework to simultaneous learning from multiple disjoint distributions. iii)
Multi-to-multi adaptation with both the labelled source and unlabelled tar-
get are drawn from multiple distributions. We verify the effect of our proposed
method with up-scaled unlabelled target data and even fewer labelled source
data.
Domain Generalisation (DG). DG is a more challenging task since the target
is completely absent during training. Under this setting, we can only estimate
the distributional shift within the labelled source domain, yet still transfer the
learned model to the target at test time. To achieve a reasonable result on target,
a model has to learn as much as possible the most transferable and generalised
features from the given source distributions.

4.2 Datasets

Office-Home. The dataset [51] parents four distinct domains in 65 object cat-
egories: Art (A), Clipart (C), Product (P) and RealWorld (R). The number of
images in each domain is: 2427, 4365, 4439 and 4357, respectively. For all the
experiments, we use all the samples in each domain as either source or target.
Note that, although we treat each domain as a single distribution following com-
mon practice, there still exist varying levels of out-of-distribution examples in
some domains. For instance, the Clipart domain which contains artistic images
in various forms and patterns exhibits a rather high distributional uncertainty
even within the domain itself. This is clearly indicated in its low measured MI
value shown in Figure 4 (a).
DomainNet. As the largest and the most challenging benchmarking dataset
for DA till today, DomainNet dataset [38] includes six domains: clipart (c),



10 Jian Gao et al.

infograph (i), painting (p), quickdraw (q), real (r) and sketch (s). The samples
spread through 345 diverse categories and each domain is divided into a train
split for training and a test split for test only. The difficulty of this dataset comes
from several aspects: i) highly abstract and artistic images, ii) diverse domains,
and iii) severely unbalanced domains.

4.3 Implementation Details

Domain adaptation. We apply MIMTFL on both Office-Home and Domain-
Net for all the three types of tasks. In single-to-single adaptation experiments,
we use each domain as source and another domain as the target in turn for all
the domains, ending up with 12 single-to-single tasks for Office-Home and 30
single-to-single tasks for DomainNet. Specifically, for better evaluation of differ-
ent levels of distributional uncertainty, we divide 30 single-to-single adaptation
tasks in DomainNet into two groups: 15 difficult tasks with average target accu-
racy by the source only model at 10.8% and 15 easier tasks at 42.3%. We report
the mean accuracy separately for the two groups and an all mean accuracy for
all of the 30 tasks. In multi-to-single adaptation experiments, target is only one
domain while the source comes from multiple different domains. We use each
domain as the target and the rest as source in turn, resulting in four tasks for
Office-Home and six for DomainNet. The combined scale of the source domain
is usually much larger than the target. In multi-to-multi experiments, we use
all four domains in Office-Home and four domains in DomainNet that yield the
highest distributional gap: infograph, quickdraw, real and sketch. In each task,
two domains are chosen as source and the other two as target.
Domain generalisation. To compare with existing domain generalisation meth-
ods, we conduct single-to-single and multi-to-single experiments on Office-Home
dataset. Under this setting the shape loss is only applied to the source samples,
where no target samples are used in training.
Reference shape extraction. While many well-developed edge detectors in-
cluding Canny [3] are generally applicable, we use a structure-aware edge de-
tector [11] here as an example. Each image is input into the algorithm, and the
output is a single channel image under the same resolution of the input. Object
shapes are described by the edges, resulting in a sketch-lized representation of
the original image. For most images, the extracted edges well depict the object
shapes. For all our experiments, we use the Structured Forests edge detector
implemented in OpenCV3.
Network and training setups. We use the original ResNet [21] architecture
with a single FC layer as our backbone network for all experiments. For the
relatively smaller Office-Home dataset, we use ResNet-50 for UDA experiments
and ResNet-18 for DG experiments. For DomainNet experiments, we use ResNet-
101 backbone. Following common practice, ImageNet [8] pre-trained model is
used as backbone network initialisation. The shape loss compares shape features
extracted from the first convolutional block output in ResNet. The weight of

3 https://opencv.org
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the shape loss is calculated using the discrepancy between output features of
the first residual block output in ResNet. The shape learner is composed of
two layers of deconvolution, with output channels 128 and 3, respectively. The
generated shape image is exactly the same dimension with the input image, fixed
as 224 × 224 × 3. We use SGD [42] optimiser with learning rate 0.0001 for the
ImageNet pre-trained layers and 0.001 for the FC layer in all the experiments. We
apply basic data augmentation routine including random cropping and horizontal
flipping only. All implementations and experiments are based on PyTorch [36].

Benchmarking. We compare our method with representative and latest state-
of-the-art algorithms that study the problem of distributional discrepancy. Fol-
lowing the UDA setting, SE [14], CDAN [31] and DWT [43] are the latest top-
performing DA methods on the Office-Home dataset. DANN [16] and ADDA
[49] are representative domain adversarial learning methods, while JAN [33] and
MCD [44] focus on discrepancy minimisation. For a fair evaluation in Office-
Home experiments, we also report result using our method combined with the
Min-Entropy Consensus loss (MEC) [43] to compare with aggregated meth-
ods: DWT+MEC [43] and BSP+CDAN [6]. For DG setting, JiGen[4] uses self-
supervised task of solving jigsaw puzzles to increase model transferability and is
the state-of-art on Office-Home dataset. D-SAMs [12] is a representative method
that targets at bridging multiple distinct distributions in training for DG. All
the results are reported in top 1 accuracy and cited from the original papers.

4.4 Ablation Study

Uncertainty analysis in existing datasets. We compare the average uncer-
tainty, indicated by MI both between different domains and within the same do-
main illustrated in Figure 4 (a). We observe clearly that, in Office-Home dataset,
the visually most diverse domain - Clipart yields the lowest MI even within itself.
This is consistent with the adaptation results, where we see that tasks involving
the Clipart domain are generally more difficult than others.

Component analysis of MIMTFL. To further understand the effectiveness
of MIMTFL, we conduct ablation studies on its two main components, namely
MIM for MI maximisation and TFL for transferable feature learning. Figure
4 (c) clearly shows that with the shape learning objective, the network focuses
more on object shape rather than textures. From the results in Table 1, we ob-
serve that without either module, the adaptation results on almost all the tasks
drop significantly. Especially on those difficult tasks where the source only model
accuracy is lower, such as P→C and A→C, adding in the MI module increases
model transferability by a large margin. The change of measured MI during
training is plotted in Figure 4 (b), which shows a steady increase of the mu-
tual information between domains, indicating the reduction in the uncertainty.
Specifically, we observe that the value of the MI yields a higher impact on those
more difficult adaptation tasks, where the distributional uncertainty is higher.
Our MI maximisation gives the best performance on these challenging tasks. As
in reality, it is difficult to manually tune the hyperparameter for transferable
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Table 1. Results on Office-Home single-to-single UDA (all with ResNet-50 backbone).

Method P→C A→C C→A P→A R→C C→P C→R A→P R→A A→R P→R R→P mean

Source only 31.2 34.9 37.4 38.5 41.2 41.9 46.2 50.0 53.9 58.0 60.4 59.9 46.1
DDAIG [57] 36.8 40.8 43.7 40.0 44.5 55.6 56.9 53.6 56.3 65.4 63.5 73.8 52.6
MIMTFL∗

src 48.5 51.5 57.1 53.2 52.2 65.6 67.6 67.9 66.2 74.8 78.8 74.1 63.1

DANN [16] 43.7 45.6 47.0 46.1 51.8 58.5 60.9 59.3 63.2 70.1 68.5 76.8 57.6
JAN [33] 43.4 45.9 50.4 45.8 52.4 59.7 61.0 61.2 63.9 68.9 70.3 76.8 58.3
SE [14] 41.5 43.2 55.0 50.4 49.5 59.0 64.5 60.2 64.9 70.4 68.9 75.2 58.6
CDAN [31] 49.1 50.6 55.7 51.8 56.9 62.7 64.2 65.9 68.2 73.4 74.5 80.7 62.8
DWT [43] 49.5 50.8 58.9 57.2 55.3 65.6 60.2 72.0 70.1 75.8 78.3 78.2 64.3
TFL 48.6 52.5 57.2 54.8 51.4 66.2 68.6 68.4 66.5 75.0 74.0 78.2 63.4
MIM 48.8 52.1 57.1 52.8 52.6 66.0 68.5 67.5 65.9 74.2 73.5 78.1 63.1
MIMTFL 51.1 54.1 59.1 55.8 55.4 66.9 69.4 68.4 67.8 75.2 74.6 79.1 64.7

BSP+DANN [6] 49.6 51.4 56.0 57.0 57.1 67.8 68.8 68.3 70.4 75.9 75.8 80.6 64.9
DWT+MEC [43] 47.9 54.7 56.9 54.8 54.9 68.5 69.8 72.3 68.6 77.2 78.1 81.2 65.4
BSP+CDAN [6] 50.2 52.0 58.0 58.6 59.3 70.3 70.2 68.6 72.2 76.1 77.6 81.9 66.3
MIMTFL+MEC 54.9 56.9 61.2 58.6 59.4 70.0 71.6 70.3 69.8 75.6 77.5 80.4 67.2

Table 2. Results on DomainNet single-to-single UDA (all with ResNet-101 backbone).

Method q→i q→p i→q q→r p→q r→q q→c q→s s→q c→q s→i p→i c→i r→i i→s mean

Source only 0.9 1.4 3.6 4.1 4.9 6.4 7.0 8.3 10.9 11.1 15.4 18.7 19.3 22.2 27.9 10.8
MIMTFLsrc 0.8 4.8 3.2 4.3 4.8 6.0 6.7 7.6 10.8 10.2 13.9 16.5 15.4 19.1 27.2 10.1

ADDA [49] 2.6 5.4 3.2 9.9 8.4 12.1 15.7 11.9 14.9 3.2 8.9 9.5 11.2 14.5 14.6 9.7
MCD [44] 3.0 7.0 1.5 11.5 1.9 2.2 15.0 10.2 3.8 1.6 13.7 14.8 14.2 19.6 18.0 9.2
DANN [16] 2.0 4.4 3.8 9.8 5.5 6.3 11.8 8.4 10.4 9.5 13.9 15.1 15.5 17.9 25.7 10.7
TFL 1.5 3.6 2.3 9.0 3.1 5.1 14.5 8.0 11.1 9.9 15.4 16.2 15.9 18.9 27.8 10.8
MIMTFL 3.1 5.0 2.9 16.0 4.2 5.8 18.8 13.8 12.3 10.7 16.5 14.7 15.1 19.0 31.0 12.6

Method i→c i→p p→s s→p c→p r→s p→c c→s i→r s→c s→r r→c r→p c→r p→r mean all mean

Source only 30.2 31.2 36.3 37.0 37.5 38.8 39.6 41.0 44.0 46.9 47.0 48.4 49.4 52.2 54.5 42.3 26.6
MIMTFLsrc 33.1 30.8 36.8 35.1 36.0 37.9 41.8 42.3 46.4 49.4 47.2 50.0 47.4 51.7 56.4 42.8 26.3

ADDA [49] 19.1 16.4 25.4 25.2 24.1 25.7 31.2 30.7 26.9 35.3 37.6 39.5 29.1 41.9 39.1 29.8 19.8
MCD [44] 23.6 21.2 28.4 27.6 26.1 29.3 34.4 33.8 36.7 41.2 34.8 42.6 42.6 45.0 50.5 34.5 21.9
DANN [16] 31.8 30.2 35.1 34.5 34.8 37.3 39.6 41.4 44.8 47.9 46.8 47.5 47.0 50.8 54.6 41.6 26.1
TFL 33.7 32.0 36.8 39.9 36.0 37.1 43.2 41.9 46.9 52.2 50.9 50.0 47.5 52.4 56.5 43.8 27.3
MIMTFL 32.1 31.0 36.8 40.3 35.6 39.4 40.1 43.1 48.5 51.7 53.5 48.5 47.6 51.5 55.4 43.7 28.1

feature learning, which is a strong demonstration of the benefit of our adaptive
weighting according to calculated distributional uncertainty.

4.5 Results

Unsupervised domain adaptation. The results are shown in Table 1 and
2. We list the task column in the ascending order of their source only model
performance. Although the Office-Home benchmark is highly competitive, it is
observed that MIMTFL is able to achieve top performance. Specifically, our
method achieves significant improvement on those tasks with lower source only
accuracy. Such as A→C task, it outperforms previous SOTA with a 3.3% ab-
solute gain. When combined with the MEC loss, it further boosts the average
target accuracy and produces the best result among all methods in 6 out of
all the 12 tasks. It is worth noting that, DWT and DWT+MEC engage affine
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Table 3. Results on Office-Home multi-to-single UDA (all with ResNet-50 backbone).

Method ACP→R ACR−→P APR−→C CPR−→A mean

Source only 81.7 80.1 58.5 69.4 72.4
SE [14] 79.2 76.3 54.3 68.8 69.7
DWT+MEC [43] 83.8 83.9 59.1 73.0 74.9
MIMTFL+MEC 83.1 81.9 64.3 72.6 75.5

Table 4. Results on DomainNet multi-to-single UDA (all with ResNet-101 backbone).
* indicates multi-source adaptation methods

Method ipqrs→c cpqrs→i ciqrs→p ciprs→q cipqs→r cipqr→s mean

Source only 39.6 8.2 33.9 11.8 41.6 23.1 26.4
SE [14] 24.7 3.9 12.7 7.1 22.8 9.1 13.4
ADDA [49] 47.5 11.4 36.7 14.7 49.1 33.5 32.2
MCD [44] 54.3 22.1 45.7 7.6 58.4 43.5 38.6
DANN [16] 58.1 21.0 51.1 10.3 66.2 49.3 42.7
DCTN* [52] 48.6 23.5 48.8 7.2 53.5 47.3 38.2
M3SDA* [38] 57.2 24.2 51.6 5.2 61.6 49.6 41.6
MIMTFL 67.2 25.0 54.4 13.4 67.0 54.1 46.8

transformation and Gaussian blurring as additional data augmentation during
training, while our reported results are without such sophisticated augmenta-
tion. Additionally, we report a source only result where no target data is used
in training, namely MIMTFLsrc. Compared with latest method such as DDAIG
[57], our method proves strong generalisation capacity in this experiment.

On the more challenging DomainNet dataset, firstly, we observe that in many
tasks the adaptation actually harms the target performance (i.e., negative trans-
fer). For instance, the images in “infograph” domain are largely occupied by
texts, while the object to be recognised are highly abstracted or in various artis-
tic styles. This could lead to failure in CNN learned features to capture the true
commonalities in objects. The high accuracy of adaptation to the “real” domain
can be mainly due to the use of ImageNet pre-trained model in the backbone
networks. While for “quickdraw” domain, the perquisite from ImageNet model
is of little help, and the network is forced to learn almost from scratch. Un-
der such challenges, MIMTFL improves performance in 8 out of the 15 difficult
tasks. While ADDA fails to bring any improvement on 7 tasks and MCD on
10, MIMTFL only fails on two, comparing to the source only model. Here since
all the other methods focus on aligning the classifier output distributions using
general CNN features, the effectiveness of our proposed MI-guided transferable
feature learning is clearly proven.

Results of multiple-to-single tasks are in Table 3 and 4. While MIMTFL eas-
ily outperforms other methods on both datasets, we observe that it is especially
outstanding for the difficult tasks. In the most difficult task APR→C in Office-
Home experiments, MIMTFL+MEC improves the absolute target accuracy from
source only model by 5.8%, bringing a 9.9% gain. In DomainNet experiments,
our method creates new SOTA results in all of the six tasks, astoundingly boost-
ing the source only model by 77%. Note that DCTN [52] and M3SDA [38] are
specifically designed multi-source adaptation algorithms that consider collabo-
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Table 5. Results on Office-Home multi-to-multi UDA (all with ResNet-50 backbone).

Method PR→AC AP→CR AR→CP CP→AR AC→PR CR→AP mean

Source only 59.7 68.9 69.0 72.8 74.9 76.0 70.2
SE [14] 54.6 62.4 63.4 70.1 70.0 73.4 65.6
DWT+MEC [43] 59.1 69.9 68.8 76.2 78.8 77.6 71.7
MIMTFL+MEC 62.9 70.7 70.4 75.7 76.1 77.3 72.2

Table 6. Results on DomainNet multi-to-multi UDA (all with ResNet-101 backbone).

Method rs→iq ir→qs qr→is is→qr qs→ir iq→rs mean

Source only 14.0 17.6 31.0 35.4 36.2 42.0 29.4
ADDA [49] 4.2 2.9 15.9 20.6 27.7 17.2 14.7
MCD [44] 12.2 15.4 27.4 29.3 36.6 33.8 25.8
MIMTFL 14.3 17.9 31.9 36.3 43.1 43.6 31.2

rative learning among multiple source domains. This proves the superiority of
our formulation of distributional uncertainty for multiple source domains.

Results of multi-to-multi tasks are shown in Table 5 and 6. In Office-Home
experiments, our model is further proven to work well especially on the more
difficult tasks, while other distribution alignment methods, such as SE, fail to
even beat the source only model. In the more challenging DomainNet experi-
ments, we observe negative transfer here again in ADDA and MCD. Since the
scale of the target domain is multiplied, the adaptation becomes even harder.
Results show that MIMTFL is able to improve the source model and performs
the best in all the six tasks.
Domain Generalisation. We observe in results presented in Table 7 that
our method easily outperforms existing state-of-the-art specialised DG meth-
ods. Specifically, we find that our shape learning is more effective than JiGen
using jigsaw puzzle as transferable feature learning.

Table 7. Results on Office-Home multi-to-single DG (all with ResNet-18 backbone).

Method ACP→R ACR→P APR→C CPR→A mean

D-SAMs[12] 71.5 69.2 44.4 58.0 60.8
JiGen[4] 72.8 71.5 47.5 53.0 61.2
MIMTFL 74.4 73.1 51.1 53.3 63.0

5 Conclusions

In this paper, we propose a theory grounded formulation for the definition of
domain discrepancy using distributional uncertainty. We maximise the mutual
information between source and target. In addition, we propose to enhance trans-
ferable feature learning in CNNs by balancing texture and non-texture feature
learning with the measured uncertainty. To explicitly learn non-texture features,
we propose a novel self-supervised object shape learning method, which can
be used in parallel with many existing self-supervised visual feature learning
methods. Our idea is thoroughly experimented and validated through extensive
experiments.



Reducing Distributional Uncertainty by MIMTFL 15

References

1. Belghazi, M.I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A.,
Hjelm, D.: Mutual information neural estimation. In: ICML (2018)

2. Bhattacharyya, A., Fritz, M., Schiele, B.: Long-term on-board prediction of people
in traffic scenes under uncertainty. In: CVPR (2018)

3. Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence (6), 679–698 (1986)

4. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain
generalization by solving jigsaw puzzles. In: CVPR (2019)

5. Chen, C., Xie, W., Huang, W., Rong, Y., Ding, X., Huang, Y., Xu, T., Huang,
J.: Progressive feature alignment for unsupervised domain adaptation. In: CVPR
(2019)

6. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: Batch
spectral penalization for adversarial domain adaptation. In: ICML (2019)

7. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning
augmentation strategies from data. In: CVPR (2019)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

9. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552 (2017)

10. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning
by context prediction. In: ICCV (2015)

11. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 37(8), 1558–1570 (2014)

12. D’Innocente, A., Caputo, B.: Domain generalization with domain-specific aggrega-
tion modules. In: German Conference on Pattern Recognition

13. Feng, D., Rosenbaum, L., Dietmayer, K.: Towards safe autonomous driving: Cap-
ture uncertainty in the deep neural network for lidar 3d vehicle detection. In: IEEE
Intelligent Transportation Systems Conference (ITSC) (2018)

14. French, G., Mackiewicz, M., Fisher, M.: Self-ensembling for visual domain adap-
tation. In: ICLR (2018)

15. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: ICML (2015)

16. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. The
Journal of Machine Learning Research 17(1), 2096–2030 (2016)

17. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.:
Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness. In: ICLR (2019)

18. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature
521(7553), 452–459 (2015)
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